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Abstract

As XML has become a standard for data repre-
sentation, it is inevitable to propose and imple-
ment techniques for efficient managing of XML
data. A natural alternative is to exploit features
and functions of (object-)relational database
systems, i.e. to rely on their long theoreti-
cal and practical history. The main concern of
such techniques is the choice of an appropriate
XML-to-relational mapping strategy.

In this paper we focus on enhancing of user-
driven techniques which leave the mapping de-
cisions in hands of users. We propose an al-
gorithm which exploits the user-given annota-
tions more deeply searching the user-specified
“hints” in the rest of the schema and applies an
adaptive method on the remaining schema frag-
ments. We describe the algorithm theoretically,
discussing the key ideas of the approach, cho-
sen solutions, their reasons, and consequences.
Finally, we overview the open issues related to
implementation of the proposed algorithm and
its experimental testing on real XML data.

1 Introduction
Without any doubt the eXtensible Markup Language
(XML) [9] is currently de-facto a standard for data rep-
resentation and manipulation. Its popularity is given by
the fact that the basic W3C recommendations are well-
defined, easy-to-learn, and at the same time still enough
powerful. The popularity naturally invoked a boom of
their efficient implementations based on various storage
strategies from the traditional ones such as file systems
to brand-new ones proposed particularly for XML struc-
tures, so-called native approaches or directly native XML
databases.

Probably the most natural and practically used ap-
proach involves techniques which exploit features of
(object-)relational database systems, though they are not
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as efficient as the native ones due to the key problem of
structural differences between XML data and relations.
The reason for the popularity is that relational databases
are still regarded as universal and powerful data process-
ing tools and their long theoretical and practical history
can guarantee a reasonable level of reliability and effi-
ciency. Contrary to native methods it is not necessary
to start “from scratch” but we can rely on a mature and
verified technology, i.e. properties that no native XML
database can offer yet. On this account we believe that
these methods and their possible improvements should
be further enhanced.

The main concern of the database-based1 XML tech-
niques is the choice of an appropriate XML-to-relational
mapping strategy, i.e. the way the given XML data are
stored into relations. We can distinguish the following
three types approaches [4] [15]:

• fixed mapping methods based on predefined set of
mapping rules and appropriate heuristics (e.g. [11]
[21]),

• adaptive methods which adapt the target database
schema to the intended application (e.g. [12] [8]),
and

• methods which leave the mapping decisions in
hands of users (e.g. [3] [5]).

The first set of methods can be further divided [4]
into generic and schema-driven ones depending on omit-
ting or exploiting the existence of corresponding XML
schema. However, both the types use a straightforward
mapping strategy regardless the intended future usage.
On the contrary, adaptive methods automatically adapt
the database schema of a fixed method to the given ad-
ditional information. The best known representatives,
so-called cost-driven methods, usually search a space
of possible XML-to-relational mappings and choose the
one which conforms to the required application, speci-
fied using a sample set of XML data and XML queries,
the most, i.e. where the provided queries over the given
data can be evaluated most efficiently. Finally, the last

1In the rest of the paper the term “database” represents an (object-)
relational database.



mentioned type of methods can be also divided into two
groups. We distinguish so-called user-defined and user-
driven methods [15] which differentiate in the amount of
necessary user interaction. In the former case a user is
expected to define both the target database schema and
the required mapping strategy, i.e. to do all the work
“manually”. In the latter case a default mapping strategy
is defined but a user can specify local mapping changes
from the predefined set of other allowed mapping strate-
gies, usually using schema annotations. In other words,
the user-driven approach solves the main disadvantage of
the user-defined one – the requirement of a user skilled
in two complex technologies who is, in addition, able to
specify an optimal database schema for a particular ap-
plication. Note that the user-driven techniques can be
regarded as a type of adaptive methods too [15], since
they also adapt the default target schema to additional
information, in particular to user-specified requirements.

