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Abstract
Several requirements for algebra suitable
for e�cient cost-based optimization are pre-
sented. It is shown that known XML alge-
bras do not fully satisfy this requirements.
A new algebra to satisfy better the require-
ments is introduced.

1 Introduction
Continously growing usage of XML data demands
for development of powerful query optimization sys-
tems. Optimization approaches for XML databases
depend on database type. Relational based XML
DBMS decompose documents into conventional or
special binary relations [1]. XQuery clauses in such
systems are translated to queries in SQL-like lan-
guage and query processors employ traditional re-
lational query optimization techniques. So called
native XML DBMSs use their own data storage
formats. Query optimizers in the native XML
databases are not as e�cient as their relational coun-
terparts. Usually they are limited with some logical
optimization methods and follow a naive physical
plan. However, an e�cient optimizer should con-
sider many equivalent physical plans and choose the
best one using some cost function. Execution of
the best physical plan may be signi�cantly, some-
times several orders of magnitude faster comparing
to naive one. So the problem of generating the op-
timization space is very important. Optimization
space is a set of equivalent expressions in some query
algebra and thus the �nal plan quality is de�ned by
some properties of the chosen algebra. Unlike re-
lational systems, there is no standard algebra for
XML queries, but there are many di�erent algebras
[12, 14, 4, 13, 8] each having its own pros and cons.

In this work we gather requirements for query al-
gebra suitable for e�cient cost-based optimization
and propose an algebra based on elements of XAT
[14] and Xtasy [12] algebras and which meets the
requirements.

2 Related work
Many researches in XQuery optimization are focused
on logical optimizations. A number of logical trans-
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formations were considered in [9], including seman-
tical optimization, pushing predicates, joins reorder-
ing, eliminating redundant document-order sorts.
Rules of transforming XQuery queries to forms more
suitable for translation to SQL were described in [7].

XML Query Algebra [3] comes from the activity of
the W3C XML Query Working Group. That algebra
is mainly intended for the formal de�nition of query
languages semantics. The algebra itself is an ab-
stract version of XQuery, where high-level operators
(e.g., n-ary for and sortby clauses) are mapped into
low-level algebraic operators. Rewriting rules are
provided resembling functional programming lan-
guages rules and nested relational rules.

Xtasy [12, 5] algebra also as YAT [13], XAT
[14] and SAL [4] algebras has operators de�ned on
relational-like structures. Operations similar to re-
lational as selection, projection, join, cross product,
order by etc. have appeared in these algebras. But
also operations speci�c to XPath and XQuery have
appeared. So in Xtasy they are presented by path
and return operations, those similar to bind and tree
in YAT algebra. In XAT and SAL algebras for vari-
able binding map operation is used.

TAX [8] is a query algebra developed in the con-
text of the TIMBER project. TAX data model is
based on unordered collections of ordered data trees,
and each TAX operator takes as input collections
of data trees, and produces as output collections
of data trees. Unlike YAT and SAL, TAX directly
manipulates trees without the need for an explicit
intermediate structure. Data extraction and bind-
ing are performed by using pattern trees: pattern
trees, which resemble Xtasy input �lters, describe
the structure of the desired data, and impose condi-
tions on them.

MonetDB system [1] worth special attention.
Data in that system are stored as binary relations.
Queries are translated to special intermediate SQL-
like representation and then are executed as SQL.
Benchmarks show a signi�cant superiority of Mon-
etDB over native XML DBMS, mostly when working
with big documents. The reason is that native XML
databases are lacking powerful query optimizers and
e�cient indexing structures.

3 Analysis of Algebra requirements
Time required to evaluate some query could di�er
very much depending on the chosen evaluation plan.
The main optimizer role is to �nd the most e�ec-



tive one. The space of available physical plans is
mainly de�ned by properties of algebra operations.
And the wider is that space the more e�ective eval-
uation plan could be found. Such properties of alge-
braic operations as commutativity, associativity and
idempotance are desirable properties because they
extend search space, increasing optimizer's freedom
for choosing optimal plan.

One of the most important and widely used con-
structions of XQuery are nested for-clauses. The
order of their evaluation in evaluation plan is signif-
icant for performance as order of join operations in
relational algebra. Therefore the representation of
nested for-clauses with operations with good alge-
braic properties is an important requirement.

It is impossible to choose an order of operations
evaluation without estimation of a size of an inter-
mediate result, for example result of joining two se-
quences from the given three. Therefore data struc-
tures in query algebra must be good enough to rep-
resent measurable intermediate results.

