
Mother, May I? OWL-based Policy Management
at NASA

Michael A. Smith1, Andrew J. Schain2, Kendall Grant Clark1, Arlen “Ken”
Griffey4, and Vladimir Kolovski3

1 Clark & Parsia, LLC, Washington, DC
{msmith},{kendall}@clarkparsia.com
2 NASA Headquarters, Washington, DC

andrew.schain@nasa.gov
3 Department of Computer Science, University of Maryland, College Park, MD

kolovski@cs.umd.edu
4 NASA Shared Services Center, Gulfport, MS

Arlen.M.Griffey@nasa.gov

Abstract. Among the challenges of managing NASA’s information sys-
tems is the management (that is, creation, coordination, verification,
validation, and enforcement) of many different role-based access control
policies and mechanisms. This paper describes an actual data federation
use case that demonstrates the inefficiencies created by this challenge
and presents an approach to reducing these inefficiencies using OWL.
The focus is on the representation of XACML policies in DL, but the
approach generalizes to other policy languages.

1 Introduction and Motivation

NASA has at least one significant information management problem: the kind,
scale, and growth-rate of its data and information is impressive and increasing.
It also has significant challenges in data discovery and in the reuse and dissem-
ination of unique scientific data collections. Several efforts are underway across
NASA to use semantic technologies, including RDF and OWL, to respond to
these challenges. NASA Enterprise Architects have shown considerable interest
in the use of semantic technologies [1]. For additional background, see [2].

2 Requirements and Use Case

2.1 Requirements

The scale of NASA’s data sources and its unique science-oriented mission require
the adoption of an agile and extensible data integration platform. It is imprac-
tical for NASA to mandate that all centers and projects conform to specific
institutional data models. Instead, NASA is exploring an approach that accepts
data model diversity, integrating data via inter-schema mapping and alignment.



2

This alignment would use intermediary knowledge representations, expressed in
RDF and OWL, to maximize reuse and reduce the development time of future
applications. This approach and a NASA application that benefit from it are
described in [2]. This paper extends that approach by recognizing that the in-
tegration challenges presented by diverse data models are accompanied by the
requirement to maintain modern, manageable access control mechanisms that
conform to government and industry best practices.

While data integration and maintenance are implied requirements of NASA’s
primary missions, they aren’t the central focus.5 This fact, and the need for fiscal
responsibility, motivate the agency to use existing technology and tools for the
creation, management, and enforcement of access control policies and exchange
and integration of data.

Table 1 summarizes the access control policies of the constituent data sources
integrated in [2]. They illustrate the nature of policies we seek to address in the
short term.

Data Request Decision
Source Subject Action Resource

Payroll BrowseProcess Read Any Permit
ProjectManager Read Any Permit
Employee Read ∃about.{subject} u ¬∃status Permit
ProjectManager Write CompetencyRecord u ∃owner.{subject} Permit
UpdateProcess Write Any Permit
Any Any Any Deny

Employee BrowseProcess Read Any Permit
Competency ProjectManager Read Any Permit

CivilServant Read ∃about.{subject} Permit
ProjectManager Write CompetencyRecord u ∃owner.{subject} Permit
CivilServant Write ∃about.{subject} Permit
Any Any Any Deny

X.500 Employee Read Any Permit
Any Any Any Deny

Technical Employee Read Any Permit
Reports Any Any Any Deny

Table 1. Summary of Policies for Several NASA Data Sources

2.2 Use Case: Federated Data Access

An approach to horizontal integration of data sources that the co-authors are
piloting within NASA is the development of a “global” schema that exists in a
5 Further OMB initiatives like the Federal Transition Framework and 18 planned Fed-

eral Lines of Business further intensify NASA’s motivation to quickly solve common
data exchange problems within its four primary missions in order to participate in
future mandated inter-agency activities.



3

well-defined relationship to the schema of individual data sources and the mate-
rialization of a subset of the data source data in the global schema.6 The refresh
of data in the global repository occurs at intervals determined in accordance
with the requirements of the information consumer and the data source’s lifecy-
cle.7 The federated data sources discussed here are read-only from the end user’s
perspective.

Integrating the data from multiple data sources presents challenges in pol-
icy management, since the data sources typically have distinct access control
policies. Determining how the policies of the constituent sources align and the
subsequent specification of a policy for the integrated data is a crucial aspect
of this work. Formulating this alignment is a labor intensive process that is
time consuming and error prone. It reduces the speed with which integrated
applications can be designed and deployed and often involves personnel across
organizational boundaries. The burden of the process demonstrates an undesir-
able tension between application deployment and security concerns. Thus, the
automation of policy alignment and synthesis has the potential to increase the
efficiency and security of the organization.