In this paper we focus on further enhancing of user-
driven techniques, particularly on their (in our opinion)
two main persisting disadvantages. The first one is the
fact that the default mapping strategy is (to our knowl-
edge) always a fixed one. It is quite a surprising finding
since we know that the proposed systems are able to store
schema fragments in various ways. From this point of
view an adaptive enhancing of the fixed method seems
to be quite natural and suitable. The second key short-
coming we are dealing with is weak exploitation of the
user-given information. We believe that the schema an-
notations a user provides can not only be directly applied
on particular schema fragments, but the information they
carry can be further exploited. The main idea is quite
simple – we regard the annotations as “hints” how a user
wants to store particular XML patterns and we use this
information twice again. Firstly, we search for similar
patterns in the rest of the schema and store the found
fragments in a similar way. And secondly, we exploit
the information in the adaptive strategy for not annotated
parts of the schema.

To sum up, the main contribution of this paper is a
proposal of an algorithm which enhances classical user-
driven strategies using the following two approaches:

• a deeper exploitation of the information carried in
user-given schema annotations and

• an adaptive mapping strategy for not annotated parts
of the schema.

We describe the proposed algorithm theoretically. We
discuss the key ideas and problems, their possible solu-
tions, reasons for our particular decisions, and their con-
sequences. Finally, we overview the related problems
and open issues of a particular implementation of the
proposal.

The rest of the paper is structured as follows: Section
2 contains a motivation for focusing on user-given infor-
mation. Section 3 overviews the existing related works in
the area of user-driven methods, adaptive methods, and
similarity of XML data. In the fourth section we describe
and discuss the proposed algorithm in more detail and in
the fifth section we sum up the corresponding implemen-
tation open issues. Finally, Section 6 provides conclu-
sions and outlines our future work.

2 Motivation
The key concern of this paper is to exploit the user-given
information as much as possible. We result from the idea
of user-driven enhancing of the user-defined techniques,
where a user is expected to help the mapping process, not
to perform it. We want to go even farther. But first of all
we discuss why user-given information is so important to
deal with.

A simple demonstrative example can be a set of XML
documents which contain various XHTML [1] frag-
ments. A classical fixed schema-driven mapping strat-
egy (e.g. [21] [14]) would decompose the fragments into
a number of relations. Since we know that the standard
XHTML DTD allows, e.g., complete subgraphs on up to
10 nodes, the reconstruction of such fragments would be
a really expensive operation in terms of the number of
join operations. But if we knew that the real complexity
of such fragments is much simpler (and the analysis of
real XML data shows that it is quite probable [17]), e.g.
that each of the fragments can be described as a simple
text with tags having the depth of 2 at most, we could
choose a much simpler storage strategy including the ex-
treme one – a CLOB column.

Another example can be the crucial feature of
database storage strategies – updatability of the data. On
one hand, we could know that the data will not be up-
dated too much or at all but we need an effective query
evaluation. On the other hand, there could be a strong
demand for effective data updates, whereas the queries
are of marginal importance. And there are of course
cases which require effective processing of both. Nat-
urally, the appropriate storage strategies differ strongly.
In case of effective query processing a number of indices
and numbering schemes can be exploited but at the cost
of corresponding expensive updates. Effective updates,
conversely, require the simplest information of mutual
data relationships. And if both the aspects are required,
it is unavoidable to compromise. And such decision can
be again made correctly only if we have an appropriate
information on the required future usage.

Last but not least, let us consider the question of data
redundancy. Without any additional information the op-
timal storage strategy is so-called 4NF schema decompo-
sition into relations [5], where 4NF stands for the fourth
normal form, which can be achieved, e.g., using the clas-
sical Hybrid algorithm [21], a representative of fixed
mapping methods. The decomposition does not involve
data redundancy or violation of any normal form, i.e. it
results in a database schema with the lowest number of
relations and null attributes. But, similarly to database
design, there can be reasonable real-world cases when
the data should not strictly follow the rules of normal
forms and their moderation can lead to more effective
query processing.

Both the cost-driven and user-driven methods are
based on the idea of exploiting additional user-given
information and they appropriately adapt the target
database schema. In the former case it is extracted from
a sample set of XML documents and/or XML queries
which characterize the typical future usage, in the lat-
ter case it is specified by user-given annotations, i.e. the
user directly specifies the required changes of the default
mapping. But although there is a plenty of existing repre-



sentatives of the two approaches, there are still numerous
weak points and open issues that should be improved and
solved [15].