XPath expressions also play an important role in
XQuery. There may be di�erent plans of evaluating
the same XPath expression and some plans may be
much more expensive than others [10]. So if XPath
would be presented with operations with good al-
gebraic properties probably the more e�ective plan
could be found. It is the last important requirement.

Concluding, XML query algebra suitable for cost-
based optimization is expected to satisfy the follow-
ing requirements:
1. operations are de�ned on data structures suit-

able for representing measurable intermediate
results

2. nested for-clauses are mapped to operations
with good algebraic properties such as commu-
tativity and associativity

3. xpath expressions are also represented by oper-
ations with good algebraic properties.

W3C algebra operations de�ned on sequences.
This de�nition leads to several problems with an in-
termediate result representation, because sequences
do not provide any information about correspond-
ing bound variables and e.t.c. Therefore there are
problems with intermediate result storing and es-
timation that leads to problems with reordering of
some expensive operations. So this algebra does not
satisfy requirement (1). But this requirement is sat-
is�ed by YAT, XAT, Xtasy algebras. These algebras
have operations de�ned on relational-like structures,
which are as relations consist of tuples. This struc-
ture is suitable for representing intermediate result
of joining group of sequences. In XAT algebra such
structure called XAT-table, in Xtasy � Env.

The XML Query algebra is very useful for imple-
menting simple XML query processors with ability
of logical optimization, but it appears unlikely that
it will form the basis for e�ective implementations of
XML query processors with cost-based optimization.

YAT, XAT and Xtasy algebras have representa-
tion of nested for-clauses with join operations. These

operations have enough good algebraic properties.
So the requirement (2) is satis�ed by these algebras.
But requirement (3) does not completely satis�ed
by them. The reason is that their operations used
for xpath representation do not have complete num-
ber of desirable algebraic properties. Therefore it is
impossible to arbitrary change evaluation order of
operations for navigational expressions.

4 XAnswer Algebra
In this section we propose new algebra called XAn-
swer. This algebra is based on some elements of
XTasy and XAT algebras and satisfy requirements
described in previous section. First, it would be de-
scribed data structures, algebra operations de�ned
on. After that main algebra operations, that are
similar to relational, would be introduced. And at
last speci�c for XQuery algebraic operations would
be de�ned and compared with analogues of Xtasy
algebra.

4.1 XAnswer data structure
XAnswer algebraic operations are de�ned on
relational-like data structures like in [12, 14]. Be-
low, this structure will be called Envelop. It is rep-
resented with a table and consists of tuples which
contains XML-node values. Order of table attributes
or tuples is not signi�cant.

In case of XQuery each attribute of Envelop is a
name of variable that was bound in corresponding
subexpression. In case of XPath there are no any
variables, therefore some unique identi�er is used as
corresponindg attribute instead of variable name.

Lets consider a path expression:
book/author/address/country. Lets Assume
that identi�er $VA denotes values of nodes with
tag name book, identi�er $VB � author, $VC �
address, $VD � country. The Envelop, obtained
after evaluation of considered path expression could
be represented with a table shown in Figure 1.

Figure 1: Envelop structure

XML data model assumes ordering of tags which
is missing in our Envelop structure. However for op-
timization purposes better algebraic properties are
more important than ordering so we assume that
query result should be additionally sorted if needed.
Assuming these two Envelops are equal independent
of tuple or attribute order.

4.2 Algebraic operations
Path expressions are main building blocks of XQuery
expressions. Also their evaluation is one of the most



expensive elements in XQuery evaluation. Therefore
it is important to increase quality of xpath evalua-
tion plans. So query algebra has to provide a wide
space of equivalent plans for navigational expres-
sions. This problem could be solved by representa-
tion of XPath with operations with good algebraic
properties. So XAnswer algebra use structural-join
(binary) and data extraction (unary) operations to
represent path expressions and each step of path ex-
pression is represented with these operations.

4.2.1 Structural-join operation
Structural-join operation appears in many works
around the XPath optimization, for example [6, 15,
2]. XAnswer also has this operation with following
de�nition:

A⊗axisAiBj
B = {(x, y) |

x ∈ A, y ∈ B, axisAiBj
(x, y) = true}

Here A,B � two input Envelops. Ai, Bj �
attribute identi�ers by which join is performed.
axisAiBj

� is a predicate by which join is performed.
It returns true, if elements of x and y, corresponding
to identi�ers Ai, Bj are in axis relation (for example
child or parent).

Example 1

Figure 2: Structural join example

This example shows structural join of two En-
velops by child axis for attributes A2 and B1. Re-
sult of joining is a new Envelop, every tuple of which
obtained by union of tuples of �rst and second En-
velops in case when tuple element corresponding to
attribute B1 of the second Envelop is a child of tu-
ple element corresponding to attribute A2 of the �rst
Envelop.

