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Abstract. Fuzzy Description Logics (Fuzzy DLs) and fuzzy OWL have
been proposed as languages able to represent and reason about imprecise
and vague knowledge. Such extensions have gained considerable atten-
tion the last couple of years since on the one hand they are pivotal for
applications that are inherently imprecise, like multimedia analysis and
retrieval, geospatial applications and more, while on the other hand they
can be applied to Semantic Web applications, like querying with pref-
erences, modelling levels of trust and proof and more. In the current
paper we extend the current state-of-the-art on fuzzy extensions to Se-
mantic Web languages by presenting the syntax and semantics of the
fuzzy-SROIQ DL as well as the abstract, XML syntax and semantics of
a fuzzy extension to OWL 1.1. Moreover, we provide reasoning support
for a fuzzy version of fuzzy-SROIQ by extending well-known reduction
techniques of fuzzy DLs to classical DLs for the additional axioms and
constructors of fuzzy-SROIQ.

1 Introduction

Although, OWL 1.1 [3] and Description Logics [1] are considerably expressive
they are rather weak when it comes to modelling domains where imprecise and
vague information is apparent. For that reasons there have been many propos-
als towards extending Description Logics and OWL DL with imprecise handling
mathematical theories, resulting to fuzzy Description Logics [14] and fuzzy OWL
[16, 11]. Let us consider for example the case of multimedia processing and analy-
sis. Today a huge amount of multimedia documents, like image, video and sound
records, reside in huge databases of TV channels, production companies, muse-
ums, galleries etc. In order to publish these archives on the web in a semantically
rich manner we have to (semi)automatical annotate their content. In order to
(semi)automatically annotate an image we have to employ an image analysis
algorithm, which segments it in various regions (segments) and then associate
with each segment a suitable semantic label, which will be for the purposes of
retrieval. Unfortunately, the process of (semi)automatic image segmentation and
recognition is an extremely difficult problem where a high degree of uncertainty
and vagueness often appears. In order to assist image analysis the concept of
knowledge based image analysis has been proposed [6]. More precisely, we can
use expressive ontology languages, like SROIQ [4] or the respective OWL 1.1



[3], in order to give definitions about the entities that exist within an image. For
example, we can have axioms like the following ones,

Car ≡ ∃hasSegment.(Body u ∃isConnectedTo.Wheel)
Wheel ≡ Black u ∃isConnectedTo.WheelRim
hasSegment ◦ isConnectedTo v hasSegment

Suppose now that we employ an image analysis algorithm. This algorithm seg-
ments the image and provides estimations on the membership or non-membership
of a segment to a certain class. For example, by using the fuzzy DL syntax [14],
we can have that (region1, region2) : hasSegment ≥ 0.7, region2 : Body ≥ 0.8,
(region2, region3) : isConnectedTo ≥ 0.6 and region3 : Wheel ≥ 0.9. From
this fuzzy knowledge we can, on one hand by using standard fuzzy-DL reason-
ing [14], deduce that region1 : Car ≥ 0.6, while on the other hand by using
the newly introduced complex role inclusion we can also infer that region1 :
∃hasSegment.Wheel ≥ 0.6.

In the current paper we extend several results presented in the literature
about fuzzy extensions to Description Logics and OWL. More precisely, we ex-
tend the semantics of fuzzy-SHOIN , presented in [16], to provide semantics for
fuzzy-SROIQ. Furthermore, in order to provide some initial support for rea-
soning in fKD-SROIQ (see section 3 for a definition) we extend the mapping
presented in [2] that reduces the satisfiability of fKD-SHOIN to satisfiability of
crisp SHOIN in order to cover the new features of fuzzy-SROIQ. Moreover,
we provide an overview of some recently developed reasoning systems for fuzzy
DLs. Finally, we extend the abstract and XML syntax, semantics and reduction
of fuzzy OWL DL to fuzzy-SHOIN presented in [11] to provide syntax and
semantics of fuzzy OWL 1.1.