As mentioned above, our first improvement is search-
ing for identical or similar fragments in the not annotated
schema parts. This approach has two main advantages:

1. The user is not forced to annotate all schema frag-
ments that have to be stored alternatively, but only
those with different structure. Thus the system is
not endangered of unintended omitting of annotat-
ing all similar cases.

2. The system can reveal structural similarities which
are not evident “at first glance” and which could re-
main hidden to the user.

Thus the first main concern of our proposal is how to
identify identical or similar fragments within the schema.

Our second enhancing focuses on the choice of the
mapping strategy for schema fragments which were nei-
ther annotated by the user, nor identified as fragments
similar to the annotated ones. In this case we combine
the idea of cost-driven methods with the fact that a user-
driven technique should support various storage strate-
gies too. Hence our second concern is how to find the
optimal mapping strategy for the remaining schema frag-
ments and, in addition, with exploitation of the informa-
tion we already have, i.e. the user-specified annotations,
as much as possible.

3 Related Work
As we have mentioned, methods which involve a user in
the mapping process can be divided into user-defined and
user-driven. Probably due to simple implementation the
former ones are supported in most commercial database
systems [2]. On the other hand, the set of techniques of
the latter type is surprisingly small. To our knowledge
there are just two main representatives of the approach
– so-called Mapping Definition Framework (MDF) [3]
and XCacheDB System [5]. Both support inlining and
outlining of an element / attribute, mapping an element
/ attribute to a CLOB column, renaming target tables /
columns, and redefining column data types. The former
approach furthermore supports the Edge mapping [11]
strategy and enables to specify the required capturing of
the structure of the whole schema. The latter one, in ad-
dition, allows a certain degree of redundancy.

In both the cases the mapping for not annotated parts
is fixed and the annotations are applied just directly on
the annotated schema fragments. The two ideas we want
to use for their enhancing are adaptivity [15] and similar-
ity [16].

3.1 Adaptive XML-to-Relational Mapping

Probably the first proposal of an adaptive cost-driven
method can be found in [12]. It is based on the idea
of storing well structured parts of XML documents
into relations (using the 4NF decomposition) and semi-
structured parts using an XML data type, which supports
path queries and XML-aware full-text operations. The
main concern of the method is to identify the structured

and semi-structured parts. For this purpose a sample set
of XML documents and XML queries is used.

The other existing cost-driven approaches [8] [24]
[26] use a different strategy. They define a set of XML-
to-XML transformations (e.g. inlining / outlining of an
element / attribute, splitting / merging of a shared ele-
ment2, associativity, commutativity, etc.), a fixed XML-
to-relational mapping, and a cost function which eval-
uates a relational schema against a given sample set of
XML data and/or queries. Using a search algorithm a
space of possible relational schemes is searched and the
optimal one is selected. Since it can be proven that even
a simple set of transformations causes the problem to
be NP-hard, the corresponding search algorithms in fact
search for suboptimal solutions and exploit, e.g., heuris-
tics, terminal conditions, approximations, etc.

3.2 Similarity of XML Data

Exploitation of similarity of XML data can be found in
various XML technologies, such as, e.g., document val-
idation, query processing, data transformation, storage
strategies based on clustering, data integration systems,
dissemination-based applications, etc. Consequently, the
number of existing works is enormous. We can search
for similarity among XML documents, XML schemes,
or between the two groups. Furthermore, we can dis-
tinguish several levels of similarity that can be taken into
account during the search process – a structural level (i.e.
considering only the structure of the given XML frag-
ments), a semantic level (i.e. taking into account also
the meaning of element / attribute names), a constraint
level (i.e. taking into account also various text value con-
straints), etc.