3 Managing XACML Policies with OWL DL

The eXtensible Access Control Markup Language (XACML)[3] is an OASIS
standard language for the expression and exchange of access control policies, de-
cision requests, and responses. In [4], co-author Kolovski introduces an algorithm
for the translation of a subset of XACML into a Description Logic with the goal
of offering relevant analysis services using an OWL DL reasoner, Pellet[5].

The XACML formalization includes resources, subjects, and actions. Consid-
ering a universe for which we seek to describe permissible activities, subjects are
the entities which perpetrate such activities. Actions are a description of the na-
ture of the activities. Resources are the independent entities that are the objects
of such activity. Classes of resources, subjects, or actions can be described using
general attribute value pairs, which are further discussed in section 3.2.

In its simplest form a XACML rule is a mapping from a set of subject,
action, and resource tuples, called a target, to an indicator of permissibility, a
decision, either Permit or Deny. Rules are aggregated in policies, which can be
further aggregated into policy sets. At each aggregation of rules and policies,
combining algorithms indicate the manner in which the collected decisions of
the constituents yield a single decision for the aggregate. Combining algorithms
are further discussed in the next section.

6 The materialization of multiple databases in a global schema is frequently called
data warehousing, but that term often implies a scale or business function that is
irrelevant to the discussion of data federation presented here.

7 So payroll systems are updated every two weeks, consistently; directory services are
updated daily, but can be refreshed as infrequently as once per week; and technical
report aggregation services are updated once or twice per year.



4

For reasoning purposes, [4] specifies a DL representation of XACML. Re-
sources, subjects, and actions are represented as individuals. Targets are repre-
sented as class descriptions. For each policy and each policy set a class descrip-
tion exists to evaluate a Permit decision and a second class description exists
to evaluate a Deny decision. Readers interested in the specifics of the XACML
to DL translation are referred to [4]. In the rest of this section we introduce the
elements of XACML critical for policy description with some discussion of their
representation in the DL translation. Section 5 contains a summary of the policy
services offered by the approach, and includes discussion of how this approach
addresses the use case described above.

3.1 Combining Algorithms

Because a policy set may contain multiple policies and each policy may contain
multiple rules, each of which may evaluate to different access control decisions,
XACML needs some way of combining the decisions each makes. This is accom-
plished using a collection of combining algorithms, where each algorithm rep-
resents a different way of combining multiple access decisions into a single one.
There are Policy Combining Algorithms and Rule Combining Algorithms which
have similar semantics. For example, with the Deny-overrides algorithm, if any
of the child elements return Deny, then the final result is also Deny (no matter
what the other children return). The DL translation currently supports Permit-
overrides8, Deny-overrides9, and First-applicable10 combining algorithms.

3.2 Attributes and Rules

Attributes are the most basic unit of a XACML policy. They represent character-
istics of the subject, resource, action, or environment in which the access request
is made. It follows that access requests in XACML contain a list of attribute
value pairs.

Consider an access control system integrated into the NASA Competency
Management System. In this system, individual users are subjects, “read” and
“write” are actions, and records describing NASA employees are resources. In
such a system, a particular access request might contain a subject for which the
role attribute has value manager. The basic building blocks described enable
specification of a policy such as “permit managers write access to the CMS system
and deny write access to all other users.”

Here we provide an example of a rule that returns Deny for access requests
that have value write for attribute action. This rule would be a part of the
policy described above.

8 If any rule evaluates to Permit, then the final decision is also Permit.
9 If any rule evaluates to Deny, then the final decision is also Deny.

10 The effect of the first rule that applies is the decision of the policy.



5

<Rule RuleId="DefaultDenyWriteRule" Effect="Deny">

<Target>

<Subjects><AnySubject/></Subjects>

<Resources><AnyResource/></Resources>

<Actions>

<ActionMatch MatchId="function:string-equal">

<AttributeValue DataType="#string">write</AttributeValue>

<ActionAttributeDesignator

AttributeId="action"

DataType="...#string"/>

</ActionMatch>

</Actions>

</Target>

</Rule>

More complex policies can be created using additional XACML features. To
this end, XACML reuses several XML Schema primitive datatypes and adopts
some additional datatypes useful in a network access environment. Predicates
for manipulation and evaluation of these datatypes adopt a similar approach—
XML data standards are adopted where feasible and new predicates are defined
as necessary and useful.

The DL translation provides some datatype support for values of attributes.
More specifically, it offers support for built-in and user-defined XML Schema
datatypes (currently only datetime and integer). For example, one could state
that age attribute can have value ≥ 18, or that it must be one of 18, 19, 20, 21.

3.3 Advanced XACML Features

The DL translation supports the Hierarchical Role-based Access Control Profile
of XACML [6], which allows the specification of inheritance relationships between
roles. For example, Role A may be defined to inherit all permissions associated
with Role B. In this case, Role A is considered to be senior to Role B in the role
hierarchy.