2 Fuzzy Set Preliminaries

Fuzzy set theory and fuzzy logic are widely used for capturing imprecise knowl-
edge [5]. While in classical set theory an element either belongs to a set or not,
in fuzzy set theory elements belong only to a certain degree. More formally, let
X be a set of elements. A fuzzy subset A of X, is defined by a membership
function µA(x), or simply A(x) [5]. This function assigns any x ∈ X to a value
between 0 and 1 that represents the degree in which this element belongs to
X. In this new framework the classical set theoretic and logical operations are
performed by special mathematical functions. More precisely fuzzy complement
is a unary operation of the form c : [0, 1] → [0, 1], fuzzy intersection and union
are performed by two binary functions of the form t : [0, 1] × [0, 1] → [0, 1] and
u : [0, 1]× [0, 1] → [0, 1], called t-norm and t-conorm operations [5], respectively,
and fuzzy implication also by a binary function, J : [0, 1]× [0, 1] → [0, 1]. In or-
der to produce meaningfull fuzzy complements, conjunctions, disjunctions and
implications, these functions must satisfy certain mathematical properties. For
example the operators must satisfy the following boundary properties, c(0) = 1,
c(1) = 0, t(1, a) = a and u(0, a) = a. Due to space limitations we cannot
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present all the properties that these functions should satisfy. The reader is re-
ferred to [5] for a comprehensive introduction. Examples of fuzzy operators are
the Lukasiewicz negation, cL(a) = 1 − a, t-norm, tL(a, b) = max(0, a + b − 1),
t-conorm uL(a, b) = min(1, a + b), and implication, JL(a, b) = min(1, 1− a + b),
the Gödel norms tG(a, b) = min(a, b), uG(a, b) = max(a, b), and implication
JG(a, b) = b if a > b, 1 otherwise, and the Kleene-Dienes implication (KD-
implication), JKD(a, b) = max(1− a, b).

Finally, lets turn our attention to properties of fuzzy relations. A fuzzy re-
lation R over X × X is called sup−t transitive, or simply transitive if ∀a, b ∈
X, R(a, c) ≥ supb∈X{t(R(a, b), R(b, c))}. R is reflexive if ∀a ∈ X, R(a, a) = 1,
while it is called irreflexive if ∀a ∈ X, R(a, a) = 0.1 In fuzzy set theory we are
able to define a more weak notion of reflexivity, that of ε-reflexivity. Thus, R is ε-
reflexive if ∀a ∈ X, R(a, a) ≥ ε. The inverse of a fuzzy relation R : X×Y → [0, 1]
is a fuzzy relation R− : Y × X → [0, 1] defined as R−(b, a) = R(a, b). Finally,
given two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1] we define
the sup−t composition as, [R1 ◦t R2](a, c) = supb∈Y {t(R(a, b), R(b, c))}. The
operation of sup−t composition satisfies the following properties:

(R1 ◦t R2) ◦t R3 = R1 ◦t (R2 ◦t R3), (R1 ◦t R2)
− = (R−

2 ◦t R−
1 )

Due to the associativity property we can extend the operation of sup−t com-
position to any number of fuzzy relations. In that case we will simply write
[R1 ◦t R2 ◦t . . . ◦t Rn](a, b).

3 The Fuzzy SROIQ DL

In this section we introduce a fuzzy extension of the SROIQ DL, creating the
fuzzy-SROIQ (f-SROIQ) language. Due to space limitations and since fuzzy
concrete domains have been introduced in [16] we will not present them here
again. The reader is referred to [16] for more details. We are also using the
notion of fuzzy nominals introduced in [2].