In case of document similarity we distinguish tech-
niques expressing the similarity of two documents D1

and D2 by measuring how difficult is to transform D1

into D2 (e.g. [19]) and techniques which specify a simple
and reasonable representation of D1 and D2 that enables
their efficient comparison and similarity evaluation (e.g.
[25]). In case of similarity of document D and schema S
there are also two types of strategies – techniques which
measure the number of elements which appear in D but
not in S and vice versa (e.g. [6]) and techniques which
measure the closest distance between D and all docu-
ments valid against S (e.g. [18]). Finally, methods for
measuring similarity of two XML schemes S1 and S2 ex-
ploit and combine various supplemental information and
measures such as, e.g., predefined similarity rules, sim-
ilarity of element / attribute names, equivalence of data
types and structure, schema instances, thesauri, previous
results, etc. (e.g. [13] [10] [22])

4 Proposed Algorithm
The general idea of fixed schema-driven XML-to-
relational mapping methods is to decompose the given
XML schema S into a set of schema fragments
F = {f1, f2, ..., fn}. Each fi ∈ F is then mapped to
a corresponding relation ri using a mapping strategy
sfrag . The relationship between fragments is kept us-
ing a mapping strategy srel. In other words, the 3-tuple

2An element with multiple parent elements in the schema – see [21].



τ = < F, sfrag, srel > specifies a particular XML-to-
relational mapping method. An extreme case is when
S is considered as a single fragment which results in a
single relation, usually with many null values. Other ex-
treme occurs when each element in S is considered as a
single fragment resulting in a huge number of relations
and thus numerous join operations.

Note that fixed generic methods can be described us-
ing the 3-tuple τ as well. Each of the techniques views
an XML document as general directed tree with several
types of nodes. And the view can be considered as a spe-
cial kind of XML schema.

In user-driven strategies the three characteristics are
influenced by user-defined annotations which specify
how a particular user wants to store selected fragments
F ′ = {f ′1, f ′2, ..., f ′m}. The user usually provides S
with annotating attributes from the predefined set of at-
tribute names ΣA′ , which represent various fixed map-
ping strategies, resulting in an annotated schema S′.
Obviously, annotated fragments in F ′ do not have to
correspond to schema fragments in F . For instance, a
user may specify that whole S should be stored using a
4NF decomposition and thus F ′ = {S′} is a singleton,
whereas corresponding F can contain several schema
fragments depending on the complexity of S. Also note
that while F should cover whole S, F ′ usually does not.

A classical user-driven strategy consists of the follow-
ing steps:

1. S is provided with annotations from ΣA′ resulting
in S′ and F ′.

2. Annotated fragments from F ′ are decomposed
into corresponding schema fragments F1 =
{f1, f2, ..., fk}.

3. Not annotated fragments of S′ are decomposed into
schema fragments F2 = {fk+1, fk+2, ..., fn} using
a default (predefined or user-defined) fixed strategy
sdef .

4. F = F1 ∪ F2 is mapped to R using sfrag and srel.

Using this notation our proposed enhancing simply
adds the following steps between the step 1 and 2:

a. For ∀ f ′ ∈ F ′ we identify a set F ′f ′ of all fragments
similar to f ′ occurring in S′\{f ′}.

b. For ∀ f ′ ∈ F ′ all fragments in F ′f ′ are annotated with
annotating attributes of f ′ and F ′ = F ′ ∪ F ′f ′ .

c. S′\F ′ is annotated using an adaptive strategy which
adds new annotated fragments to F ′.

The mapping process is schematically depicted in Fig-
ure 1 where the given schema S with two annotated frag-
ments f and g is mapped to a database schema R. If the
proposed enhancing (i.e. steps 1.a – 1.c) is included, the
system gradually identifies and adds new annotated frag-
ments f1, f2, g1, g2, and g3 which are mapped using
user-required mapping strategies. If the enhancing is not
included (i.e. in case of a classical user-driven strategy),
only fragments f and g are annotated using user-required
strategies and the rest of the schema using sdef .

4.1 Searching for Similar Fragments

As we have mentioned, there are numerous approaches to
measuring similarity of XML data. Nevertheless, most
of them cannot be directly used for our case since our
demanded key characteristics differ. In particular, we
search for similarity within the scope of a single schema,
the similarity measure should not depend on similarity
of element / attribute names but primarily on complex-
ity of content models, and the similarity measure cannot
obviously depend on the context of fragments.