3.4 Unsupported XACML Features

The unsupported elements of XACML include multi-subject requests, complex
attribute functions, rule conditions and some combining algorithms (see section
3.1). Some features (like complex conditions) may be impossible to analyze at
development time, but there are others which we believe could be handled in
the translation (some types of conditions, more expressive datatypes and the
Only-one-applicable overriding algorithm) — all part of our ongoing work.

4 A Policy Example

This section describes a very simple example policy in more detail. Initially
there are two roles, Manager and Developer; one resource: Report; and two



6

actions: read, write. The root policy set contains two policy sets which are
combined using the First-applicable combining algorithm. The policy is presented
in graphical form in figure 1.

Fig. 1. Example Policy

The safety property for this example is that Developers cannot write to
Reports. Checking the example policy against this property produces a fail,
with the following counter example returned:

role=Manager, role=Developer, action=write, resource=report

Thus, if a requester is a member of both roles (Manager and Developer),
then she can gain write access to Report. To prevent a Developer who is
masquerading as a Manager from writing to Report, we use a separation of
duty constraint: no user can be a member of both Manager and Developer roles
at the same time.

However, the policy fails to satisfy the property even after adding the above
constraint. This time, the counter example given is:

role=Developer, action=write, action=read, resource=report

Apparently there is another way for a Developer to gain write access: if he
tries to both read and write to Report at the same time. To prevent this from
happening, we can restrict R2 such that only one value (read) is allowed for
action attribute. After adding this constraint the policy satisfies the property.

The example policy also demonstrates redundancy. A policy element is redun-
dant if removing the element does not change the behavior of the access policy.
To motivate a redundancy detection service, consider rule R4 in Figure 1. R4 will
always be overridden by R3, since the policy combination is First-applicable, and
the target of R3 subsumes the target of R4. In a policy evaluation engine, R4 can



7

be dropped without any consequences to the security policy. This elimination
of unnecessary rules at policy design- or audit-time, could provide significant
optimizations for a policy framework, both in execution efficiency and human
comprehensibility.

5 Policy Management Services

Some of the policy analysis services enabled by our approach are described below.

5.1 Comparison

Policy comparison is a generalized form of policy subsumption. Policy subsump-
tion holds between two policies or policy sets, P1, P2, and a decision, α ∈ {
Permit , Deny }, if P1 produces decision α whenever P2 produces decision α.
Subsumption may be evaluated independently for Permit and Deny, or they
may be considered together. Calculating policy subsumption is equivalent to
determining DL concept subsumption.

Often knowledge of the particular requests for which the decisions differ is
useful. Modifying the reasoner to generate all such instances, typically through
saturation of the tableau, yields all possible requests for which the policy out-
comes differ. This approach can be generalized to permit policy comparison for
any decision combination.

General policy comparison is critical in a federated data environment which
requires alignment of the access control policies of distinct data sources. In par-
ticular, the ability to determine the requests which yield different decisions is
helpful in debugging why an individual may have a more limited view at the
global data repository than at a specific constituent source. Further, using the
subsumption services makes determination of the most or least restrictive policy
among a set of data sources feasible, a task required when constructing a global
access policy required to be as restrictive as the most restrictive of the data
source policies.

Policy comparison also allows for iterative policy development because ac-
cess control is often delegated at organizational or application boundaries. This
creates an environment where local system and security administrators build
policies to manage their users by refining a broader access policy. The compari-
son service allows these administrators to manipulate their policy and routinely
evaluate its relationship to the broader policy and insure that changes don’t
create unintended consequences.11

5.2 Verification

Policy verification is the confirmation that a policy produces an expected deci-
sion for a given set of request characteristics. The mapping to DL reasoning is
11 Difficulties associated with managing policies in a distributed system and the vul-

nerabilities to attack exposed by those difficulties are discussed in [7]. An alternative
approach to mitigating this type of risk using statistical profiling is discussed in [8].



8

straightforward. Mapping the request characteristics to a class description, then
determining satisfiability of the intersection of that class and the expected policy
decision class description verifies the policy.

Policy verification services are essential in the NASA integrated data envi-
ronment because they provide a mechanism to insure security policy compliance
from design-time through audit and testing.

5.3 Creation

Representation of access control policies in OWL has additional benefits to the
policy author. The general applicability of OWL permits specification of policy
using terminology that exists in a broader context than the XACML document
itself. A policy can adopt terminology present in enterprise data descriptions,
common industry ontologies, and other OWL content. The benefit to the policy
author of reusing formalisms is twofold. First, it expedites the policy creation
process by avoiding repetition of already performed business process modeling
work. Second, it improves quality by allowing adoption of high-quality models
already validated in other deployments. Finally, use of OWL enables use of
DL formalisms for natural representation of many policy idioms. Such idioms
are discussed in detail in the next section. The application of OWL to policy
creation and management is discussed in [9].