As usual we have an alphabet of distinct concept names (C), role names
(RA) (including the universal role U) and individuals (IA). The set of SROIQ-
roles is defined by RA ∪ {R− | R ∈ RA}, where R− is called the inverse role of
R. Let A ∈ C, R,S ∈ RA where S is a simple role [4], oi ∈ IA, ni ∈ [0, 1] for
1 ≤ i ≤ m and p ∈ N, then f-SROIQ-concepts are defined inductively by the
following production rule:

C,D −→ ⊥ | > | A | C tD | C uD | ¬C | ∀R.C | ∃R.C |≥ pS.C |≤ pS.C |
∃S.Self | {(o1, n1), . . . , (om, nm)}

A fuzzy TBox is a finite set of general concept inclusions (GCIs) of the form
C v D between two f-SROIQ-concepts C and D. Concept equivalence C ≡ D
can be captured by two inclusions C v D and D v C. A fuzzy ABox is a
1 Note that in most fuzzy textbooks this property is referred to as antireflexivity, but

in order to be aligned with OWL 1.1 axioms we call it irreflexivity.
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finite set of fuzzy assertions. A fuzzy assertion [14] is of the form (a : C)./n,
((a, b) : R)./n where ./ ∈ {≥, >,≤, <}, a = b or a 6 .= b, for a, b ∈ IA. We use ./−

as the reflection of inequalities, e.g. ≥−=≤ and <−=>.
Differently than crisp SROIQ, we have not explicitly defined simple negation

on roles. That is because this kind of expressivity implicitly exists in fuzzy DL
systems by mean of assertions that use the inequalities, ≤ and < [14]. More
precisely a statement of the form “John does not like Mary” can be defined by
the assertion, ((John,Mary) : likes) ≤ 0. Such assertions are being handled by
fuzzy DL reasoners [13].

A fuzzy RBox consists of two components. The first one is a role hierarchy
Rh, which consists of (generalized) role inclusion axioms and the second one
is a set Ra of role assertions [4]. A role inclusion axiom (RIA) is an axiom of
the form R1 . . . Rn v S, where R1, . . . , Rn, S are f-SROIQ-roles. Intuitively,
such axioms state that the composition of roles R1, . . . , Rn imply the role S. For
roles R,S 6= U , the role axioms, Trans(R), Ref(R), ε-Ref(R,n), Irr(R), Sym(R),
ASym(R), and Dis(R,S) are called role assertions [4]. Intuitively, these axioms
state that R is transitive, reflexive, ε-reflexive, irreflexive, symmetric, antisym-
metric, and disjoint from S, respectively. Compared to SROIQ role assertions
[4] ε-reflexivity is obviously a new role assertion. A fuzzy knowledge base Σ is a
triple 〈T ,R,A〉, that contains a fuzzy TBox, RBox and ABox, respectively.

The semantics of fuzzy DLs are provided by a fuzzy interpretation I =
(∆I , ·I) [14], where the domain ∆I is a non-empty set of objects and ·I is a
fuzzy interpretation function, which maps: (i) an individual a to an element
aI ∈ ∆I , (ii) a concept name A to a function AI : ∆I → [0, 1], and (iii) a role
name R to a function RI : ∆I ×∆I → [0, 1],

Definition 1 (Concept Descriptions, TBox, RBox, ABox). Given an
interpretation I = (∆I , ·I), concepts C,D ∈ C, roles R,S ∈ RA, objects
a, b ∈ ∆I , ni ∈ [0, 1], for 1 ≤ i ≤ m, and p ∈ N the interpretation of com-
plex f-SROIQ-concepts is defined inductively by the following equations:

⊥I(a) = 0, >I
(a) = 1,

(C uD)I(a) = t(CI(a), DI(a)), (C tD)I(a) = u(CI(a), DI(a)),
(¬C)I(a) = c(CI(a)), {(oi, ni)}I(a) = sup

i|a∈{oIi }
ni, 1 ≤ i ≤ m,

(∃R.C)I(a) = supb∈∆I t(RI(a, b), CI(b)), (∃R.Self)I(a) = RI(a, a),
(∀R.C)I(a) = infb∈∆I J (RI(a, b), CI(b)),

(≥ pR.C)I(a) = sup
b1,...,bp∈∆I

t(
p
t

i=1
{t(RI(a, bi), CI(bi))}, t

i<j
{bi 6= bj}),

(≤ pR.C)I(a) = inf
b1,...,bp+1∈∆I

J (
p+1
t

i=1
{t(RI(a, bi), CI(bi))}, u

i<j
{bi = bj}),

Additionally, the fuzzy interpretation function assigns the universal role U the
membership function UI(a, b) = 1, for each 〈a, b〉 ∈ ∆I ×∆I .

An interpretation I satisfies a GCI C v D, written I |= C v D, if ∀a ∈
∆I .CI(a) ≤ DI(a). If satisfies each GCI in T then we say that I is a model of
T .
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Furthermore, for each fuzzy interpretation I and all a, b, c ∈ ∆I we have,

I |= Trans(R) if RI(a, c) ≥ supb∈∆I{t(RI(a, b), RI(b, c))},
I |= Ref(R) if RI(a, a) = 1,

I |= ε-Ref(R, n) if RI(a, a) ≥ n,

I |= Irr(R) if RI(a, a) = 0,

I |= Sym(R) if RI(a, b) = RI(b, a),

I |= ASym(R) if RI(a, b) > 0 and RI(b, a) > 0, then a = b,

I |= Dis(R, S) if t(RI(a, b), SI(a, b)) = 0,

I |= R1 . . . Rn v S if [RI
1 ◦t . . . ◦t RI

n](a, b) ≤ SI(a, b),

Additionally, an inverse role R− of R is interpreted as (R−)I(a, b) = RI(b, a).
In case where I satisfies each axiom in R we say that I is a model of R.

Finally, I satisfies (a : C) ≥ n and ((a, b) : R) ≥ n if CI(aI) ≥ n and
RI(aI , bI) ≥ n, while I satisfies a = b if aI = bI and it satisfies a 6 .= b if aI 6= bI .
The satisfiability of fuzzy assertions with ≤, > and < is defined analogously. A
fuzzy interpretation satisfies a fuzzy ABox A if it satisfies all fuzzy assertions
in A. In this case, we say I is a model of A. Finally, a fuzzy interpretation I
satisfies an f-SROIQ knowledge base Σ if it satisfies all axioms in Σ; in this
case, I is called a model of Σ.

As we can see RIAs are interpreted as the sup−t compositions of fuzzy rela-
tions. Hence, from the properties of the sup−t composition and the semantics
of inverse roles it holds that if I satisfies R1 . . . Rn v S, then it also satisfies
Inv(Rn) . . . Inv(R1) v Inv(S). Thus the semantics in the fuzzy case are aligned
with the crisp semantics of RIAs.

As it is shown in [4], SROIQ has much expressive power to encode role
assertions Irr(R), Ref(R), Trans(R), or Sym(R) with the aid of RIAs or by using
the new special concept ∃R.Self. We can prove that the same situation holds in
the case of fuzzy SROIQ. Finally, it is also worth noting that the axioms of
ε-reflexivity (ε-Ref(R,n)) cannot be eliminated.

Concluding this presentation we introduce some notation. As it is evident
different choices of fuzzy operators define different fuzzy DL languages. For that
reason a special notation is needed in order to distinguish between such different
f-DL languages. In [10] the notation fJ -L is used, where J is a fuzzy implication
and L is a DL language. So for example, fKD-SROIQ, is the fuzzy SROIQ
language which uses the Kleene-Dienes fuzzy implication (J (a, b) = max(1 −
a, b)), while the rest of the operators are the defined ones, i.e. the Gödel t-
conorm (u(a, b) = max(a, b)), the Lukasiewicz negation (c(a) = 1 − a) Gödel
t-norm t(a, b) = c(u(c(a), c(b))) = min(a, b). Similarly, fL-SROIQ is f-SROIQ
which uses the Lukasiewicz implication, t-norm, t-conorm and negation.

4 Reasoning in fuzzy DLs

One of the main concerns for applying fuzzy DLs in applications was the lack
of fuzzy DL reasoning systems and algorithms. Fortunately, lately there is a
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growing interest and effort in the field which leaded to the creation of many
interesting reasoning platforms. In the current section we will review some re-
cently developed reasoning systems for fuzzy DLs and finally, we will extend a
reasoning technique proposed for fuzzy DLs to the case of f-SROIQ.

There are many different proposals to perform reasoning in fuzzy DLs. Stoi-
los et. al. [10, 9] develop direct tableaux methods for reasoning in very expressive
f-DLs, like the fKD-SI and fKD-SHIN , respectively. Some first ideas for rea-
soning in fKD-SHOIN are also presented in [11]. The fKD-SHIN algorithm
has been implemented in the FiRE platform [13] which is available for testing
at http://www.image.ece.ntua.gr/∼nsimou. We have to mention that cur-
rently the implementation works only on simple TBoxes (no GCIs or cycles are
allowed), while the extension to allow for GCIs and cycles is investigated af-
ter the new results obtained for them [12]. On the other hand Straccia uses
an optimization technique, called mixed integer linear programming, to pro-
vide reasoning for the fKD-ALC(D) and fL-ALC(D) languages [15]. The opti-
mization technique seems a right choice to generalize to other norm operators,
like the fL-DLs, since differently than fKD-DLs, but reasoning involves exter-
nal calls to equation solvers. Recently the ideas in [15] have been applied to
SHIF(D) to provide a reasoner for fL-SHIF(D) and fKD-SHIF(D) (avail-
able at http://gaia.isti.cnr.it/∼straccia) but the theoretical details of
the implementation are not yet available. Finally, Straccia proposed in [17] an
additional way to perform reasoning in fKD-DLs. This technique actually reduces
an fKD-L knowledge base to a crisp L KB and uses well-known classical DL sys-
tems to provide indirectly reasoning support for fKD-DLs. Straccia shown the
case of fKD-ALCH, while the technique has been recently generalized to cover
the fKD-SHOIN DL [2]. Here we will use the reduction technique to provide
reasoning support for fKD-SROIQ.

The main idea behind the reduction technique is that a fuzzy assertion of
the form (a : C) ≥ n, where a is an individual and n ∈ [0, 1] can be represented
by a crisp assertion of the form a : C≥n, where C≥n is a new crisp concept. In
order for the reduction to be satisfiability preserving we also have to capture
the semantic relation between two concepts of the form C≥n1 and C≥n2 . For
example, if n1 ≤ n2 it is obvious that C≥n2 v C≥n1 , while for each degree n1 it
should hold that C≥n1 u C<n1 v ⊥, C>n1 u C≤n1 v ⊥, > v C>n1 t C≤n1 and
> v C≥n1 tC<n1 . Similarly we have to work with roles. In the following we will
provide the necessary extensions to the reduction in [2] in order to be able to
translate fKD-SROIQ knowledge bases to crisp SROIQ knowledge bases.

Let Σ = 〈T ,R,A〉 be a fuzzy knowledge base. Then, we define NΣ =
{0, 0.5, 1} ∪ {n, 1 − n | (a : C)./n or ((a, b) : R)./n} [17]. The reason why
we can restrict our attention to only these specific degrees is that in fKD-DLs if
there exists a model for a fuzzy knowledge base, then there is also a model using
only these degrees.

Let R be an fKD-SROIQ RBox. The function κ from [2] is extended from
transitive role axioms to the additional axioms of SROIQ, while the function ρ
is extended to the new special concept of the form ∃R.Self in the following way:
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κ(Ref(R)) = Ref(R≥1),

κ(ε-Ref(R, n)) = Ref(R≥n),

κ(Irr(R)) = ∪
c∈NΣ

Irr(R>n) ∪ ∪
c∈NΣ\{0}

Irr(R≥n),

κ(Sym(R)) = ∪
c∈NΣ ,./∈{≥,>}

Sym(R./n),

κ(ASym(R)) = ASym(R>0),

κ(Dis(R, S)) = Dis(R>0, S>0),

κ(R1 . . . Rm v S) = ∪
c∈NΣ ,./∈{≥,>}

R1./n . . . Rm./n v S./n

ρ(∃R.Self, ./n) = ∃R./n.Self if ./ = {≥, >}

It is very important to point out that the above reduction, as well as the ones
in [17, 2] only hold for fKD-DLs.