Considering the problem in more depth, several fun-
damental questions arise:

1. How are the annotated fragments defined?

2. What types of annotations, i.e. fixed mapping
strategies, are supported?

3. What measure is used for measuring similarity of
two schema fragments?

4. Can we optimize the exhaustive search strategy?

The answers for the questions mutually influence each
other and specify the algorithm. Furthermore, the defini-
tion of annotated fragments together with the question of
their mutual intersection are closely related to supported
mapping strategies.

4.1.1 Annotated Fragments

First of all, for easier processing we define a graph rep-
resentation of an XML schema S, no matter if annotated
or not. For easier explanation we assume that the given
XML schema S is expressed in DTD3 [9], nevertheless
the algorithm can be applied to schemes expressed using,
e.g., XML Schema [23] [7] language as well.

Definition 1 A schema graph of an XML schema S is
a directed, labelled graph GS = (V, E, ΣE ,ΣA, lab),
where

• V is a finite set of nodes,

• E ⊆ V × V is a set of edges,

• ΣE is a set of element names in S,

• ΣA is a set of attribute names in S, and

• lab : V → ΣE ∪ΣA ∪{“|”, “*”, “+”, “?”, “,”}∪
{pcdata} is a surjective function which assigns a
label to ∀v ∈ V .

Definition 2 A fragment of a schema S is each subgraph
of S consisting of an element e, all its descendants, and
corresponding edges.

Φ is a set of all fragments of S.

Next, we assume that each annotated fragment f ′ ∈
F ′ is uniquely determined by the element e which was
annotated using an annotating attribute a ∈ ΣA′ .

Definition 3 An annotated element e′ of schema S′ is an
element provided with an annotated attribute from ΣA′ .

3We omit supplemental constructs such as entities, CDATA sec-
tions, comments, etc.



Figure 1: Schema of the mapping process

Definition 4 An annotated fragment f ′ of schema S′ is a
fragment of S′ rooted at an annotated element e′ exclud-
ing all annotating attributes from ΣA′ .

As we want to support shared elements and recursion,
since both the constructs are widely used in real XML
data [17], we must naturally allow the annotated frag-
ments to intersect almost arbitrarily. To simplify the sit-
uation, we define an expanded schema graph, which ex-
ploits the idea that both the constructs purely indicate
repeated occurrence of a particular pattern.

Definition 5 An expanded schema graph Gex
S is a result

of the following transformations of schema graph GS:

1. Each shared element is duplicated for each sharer
using a deep copy operation, i.e. including all its
descendants and corresponding edges.

2. Each recursive element is duplicated for each re-
peated occurrence using a shallow copy operation,
i.e. only the element node itself is duplicated.

An illustrative example of a schema graph GS and its
expanded schema graph Gex

S is depicted in Figure 2. A
shared element is highlighted using a dotted rectangle, a
recursive element is highlighted using a dotted circle.

Figure 2: A schema graph GS and an expanded schema
graph Gex

S

As it is obvious, in case of shared elements the expan-
sion is lossless operation. It simply omits the key advan-
tage of shared elements which allows reusing of previ-
ously defined schema fragments. The situation is more
complicated in case of recursive elements which need to
be treated in a special way henceforth. For this purpose
we exploit results of statistical analysis of real-world re-
cursive elements [17], particularly the fact that the most
common type of recursion is linear4 and that the number

4Consisting of a single recursive element that does not branch out.

of repetitions of a recursive element is small, on average
less than 5. The two findings enable to treat recursive el-
ements not as elements with theoretically infinite depth,
but in a much simpler way. We discuss the details later
in the text.

In the following text we assume that a schema graph
of an XML schema is always an expanded schema graph,
if not explicitly stated alternatively.

4.1.2 Types of Annotations

From Definitions 4 and 5 we can easily prove the follow-
ing two statements:

Lemma 1 Each expanded schema graph Gex
S is a tree.

Lemma 2 Two annotated fragments f ′x and f ′y of an ex-
panded schema graph Gex

S′ can intersect only if f ′x ⊆ f ′y
or f ′x ⊆ f ′y.