6 Policy Idioms

One of the distinguishing features of our approach is that the subjects, actions
and resources used in the access policies are mapped to DL concepts and roles.
For example, if the policy is about managers, developers, and their interaction
with reports, we can have an ontology that describes the company domain, and
link the policy entities with concepts in the ontology using subclass relationships.
For example, we can state that a Manager must be an Employee that is the
supervisor of at least one Person:

Manager v Employee u ∃supervisorOf.Person

Using such ontologies, we show how common policy idioms can be expressed
in description logics:

1. Role hierarchies are easily captured with subclass axioms. For example ,stat-
ing that a LeadDeveloper inherits all of the access privileges of the Developer
role can be expressed as:

∃role.LeadDeveloper v ∃role.Developer

2. Hierarchies on Attributes, can be captured using property hierarchies in DL.
For example, to state that if a person is a CIO of a company, that means he
is also an employee of that company, we write:



9

cioOf v employeeOf

3. Separation of duty constraints can be captured with disjoint axioms. To state
separation of duty for two role types A and B, we use:

∃role.A v ¬∃role.B

4. Cardinality constraints can be expressed on any given attribute. To state
that the role attribute cannot have more than k values, we can write:

≥ k role.> v ⊥

We can even specify maximum number of users that a role can have, with
a combination of inverses and cardinality constraints. For example, the fol-
lowing says that a role cannot have more than k users:

≥ k role−.> v ⊥

7 Summary and Future Work

This paper has discussed a mechanism to represent a profile of XACML in DL
with an interest in applying it to a data federation architecture at NASA. That
mechanism has considerable applicability and extensibility within and outside
that use case. Though not discussed here in detail, XACML has a profile targeted
at representation of role based access control (RBAC)[6]. The DL formalism pre-
sented in [4] is applicable to that profile, making it a candidate for adoption in
any environment that uses RBAC. At the current level of maturity, many com-
mon RBAC patterns are supported by the translation, including separation of
duties and role cardinality constraints. The DL translation has potential rele-
vance in any role based formalism and evaluation of its applicability to role-based
workflow management, in particular, is an area of future research.

It is notable that although the presentation here uses XACML as the policy
language, it is not a requirement of the approach. XACML was chosen because
it is a standard language and has some industry adoption, but the approach de-
tailed could be applied to any similar policy language. A notable target language
is WS-Policy, a language to which DL mappings have been studied[10].

Finally, we reemphasize that the full expressivity of XACML is not yet ac-
cessible in our approach. [4] notes some constructions in XACML that are not
readily translatable, though we do not know how often those constructs are used
in real XACML policies. As stated in section 3, XACML uses XML Schema
and additional datatypes, which yields a datatype expressivity that is beyond
its counterpart in OWL DL. For this reason, user-defined datatype extensions
to OWL enhance the utility of this approach by enabling translation of access
control policies which specify constraints with respect to ranges of values. Such
policies may reference age ranges, valid times of day, and many other common
patterns. Future research is required to determine the extent of the overlap be-
tween datatype reasoning in the OWL and XACML representations.



10

References

1. Enterprise Architecture Data Team: Construction, collection & curation of NASA’s
data reference models. Technical report, NASA (Aug 2006)

2. Clark, K.G., Schain, A., Parsia, B.: Semantic web @ NASA. In: XTech 2006:
“Building Web 2.0”. (2006)

3. Moses, T.: eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS Standard (Feb 2005)

4. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In:
16th International World Wide Web Conference. (May 2007) To Appear.

5. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics (Apr 2007)

6. Anderson, A.: Core and hierarchical role based access control (RBAC) profile of
XACML v2.0. OASIS Standard (Feb 2005)

7. Belokosztolszki, A., Eyers, D.: Shielding the RBAC infrastructures from cyber-
terrorism. In Gudes, E., Shenoi, S., eds.: Research Directions in Data and Appli-
cations Security. Kluwer Academic Publishers (2003) 3–14

8. Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion detection in RBAC-
administered databases. In: ACSAC ’05: Proceedings of the 21st Annual Computer
Security Applications Conference, Washington, DC, USA, IEEE Computer Society
(2005) 170–182

9. Rochaeli, T., Eckert, C.: RBAC policy engineering with patterns. In Kagal, L.,
Finin, T., Hendler, J., eds.: Proceedings of the Semantic Web and Policy Workshop.
(Nov 2005)

10. Kolovski, V., Parsia, B., Katz, Y., Hendler, J.: Representing web service policies in
OWL-DL. In: The Semantic Web - ISWC 2005: 4th International Semantic Web
Conference, ISWC 2005, Galway, Ireland, November 6 - 10, 2005, Proceedings
(Lecture Notes in Computer Science). (2005)