Concluding our presentation of fuzzy DL reasoning algorithms and systems,
it is worth noting that following the trend of tractable fragments of DLs, fuzzy
DLs with polynomial complexity have also been investigated. More precisely,
Straccia proves in [18] that fKD-DL-Lite is still polynomial and the reasoning
technique is very similar to the one of crisp DL-Lite with few modifications in
the procedures of ABox storing and KB consistency. In [7] we have implemented
the fKD-DL-Lite algorithm in the ONTOSEARCH2 platform, while we have also
extended the query language from [18] to include many new expressive features
like preferences and thresholds in query atoms.

5 Fuzzy OWL 1.1

In [11] the abstract syntax for fuzzy individual axioms (fuzzy facts) of fuzzy
OWL DL was presented. Here we extend this abstract syntax to also include
the new features of OWL 1.1 like the simple negation on roles, while we also
extend the definition of enumerated classes, that was not provided in [11] and
[2] to represent fuzzy nominals in OWL. The extended definition is presented in
Table 2, where we have abbreviated some very long names.

Based on the above extensions we can serialize the extended abstract syn-
tax to provide an XML syntax for fuzzy OWL 1.1. More precisely, we use the
elements owlx:ineqType and owlx:degree [11, 13] for providing the inequality
type and the membership degree. Then, we can encode fuzzy facts, like the ones
about image segments, as

<Body rdf:about="region2" owlx:ineqType="≥" owlx:degree="0.8">

<isConnectedTo rdf:resource="region3" owlx:degree="0.6"/>

</HotPlace>

or define classes with enumeration of fuzzy nominals like the German speaking
countries as,
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Table 1. New Fuzzy OWL 1.1 Class Descriptions and Axioms

Abstract Syntax DL Syntax Semantics

ObjectOneOf((o1, n1), (o2, n2), . . .) {(o1, n1), (o2, n2)} {(o1, n1), (o2, n2)}I(a) = sup
i|a∈{oI

i
} ni

ObjectHasValue(R o)) ∃R.{(o,1)} (∃R.{(o, 1)})I(a) = supb∈∆I t(RI(a, b), {(o, 1)}I(b))

ObjectExistsSelf(R) ∃R.Self (∃R.Self)I(a) = RI(a, a)

ObjectMinCardinality(R p C)) ≥ pR.C (≥ pR.C)I(a) = sup
b1,...,bp∈∆I

t(
p
t

i=1
{t(RI(a, bi), CI(bi))}, t

i<j
{bi 6= bj})

ObjectMaxCardinality(R p C)) ≤ pR.C (≤ pR.C)I(a) = inf
b1,...,bp+1∈∆I

J (
p+1
t

i=1
{t(RI(a, bi), CI(bi))}, u

i<j
{bi = bj})

ObjectExactCardinality(R p C)) ≥ pR.Cu ≤ pR.C (≥ pR.Cu ≤ pR.C)I(a) = t((≥ pR.C)I(a), (≤ pR.C)I(a))

DisjointUnion(C C1 . . . Cn) C ≡ C1 t . . . tDn, CI(a) = u(CI
1 (a), . . . , CI

2 (a)),

Ci u Cj v ⊥ t(CI
1 (a), CI

j (a)) = 0 1 ≤ i < j ≤ n

ReflexiveObjectProperty(R) Ref(R) RI(a, a) = 1

IrreflexiveObjectProperty(R) Irr(R) RI(a, a) = 0

AntisymmetricObjectProperty(R) ASym(R) t(RI(a, b), RI(b, a)) = 0

SubObjectPropertyOf(SubObjectPropertyChain(R1 . . . Rn) S) R1 . . . Rn v S RI
1 (a, y1) ◦t . . . ◦t RI

n(yn, b) ≤ SI(a, b)

DisjointObjectProperties(R1 . . . Rn) Dis(Ri, Rj) t(RI
i (a, b), RI

j (a, b)) = 0, 1 ≤ i < j ≤ n

ClassAssertion(o type(C) ./ degree(n)) (o : C)./n CI(oI)./n, n ∈ [0, 1]

ObjectPropertyAssertion(R o1 o2 ./ degree(n)) ((o1, o2) : R)./n RI(oI1 , oI2 )./n, n ∈ [0, 1]

NegativeObjectPropertyAssertion(R o1 o2 ./ degree(n)) ((o1, o2) : R)./−c(n) RI(oI1 , oI2 )./−c(n), n ∈ [0, 1]

Sameindividual(o1 . . . on) o1 = . . . = on oI1 = . . . = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj oIi 6= oIj , 1 ≤ i < j ≤ n

<owl:Class rdf:ID="GermanSpeaking">

<owl:oneOf rdf:parseType="Collection">

<Country rdf:about="#Germany" owlx:degree="1"/>

<Country rdf:about="#Austria" owlx:degree="1"/>

<Country rdf:about="#Switzerland" owlx:degree="0.67"/>

</owl:oneOf>

</owl:Class>

Table 2. Abstract Syntax of f-OWL 1.1

classAssertion ::= ‘ClassAssertion(’ { annotation } individualURI description membership ‘)’
objPropAss ::= ‘ObjectPropertyAssertion(’ { annotation } objectPropExpression

sourceIndividualURI targetIndividualURI membership ‘)’
negObjPropAss ::= ‘NegativeObjectPropertyAssertion(’ { annotation } objectPropExp

sourceIndividualURI targetIndividualURI membership‘)’
objectOneOf ::= ‘ObjectOneOf(’ individualURI [degree] { individualURI [degree]} ‘)’
membership ::= [ineqType] [degree]
ineqType ::= ‘=’ | ‘>=’ | ‘>’ | ‘<=’ | ‘<’
degree ::= real-number-between-0-and-1-inclusive
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Furthermore the direct model-theoretic semantics of f-OWL 1.1 are provided
by extensions of interpretations, i.e. fuzzy interpretation, which are similar to the
ones introduced in section 3. An f-OWL interpretation can be extended to give
semantics to fuzzy concept and object property descriptions and axioms. The
complete set of semantics is depicted in Table 1, where a, b are arbitrary objects
of ∆I . As we can see, although we use fuzzy nominals in enumerated classes we
do not allow them in hasValue restrictions. This constructor originates from the
fills constructor, whose DL syntax is R : o and semantics (R : o)I = {d ∈ ∆I |
(d, oI) ∈ RI} [1]. Intuitively, an assertion a : (R : o) intends to capture that a is
connected with a specific individual (o) through R. This constructor is a syntactic
sugar in the presence of nominals and existential restrictions in the crisp case,
written as ∃R.{o}. A natural way to give semantics to the fills constructor in
the fuzzy case is through the equation (R : o)I(d) = RI(d, oI), which is different
than the semantics of a : ∃R.{(o, n)}. Still the extension is trivial. Moreover
note that since we have not defined simple negation on roles a fuzzy facts of the
form negativeObjectPropertyAssertion(R a b ≥ n), is translated to the fuzzy
assertions ((a, b) : R) ≥− c(n), i.e. ((a, b) : R) ≤ c(n).

6 Conclusions

In the current paper we present a fuzzy extension to the SROIQ DL and the
OWL 1.1 Semantic Web language. We believe that such extensions are very im-
portant since on the one hand there are many applications where information is
inherently imprecise and vague, hence these extensions would make such tech-
nologies more easily adoptable by applications that have not yet, but want, to
enter the Semantic Web era. On the other hand fuzzy extensions might also be of
interest to the researchers of the Semantic Web since they can be used in order
to model problems where information is vague and various types of degrees ap-
pears, like querying with preferences or querying distributed information sources
which are assigned different degrees of trust or confidence.

Regarding future work, we are planning to extend the reasoning algorithm of
fKD-SHIN [9] and fKD-SHOIN [11], to develop a tableaux decision procedure
that will provide direct reasoning support (compared to the reduction) for fKD-
SROIQ. Moreover, the issue of reasoning with qualified cardinality restriction
(Q) based on the semantics for number restrictions proposed in [16] (see also [8]
for the qualified case) is still open.
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