Structural join operation has associativity(1)
and commutativity(2) properties. These properties
could be prooved using operation de�nition.

(1) : (A⊗axisAiBj
B)⊗axisBmCk

C =

= A⊗axisAiBj
(B ⊗axisBmCk

C)

(2) : (A⊗axisAiBj
B) = (B ⊗axisAiBj

A)

4.2.2 Data Extraction operations
There are some operations (leaf or unary opera-
tions), which produces new Envelop without pro-
vided any another as input. These operations are
presented with function call and element search op-
erations. GetDocumentRoot operation is a member
of function call operations family. This operation
generates a new Envelop containing root node for
provided document. GetDocuemntRoot operation
de�ned as follows:

GetDocumentRoot(Document) = {x |
x is a root element of the Document}

The next important data extraction operation is
GetElement operation. It searches for elements, that
satisfy NodeTest condition in the provided set of
documents. For example as a NodeTest condition
could be a NameTest, i.e. some tag name.

GetElement(NodeTest, DocSet) = {x |
x ∈ elements of documents from DocSet,

NodeTest(x) = true}

The result of evaluation of this operation is a new
Envelop containing values of nodes satisfying to the
NodeTest. As a single attribute of this Envelop,
some unique identi�er is set. The following example
shows XAnswer algebraic expression for some
typical XPath twig query.

Example 2

Lets consider following path expression:
document(�doc.xml�)/manufacturers//dealer/address
The algebraic expression corresponding to this

path expression is:

((GetDocumentRoot(doc.xml)
⊗childv1v2

GetElement(manufacturers, doc.xml))
⊗childv2v3

GetElement(dealer, doc.xml))
⊗childv3v4

GetElement(address, doc.xml)

This algebraic expression could be represented
with a tree shown in Figure 3. For simplicity in
this �gure does not provided some information like
axis predicates for structural joins. Evaluation is
performed by left-deep walking through this tree.
It means that for this tree �rst would be extracted
document root node then manufacturers nodes then
would be performed structural join by child axis and
so on.

Sometimes much more e�ective plan could be
achieved by changing evaluation order of structural
joins. So Figure 4. shows alternative equivalent al-
gebraic expression for the expression from Example
2. Equivalence of these expressions could be proved
by sequential applying of rule (1). In this case �rst
would be performed joining of manufacturers and
document root then joining of dealers and addresses,
and at last the structural join by descendant-or-self
axis for manufacturers and dealers is performed.



Figure 3: An xpath algebraic expression tree

Figure 4: An alternative xpath algebraic expression
tree

4.2.3 Classical algebraic operations
Some operations in XAnswer derived from relational
algebra. That are such operations as selection, pro-
jection, join, cross product, orderby. . . These oper-
ations have the same properties as their relational
analogues.
Selection:

SelectP A = {x ∈ A | P (x) = true}

Projection:

ProjectAi1 ...Ain
A = {z |

z = (xAi1
, . . . , xAin

), x ∈ A}
Join:

A ./P B = {(x, y) | x ∈ A, y ∈ B,

P(x, y) = true}

4.3 Speci�c for XQuery operations
For and Let operators also known as variable binding
operators are one of the most important operators
in XQuery. These operators are similar in that they
de�ne a variable in query evaluation context and set
to it some current value.
XAnswer also has For and Let operations.

4.3.1 For operation
For operation de�ned as follows:

Forvar
Ai

A = {z | z = ProjectAiA, x ∈ A}

Here, var is a variable name; Ai � identi�er of En-
velop attribute; A - Envelop.

The result of evaluation of For operation is a
new Envlelop, obtained from given by applying

projection by attribute corresponding to Ai. The
variable name became an identi�er of the single
attribute of the new Envelop.

Example 3

Figure 5: For operation

4.3.2 Let operation
Let operation de�ned as follows:

Letvar
funci1..in

A = {(x, z) | x ∈ A, z = funci1..in
(x)}

Here var is a variable name; func - a function re-
ferring to some already bound variables; i1..in � at-
tribute identi�ers corresponding to those variables.
For example as this function could be an XPath ex-
pression like following: $b/address/country.

The result is a new Envelop, obtained by ap-
pending to the old one a new column with results
of evaluation of function for each tuple. The given
variable name became an identi�er of appended
attribute.

Example 4

Figure 6: Let operation

In this case path expression depends on single
variable corresponding to attribute denoted by $A2.