Furthermore, we can observe that the common schema
fragment, i.e. the intersection, contains all descendants
of a particular element.

We distinguish three types of the annotation intersec-
tion depending on the way the corresponding mapping
strategies influence each other.

Definition 6 Intersecting annotations are redundant if
the corresponding mapping strategies are applied on the
common schema fragment separately.

Definition 7 Intersecting annotations are overriding if
only one of the corresponding mapping strategies is ap-
plied on the common schema fragment.

Definition 8 Intersecting annotations are influencing if
the corresponding mapping strategies are combined re-
sulting in one composite storage strategy applied on the
common schema fragment.

Redundant annotations can be exploited, e.g., when
a user wants to store XHTML fragments both in a sin-
gle CLOB column (for fast retrieval of the whole frag-
ment) and, at the same time, into a set of tables (to enable
querying particular items). An example of overriding an-
notations can occur when a user specifies a general map-
ping strategy for the whole schema S and then annotates
fragments which should be stored differently. Naturally,
in this case the strategy which is applied on the common
schema fragment is always the one specified for its root



element. The last mentioned type of annotations can be
used in a situation when a user specifies, e.g., the 4NF
decomposition for a particular schema fragment and at
the same time an additional numbering schema which
speeds up processing of particular types of queries. In
this case the numbering schema is regarded as a supple-
mental index over the data stored in relations of 4NF de-
composition, i.e. the data are not stored redundantly as
in the first case.

We assume that each pair of annotations implemented
in a corresponding system is assigned its intersection
type or, if necessary, a particular combination of anno-
tations can be denoted as forbidden. The existing sys-
tems [3] [5] mostly support overriding annotations, the
XCacheDB system [5], in addition, supports a type of
redundant intersection similar to the above described ex-
ample. Furthermore, we assume that the implemented
annotations are assigned priorities which specify the or-
der in which they are composed when applied on com-
mon schema fragment.

4.1.3 Search Algorithm

The similarity measure, the search algorithm, and its pos-
sible optimization are closely related. However, the main
idea of the enhancing of user-driven techniques remains
the same regardless the chosen measure and algorithm.
The choice of the measure influences the precision and
scalability of the system, whereas the algorithm influ-
ences the efficiency of finding the required fragments.
In case of “classical” adaptive methods this can be a
marginal aim, since the schema adaptation is performed
only once, before the schema is created. But its impor-
tance significantly rises when the system needs to be dy-
namic and adapt continuously.

Let us suppose that we have a similarity measure
sim(fx, fy) ∈ [0, 1] expressing similarity of two frag-
ments fx and fy of an expanded graph, where 1 rep-
resents strong similarity and 0 strong dissimilarity, and
a similarity threshold Tsim ∈ [0, 1]. A naive strategy
would exploit an exhaustive search as depicted by Algo-
rithm 1.

The algorithm evaluates similarity of each annotated
fragment f ′ ∈ F ′ and each fragment fe rooted at an el-
ement e ∈ S′\{f ′}. We can assume that if the storage
strategy for any fe should not change, the user would
mark it as final. For such fragment either the default
strategy sdef or the strategy specified by corresponding
user-defined annotation will be used, regardless the re-
sults of the search or adaptive algorithm. As such this
situation is rather the problem of implementation than a
theoretical one and thus we further assume that there are
no such fragments in S′. On the other hand, we natu-
rally regard fragments annotated by a user to be final by
default.

The resulting similarity values are stored into so-
called similarity matrix {sim[f ′, fe]}f ′∈F ′, e∈S′ . An el-
ement e is annotated if there exists a fragment fmax ∈ F ′

with the highest similarity value sim(fmax, fe) > Tsim.
In Algorithm 1 we assume that there is always one such
candidate at most. Otherwise, the system can ask for
user intervention when necessary. We call this approach
a single annotation strategy (SAS).

Algorithm 1 Single Annotation Strategy (SAS)
Input: S′, F ′, sim(fx, fy), Tsim

Output: F ′′, i.e. F ′ ∪ newly annotated fragments
{construction of the similarity matrix}

1: F ′′ ← F ′

2: for all f ′ ∈ F ′ do
3: for all element e ