
Adding Integrity Constraints to OWL

Boris Motik, Ian Horrocks, and Ulrike Sattler

University of Manchester, UK

Abstract. Schema statements in OWL are interpreted quite differently
from analogous statements in relational databases. If these statements
are meant to be interpreted as integrity constraints (ICs), OWL’s inter-
pretation may seem confusing and/or inappropriate. Therefore, we pro-
pose an extension of OWL with ICs that captures the intuition behind
ICs in relational databases. We show that, if the constraints are satisfied,
we can disregard them while answering a broad range of positive queries.

1 Introduction

The Web Ontology Language (OWL) is the language for modeling ontologies in
the Semantic Web standardized by the W3C. The logical underpinning for OWL
is provided by description logics (DLs) [1]. It is well-known that the OWL DL
variant of OWL corresponds to the DL SHOIN (D). In this paper, we assume
the reader to be familiar with the basics of OWL and DLs (please refer to [1]
for an introduction), and we refer to OWL and DLs interchangeably.

OWL can be seen as an expressive schema language; however, its axioms have
a different meaning from analogous statements in relational databases. When
OWL axioms are meant to be interpreted as integrity constraints (ICs), the
formal semantics of OWL may seem confusing and/or inappropriate. Consider
an application for managing tax returns, in which each person must have a social
security number. In a relational database, this would be enforced by adding the
following inclusion dependency into the database schema S:

∀x : [Person(x)→ ∃y : hasSSN (x, y) ∧ SSN (y)](1)

During database updates, such a dependency is interpreted as a check. For ex-
ample, an insertion of a fact Person(Peter) into a database whose schema S
contains (1) will be rejected, because we did not specify the social security num-
ber of Peter . Constraint checking in databases is interpreted as model checking:
a database I satisfies a schema S iff I |= S (where |= should be understood as
satisfaction of a set of first-order formulae in a relational structure).

Dependency (1) can be expressed in OWL using the following TBox axiom:

Person ⊑ ∃hasSSN .SSN(2)

It is well known that the formula (1) is equivalent to the DL axiom (2) [3].
The effects of (2) in OWL, however, are quite different from the effects of (1)

in databases. From the fact Person(Peter) and the axiom (2) we can conclude
that Peter has some unknown social security number. Hence, the ontology is
satisfiable; furthermore, if we query for the social security number of Peter, we
do not get an answer, since this number is unknown.

As we discussed in [7, 8], OWL ontologies can be understood as incomplete
databases. Many databases encountered in practice are, however, complete. To
obtain a flexible schema language, we would like to explicitly control the degree
of incompleteness. Integrity constraints (ICs)—formulae that check whether all
necessary information has been provided explicitly—seem to be the proper mech-
anism for this purpose.

In this paper, we propose an extension of OWL with integrity constraints. In
particular, in Section 2 we introduce extended DL knowledge bases, which allow
a modeler to designate a subset of the TBox axioms as integrity constraints. For
schema (TBox) reasoning, these axioms are treated as usual. For data (ABox)
reasoning, these axioms do not derive new information; instead, they are inter-
preted as checks. Thus, the relationship between the interpretations of ICs in
TBox and ABox reasoning is clear, and is analogous to the one in relational data-
bases. In fact, in Section 3, we argue that, if an ABox satisfies the ICs, we can
disregard the ICs while answering positive ABox queries. In [7, 8], we present
algorithms for checking IC satisfaction for different kinds of OWL ontologies.
Finally, in Section 4 we compare our solution to related approaches based on
nonmonotonic modal extensions of DLs.

2 Constraints for OWL

The approach to integrity constraints found in relational databases can be easily
applied to OWL: an ABox A would be interpreted as a single model and the
TBox T as formulae that must be satisfied, and the constraints would be satisfied
iff A |= T . Such an approach, however, is not satisfactory, as it requires an “all-
or-nothing” choice: we would have to assume that all information in the ABox
is complete; furthermore, TBox axioms could only be used to check whether
an ABox is of an appropriate form and would not imply new facts. To obtain a
more versatile formalism, we propose a combination of inferencing and constraint
checking. For example, let A1 be the following ABox:

Student(Peter)(3)

hasSSN (Peter ,nr12345)(4)

SSN (nr12345)(5)

Student(Paul)(6)

Furthermore, let T1 consist of (2) and the following axiom:

Student ⊑ Person(7)

Let us assume that we want to treat (2) as a constraint, but (7) as a normal
axiom. Then, we derive Person(Peter) and Person(Paul) by (7). The constraint

(2) is satisfied for Peter due to (3), (4), and (5); however, an SSN has not been
specified for Paul , so we expect (2) to be violated.

Following this intuition, we define extended DL knowledge bases to distin-
guish the axioms that imply new facts from the ones that check whether all
necessary information is derivable. Our definition is applicable to any DL.

Definition 1. An extended DL knowledge base is a triple K = (S, C,A) where

– S is a finite set of standard TBox axioms,
– C is a finite set of constraint TBox axioms, and
– A is a finite set of ABox assertions (¬)A(a), R(a, b), a ≈ b, or a 6≈ b, for A

an atomic concept, R a role, and a and b individuals.

In Definition 1, we restrict ourselves to ABoxes with only possibly negated
atomic concepts. This does not result in any loss of generality, because we can
replace nonatomic concept with new names and add appropriate axioms to S.

Next, we discuss how to define an appropriate semantics for extended DL
knowledge bases. The simplest solution is to interpretA ∪ S in the standard first-
order way and to require C to be satisfied in each model I for which we have
I |= A ∪ S. The following example, however, shows that this does not satisfy
our intuition. Let A2 contain only the fact (3), let S2 = ∅, and let C2 contain
only the axiom (2). The interpretation I = {Student(Peter),Person(Peter)} is a
model of A2 ∪ S2 that does not satisfy C2, which would make C2 not satisfied for
A2 ∪ S2. Intuitively, though, the fact Person(Peter) is not implied by A2 ∪ S2,
so we should not check whether Peter has an SSN at all; C2 should hold only for
the facts that are implied by A2 ∪ S2.

These considerations might suggest that C should hold for all first-order con-
sequences of A ∪ S. In the example from the previous paragraph, this produces
the desired behavior: Person(Peter) is not a consequence of A2 ∪ S2, so the ax-
iom from C2 should not be checked for Peter . Consider, however, the following
knowledge base:

A3 = {Cat(ShereKahn)}(8)

S3 = {Cat ⊑ Tiger ⊔ Leopard}(9)

C3 = {Tiger ⊑ Carnivore, Leopard ⊑ Carnivore}(10)

Now neither Tiger (ShereKahn) nor Leopard(ShereKahn) is a first-order conse-
quence of A3 ∪ S3, which means that the axioms from C3 are satisfied; further-
more, we have A3 ∪ S3 6|= Carnivore(ShereKahn). This does not satisfy our intu-
ition: in each model ofA3 ∪ S3, either Tiger (ShereKahn) or Leopard(ShereKahn)
holds, but Carnivore(ShereKahn) does not necessarily hold in either case. Hence,
by treating (10) as constraints and not as standard axioms, we neither get a con-
straint violation nor derive the consequence Carnivore(ShereKahn).

Intuitively, the constraints should check whether the facts derivable from
A ∪ S ∪ C are also derivable using A∪ S only. This notion seems to be nicely
captured by minimal models; hence, we check C only w.r.t. the minimal models
of A ∪ S. Roughly speaking, a model I with an interpretation domain △I of a

formula ϕ is minimal if each interpretation I ′ over △I such that I ′ ⊂ I is not
a model of ϕ, where we consider an interpretation to be represented by the set
of all positive ground facts that are true in it. Consider again A2, S2, and C2.
The fact Person(Peter) is not derivable from A2 ∪ S2 in any minimal model (in
fact, there is only a single minimal model), so the constraint axiom (2) is not
violated. In contrast, A3 ∪ S3 has exactly two minimal models:

I1 = {Cat(ShereKahn),Tiger (ShereKahn)}
I2 = {Cat(ShereKahn),Leopard(ShereKahn)}

These two models can be viewed as the minimal sets of derivable consequences.
The TBox C3 is not satisfied in all minimal models. In contrast, let A4 = A3

and C4 = C3, and S4 = {Cat ⊑ (Tiger ⊓ Carnivore) ⊔ (Leopard ⊓ Carnivore)}.
Now the fact Carnivore(ShereKahn) is derivable if either Tiger (ShereKahn) or
Leopard(ShereKahn) is derivable, so the constraints should be satisfied. Indeed,
A4 ∪ S4 has the following two minimal models:

I3 = I1 ∪ {Carnivore(ShereKahn)}
I4 = I2 ∪ {Carnivore(ShereKahn)}

Both I3 and I4 satisfy C4. Also, even though we treat the axioms from (10) as
constraints, we have A4 ∪ S4 |= Carnivore(ShereKahn).

Minimal models have been used, with minor differences, in an extension
of DLs with circumscription [2] and in the semantics of open answer set pro-
grams [5]. Consider, however, A5 = {Woman(Alice),Man(Bob)}, S5 = ∅, and
C5 = {Woman ⊓Man ⊑ ⊥}. No axiom implies that Alice and Bob should be in-
terpreted as the same individual, so we expect them to be different “by default”
and the constraint to be satisfied. The definitions from [2, 5] consider all inter-
pretation domains, so let △I = {α}. Because △I contains only one object, we
must interpret both Alice and Bob as α. Clearly, I = {Woman(α),Man(α)} is
a minimal model of A5, and it does not satisfy C5.

This problem might be remedied by making the unique name assumption
(UNA)—that is, by requiring each constant to be interpreted as a distinct in-
dividual. This is, however, rather restrictive, and is not compatible with OWL.
Another solution is to interpret A∪ S in a Herbrand model (i.e., a model in
which each constant is interpreted by itself) where ≈ is a congruence relation;
then, we minimize the interpretation of ≈ together with all the other predicates.
In such a case, the only minimal model ofA5 is I ′ = {Woman(Alice),Man(Bob)}
since the extension of ≈ is empty due to minimization, so C5 is satisfied in I ′.

Unfortunately, existential quantifiers pose a range of problems for constraints.
Let A6 = {HasChild(Peter),HasHappyChild (Peter),TwoChildren(Peter)}, and
let S6 contain these axioms:

HasChild ⊑ ∃hasChild .Child(11)

HasHappyChild ⊑ ∃hasChild .(Child ⊓ Happy)(12)

Finally, let C6 = {TwoChildren ⊑ ≥ 2 hasChild .Child}. It seems intuitive for C6
to be satisfied in A ∪ S6: no axiom in S6 forces the children of Peter—the two

individuals whose existence is implied by (11) and (12)—to be the same, so we
might conclude that they are different.

Now let C7 = C6, A7 = {HasChild(Peter),TwoChildren(Peter)}, and let S7

contain the following axiom:

HasChild ⊑ ∃hasChild .Child ⊓ ∃hasChild .Child(13)

As in the previous example, C7 is satisfied in A7 ∪ S7 since (13) introduces two
(possibly identical) individuals in the extension of Child . Let S′

7
be a standard

TBox containing only the axiom (14):

HasChild ⊑ ∃hasChild .Child(14)

Now C7 is not satisfied in A ∪ S′7 since (14) implies the existence of only one
child. Given that S′

7
is semantically equivalent to S7, this is rather unsatisfactory;

furthermore, it suggests that C7 should not be satisfied in A7 ∪ S7, since (13)
requires the existence of only one individual. Recall, however, that S6 and S7

are quite closely related: the effect of (13) with respect to Child is the same as
that of (11) and (12). Hence, if (13) should introduce only one individual, then
(11) and (12) should do so as well, which is in conflict with our intuition that
C6 should be satisfied in A6 ∪ S6.

Thus, our intuition does not give us a clear answer as to the appropriate
treatment of existential quantifiers in the standard TBox: the names of the
concepts and the structure of the axioms suggest that the existential quantifiers
in (11) and (12) should introduce different individuals, whereas the existential
quantifiers in (13) should “reuse” the same individual. These two readings seem
to pull in opposite directions.

The example involving S7 and S′
7

reveals an important disadvantage of one
possible choice: if we require each existential quantifier to introduce a distinct
individual, then it is possible for a constraint TBox C to be satisfied in A ∪ S,
but not in A ∪ S′, even though S and S′ are semantically equivalent. As we have
seen, C7 is satisfied in A7 ∪ S7, but not in A7 ∪ S′7, even though S7 and S′

7
are

equivalent. It is clearly undesirable for IC satisfaction to depend on the syntactic
structure of the standard TBox.