4.3.3 Return operation
The next one important algebraic operation, speci�c
for XQuery, is a Return operation. XAnswer Return
operation by functions and representation is similar
to the XTasy Return operation [12, 5].
ReturnOF A, where A - an Envelop produced with
one of the XAnswer operations like Join or For op-
eration. OF - Output Filter, which is de�ned by
following rule:

OF ::= OF1,. . . ,OFn | label[val] | @label[val] |val



val ::= var | varCopy | xpath.
Output Filter is a description of activities for rep-

resentation of an evaluated data. For example it
could be an XML element or an XML attribute con-
structor, or a variable value or a result of evaluation
of navigational expression for some bound variable
and so on.

4.3.4 DJoin operation
This operation is used when evaluation of one En-
velop depends on evaluation of another. The only
way to perform this operation is nested loops.
Therefore the major goal of optimization is to trans-
late it to another join operations whenever it is pos-
sible.

4.3.5 Examples
In the following example there are shown two alge-
braic expression for Xtasy and XAnswer algebras
for the same XQuery expression.

Example 5

for $b in document("books.xml")/book
/author/addr
return <entry>$b</entry>

An Xtasy algebraic expression for this query:

Returnentry[$b]path(_,$b,in)book[(_,_,/)author[

(_,_,/)addr[∅]]](books.xml)

An XAnswer algebraic expression:

Returnentry[$b]((GetDocumentRoot(books.xml)
⊗childv1v2

GetElement(book, books.xml))
⊗childv2v3

GetElement(author, books.xml))
⊗childv3v4

GetElement(addr, books.xml)

Inspite of horizontal and vertical decomposition
rules of path operation in Xtasy [12], the space
of equivalent plans obtained in terms of XAnswer
algebra is wider then in terms of XTasy.

Example 6

for $a in document(�doc.xml)/manufacturers
/dealer//address,
$b in document(�doc2.xml�)//manager
return $a

The tree of algebraic expression, corresponding to
the given query is shown in Figure 7. For simplic-
ity, nodes corresponding to join operation do not
provide any information about predicates by which
these join operations are performed. Copy of vari-
able value operation is used as output �lter for the
return operation. As result a new element with dif-
ferent to current elements id is created. Also as out-
put �lter it could be a variable reference operation.
In this case an element with the same id would be
returned. This is the way to make changes in the
document.

Figure 7: An algebraic expression tree for query from
example 6

The next example shows a query with nested
for-clauses where the inner has a dependency to the
variable de�ned in the outer.

Example 7

for $a in document(�doc.xml�)//dealer,
$b in $a//address
return $b

A tree of algebraic expression for this case is shown
in Figure 8. In this representation both for-clauses
input �lters have the same part, corresponding to
the expression document(�doc.xml�)//dealer. In this
case common sub-expression would be evaluated
once and then obtained result would be reused in
evaluation of the second for-clause.

Figure 8: A tree of algebraic expression for example
7



4.4 Using some algebraic properties in query opti-
mization

Sometimes nested for-clauses have not dependencies
between themselves but they have similar parts
of input path expressions. In this case special
optimization technique could be applied. It obtains
common parts of path expressions and rewrites
expression to provide sharing result of common
parts. Such query and corresponding to it algebraic
tree after some reforming are described in Example
8. In [14] such optimization is called expression
minimization. It is shown that bene�t of this
optimization for class of similar queries could reach
20-70%, depending on XML document structure.
Each sub-query could have it's own optimal plans
that have not common parts. In this case techniques
derived from multi query optimization for building
optimal plan for group of queries [11] could be used.
In case of such queries the space of equivalent plans
in terms of XAnswer algebra is wider than in terms
of XAT.

Example 8

Lets consider following query: �nd title for those
books author of that is a �rst author at least of one
book.
Corresponding XQuery expression:

for $a in document(�bib.xml�)/book/author[1]
for $b in document(�bib.xml�)/book
where $b/author = $a
return $b/title
It is easy to see that expression docu-

ment(�bib.xml�)/author could be evaluated once for
�rst for-clause and then obtained result could be
reused in evaluation of second for-clause. In this case
algebraic expression could be presented as a graph,
shown in Figure 9.

Figure 9: A graph of algebraic expression for exam-
ple 8 after performing minimization

5 Conclusion
This paper outlines several requirements for query
algebra suitable for building high-performance cost-
based optimizer for native XML DBMS. Also it was
shown that known algebras do not completely satisfy
to these requirements. An another algebra that sat-
is�es to these requirements better was introduced.
This algebra is a base of XAnswer optimizer for na-
tive XML DBMSs which is currently under develop-
ment.
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