Introducing distinct individuals for each existential quantifier can be justified
by skolemization [10], the well-known process of representing existential quanti-
fiers with new function symbols. For example, for ϕ = ∃y : [R(x, y) ∧ C(y)], by
skolemization we obtain sk(ϕ) = R(x, f(x)) ∧ C(f(x)): the variable y is replaced
by a term f(x), for f a new function symbol. Skolemized formulae are usually
interpreted in Herbrand models, whose domain consists of all ground terms built
from constants and function symbols in the formula.

Definition 2. Let ϕ be a first-order formula and sk(ϕ) the formula obtained by
outer skolemization of ϕ [10]. A Herbrand interpretation w.r.t. ϕ is a Herbrand
interpretation defined over the signature of sk(ϕ). A Herbrand interpretation I
w.r.t. ϕ is a model of ϕ, written I |= ϕ, if it satisfies ϕ in the usual sense. A
Herbrand model I of ϕ is minimal if I ′ 6|= ϕ for each Herbrand interpretation I ′

such that I ′ ⊂ I. We write sk(ϕ) |=MM ψ if I |= ψ for each minimal Herbrand
model I of ϕ.

We now define the notion of IC satisfaction. We use an operator π that
translates a set of DL axioms S into an equivalent formula π(S) of first-order
logic with equality and counting quantifiers [1, 3].

Definition 3. Let K = (S, C,A) be an extended DL knowledge base. The con-
straint TBox C is satisfied in K if sk(π(A ∪ S)) |=MM π(C). By an abuse of no-
tation, we often omit π and simply write sk(A ∪ S) |=MM C.

Note that the addition of constraints does not change the semantics of DLs
or OWL: Definition 3 is only concerned with the semantics of constraints, and
a traditional knowledge base (T ,A) can be seen as an extended knowledge base
(T , ∅,A). For subsumption and concept satisfiability tests, we can use S ∪ C
together as the schema, as usual. As discussed above, skolemization introduces a
new function symbol for each existential quantifier, which effectively introduces
a new individual for each quantifier. We invite the reader to convince himself
that Definition 3 closely follows our intuition on the examples presented thus
far. Furthermore, in Section 3 we show that, if the constraints are satisfied, we
can throw them away without losing any positive consequences; that is, we can
answer positive queries by taking into account only A and S. We take this as
confirmation that our semantics of IC satisfaction is intuitive.

Let A8 = {Vegetarian(Ian), eats(Ian , soup)}, S8 = ∅, and let C8 contain only
the following constraint:

Vegetarian ⊑ ∀eats .¬Meat(15)

One might intuitively expect C8 not to be satisfied for A8 since the ABox does
not state ¬Meat(soup). Contrary to our intuition, C8 is satisfied in A8: the
interpretation I containing only the facts from A8 is the only minimal Herbrand
model of A8 and I |= C8. In fact, the axiom (15) is equivalent to the axiom
Vegetarian ⊓ ∃eats .Meat ⊑ ⊥. When written in the latter form, the axiom should
be intuitively satisfied, since Meat(soup) is not derivable.

As this example illustrates, the intuitive meaning of constraints is easier
to grasp if we transform them into the form C ⊑ D, where both C and D
are negation-free concepts. Namely, our constraints check the positive facts.
To check negative facts, we must give them atomic names. Let A9 = A8,
S9 = {NotMeat ≡ ¬Meat}, and C9 = {Vegetarian ⊑ ∀eats .NotMeat}. The con-
straint in C9 is now of the “positive” form C ⊑ D, so it is easier to understand
the intuition behind it: everything that is eaten by an instance of Vegetarian
should provably be NotMeat . Now, A9 ∪ S9 has the following two minimal mod-
els, and I5 6|= C9, so C9 is not satisfied for A9:

I5 = {Vegetarian(Ian), eats(Ian , soup),Meat(soup)}
I6 = {Vegetarian(Ian), eats(Ian , soup),NotMeat(soup)}

If we add to A9 the fact NotMeat(soup), then only I6 is a minimal model, and
C9 becomes satisfied as expected. Hence, it is advisable to restrict constraints to
positive formulae in order to avoid such misunderstandings.

3 Constraints and Queries

We now show that, if the ICs are satisfied, we need not consider them while
answering unions of positive conjunctive queries. This shows that our semantics
of IC satisfaction is reasonable: constraints are checks and, if they are satisfied,
we can discard them without losing relevant consequences. Moreover, this result
is practically important because it simplifies query answering. Before proceeding,
we first remind the reader of the definition of unions of conjunctive queries.

Definition 4. Let x be a set of distinguished and y a set of nondistinguished
variables. A conjunctive query Q(x,y) is a finite conjunction of positive atoms
of the form A(t1, . . . , tm), where ti are either constants, distinguished, or nondis-
tinguished variables.1 A union of n conjunctive queries is the formula γ(x) =∨n

i=1
∃yi : Qi(x,yi). A tuple of constants c is an answer to γ(x) over a DL

knowledge base K, written K |= γ(c), if π(K) |= γ(x)[c/x].2

Our result is captured by the following theorem, whose proof is given in [8]:

Theorem 1. Let K be an extended DL knowledge base that satisfies C. Then,
for any union of conjunctive queries γ(x) over K and any tuple of constants c,

A ∪ S ∪ C |= γ(c) if and only if A ∪ S |= γ(c).

Consider the example where S10 = {Cat ⊑ Pet , ∃hasPet .Pet ⊑ PetOwner},
C10 = {CatOwner ⊑ ∃hasPet .Cat}, and A10 contains the following assertions:

CatOwner(John)(16)

hasPet(John,Garfield)(17)

Cat(Garfield)(18)

Clearly, S10 ∪ C10 ∪ A10 |= PetOwner(John). Furthermore, C10 is clearly satis-
fied in K: the only derivable fact about CatOwner is CatOwner(John) and the
ABox contains the explicit information that John owns Garfield who is a Cat .
Therefore, we do not need C10 to imply the existence of the owned cat: whenever
we can derive CatOwner(x) for some x, we can derive the information about the
cat of x as well. Hence, we can disregard C10 during query answering; we still
have S10 ∪A10 |= PetOwner(John).

Note that both entailments in Theorem 1 use the standard semantics of DLs;
that is, we do not assume a closed-world semantics for query answering. Further-
more, Theorem 1 does not guarantee preservation of negative consequences; in
fact, such consequences may change, as the following example demonstrates. Let
S11 = ∅, C11 = {Cat ⊓Dog ⊑ ⊥}, and A11 contain the axiom (18). By taking S11

into account, we have S11 ∪ C11 ∪ A11 |= ¬Dog(Garfield). Furthermore, the con-
straint is satisfied; however, without C11, we have S11 ∪ A11 6|= ¬Dog(Garfield).
A similar example can be given for queries containing universal quantifiers.

1 The predicate A can be the equality predicate ≈, an atomic concept, a role, or an
n-ary predicate in case of n-ary DLs.

2 ϕ[c/x] is the formula obtained from ϕ by replacing all free occurrences of x with c.

Theorem 1 has an important implication for TBox reasoning. Let γ1(x) and
γ2(x) be queries such that π(K) |= ∀x : [γ1(x)→ γ2(x)]. Provided that C is sat-
isfied in K, each answer to γ1(x) w.r.t. A ∪ S is also an answer to γ2(x) w.r.t.
A ∪ S. To summarize, we can check subsumption of unions of conjunctive as
usual, by treating C ∪ S as an ordinary DL TBox. Subsequently, for knowledge
bases that satisfy C, we can ignore C when answering queries, but query answers
will still satisfy the established subsumption relationships between queries.

4 Relationship to Autoepistemic DLs

The usefulness of constraint languages has been recognized early on in the
knowledge representation community. In [11], Reiter noticed that constraints are
epistemic in nature; furthermore, he presented an extension of first-order logics
with an autoepistemic knowledge operator K that provides for introspection. In
[6], Lifschitz presented the logic of Minimal Knowledge and Negation-as-Failure
(MKNF) which also provides for a negation-as-failure operator not.

MKNF was used in [4] to obtain an expressive, but yet decidable non-
monotonic DL. One of the motivations for this work was to provide a language
capable of expressing integrity constraints. For example, the constraint (1) can be
expressed as the following axiom (the modal operator A corresponds to ¬not):

KPerson ⊑ ∃A hasSSN .APerson(19)

MKNF was also used in [9] to integrate DLs with logic programming. One of
the motivations for this work was to allow for constraint modeling. For example,
the constraint (1) can expressed using the following rules:

KOK (x)← K hasSSN (x, y),K SSN (y)(20)

⊥ ← KPerson(x),notOK (x)(21)

Although the motivation is the same, these approaches differ from the one
presented in this paper in several important aspects. First, the rules (20)–(21)
do not have any meaning during TBox reasoning; they can only be used to check
whether an ABox is of a required shape. Furthermore, the axiom (19) might be
applied during TBox reasoning, but it has a significantly different semantics:
it can be applied only to the consequences of other modal axioms, and not to
consequences of other first-order axioms. In contrast, the constraint TBox C has
the standard semantics for TBox reasoning and is applicable as usual; it is only
for ABox reasoning that C is applied in a nonstandard way as a check. Thus, the
semantics of C is much closer to the standard semantics of description logics.

Second, the semantics of MKNF makes it almost impossible to express con-
straints on unnamed individuals. Namely, for a first-order concept C, the concept
KC contains the individuals that are in C in all models of C. In most cases, KC
contains only the explicitly named individuals, and not the unnamed individu-
als implied by existential quantifiers; namely, in different models one can choose
different individuals to satisfy an existential quantifier. Therefore, MKNF-based

approaches cannot check, for example, whether social security numbers of each
person are explicitly known. In contrast, the approach from this paper can ex-
press such a constraint: we just need to add an assertion O(a) for each named
object a, and then use a constraint PersonTR ⊑ ∃hasSSN .(O ⊓ SSN) (see [7, 8]
for more information).

Third, MKNF-based constraints work at the level of consequences and there-
fore cannot express constraints on disjunctive facts. Consider again the ABox
A3 containing the axiom (8) and the standard TBox S3 containing the axiom
(9). We can express the constraints (10) as follows:

⊥ ← KTiger (x),notCarnivore(x)(22)

⊥ ← KLeopard(x),notCarnivore(x)(23)

Unfortunately, (22) and (23) are satisfied for A3 ∪ S3. Namely, KTiger (x) can,
roughly speaking, be understood as “Tiger (x) is a consequence.” Due to the
disjunction in (9), neither Tiger (ShereKahn) nor Leopard(ShereKahn) is a con-
sequence of A3 ∪ S3; hence, the premise of neither rule is satisfied and the con-
straints are not violated.

Because of these differences, we believe that the semantics of the extended
DL knowledge bases captures the intuition behind constraints in a much more
intuitive way; furthermore, it seems to fit better with the usual semantics of
description logics.

5 Conclusion

Motivated by the problems encountered in the applications of OWL to data-
centric problems, we have proposed the notion of extended DL knowledge bases,
in which a certain subset of TBox axioms can be designated as constraints. For
TBox reasoning, constraints behave just like normal TBox axioms; for ABox
reasoning, however, they are interpreted in the spirit of relational databases. We
define the semantics of IC satisfaction in such a way that they indeed check
whether all mandatory assertions are entailed by the given ABox and TBox.
We have also shown that, if the constraints are satisfied, we can disregard them
while answering positive queries. This indicates that our semantics of constraint
satisfaction is indeed reasonable.

In future, we plan to implement our approach in the OWL reasoner KAON23

and test its usefulness on practical problems.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

3 http://kaon2.semanticweb.org/

2. P. Bonatti, C. Lutz, and F. Wolter. Description Logics with Circumscription. In
Proc. KR 2006, pages 400–410, Lake District, UK, 2006.

3. A. Borgida. On the Relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence, 82(1–2):353–367, 1996.

4. F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge
and Negation as Failure. ACM Transactions on Computational Logic, 3(2):177–
225, 2002.

5. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual Logic Programs.
Annals of Mathematics and Artificial Intelligence, 2006. To appear.

6. V. Lifschitz. Minimal Belief and Negation as Failure. Artificial Intelligence, 70(1–
2):53–72, 1994.

7. B. Motik, I. Horrocks, and U. Sattler. Bridging the Gap Between OWL and Rela-
tional Databases. In Proc. WWW 2007, Banff, Alberta, Canada. ACM Press. To
appear.

8. B. Motik, I. Horrocks, and U. Sattler. Integrating Description Logics and Relational
Databases. Technical report, University of Manchester, UK, 2006.

9. B. Motik and R. Rosati. A Faithful Integration of Description Logics with Logic
Programming. In Proc. IJCAI 2007, Hyderabad, India, 2007.

10. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In
Handbook of Automated Reasoning, volume I, chapter 6, pages 335–367. Elsevier
Science, 2001.

11. R. Reiter. What Should a Database Know? Journal of Logic Programming, 14(1–
2):127–153, 1992.

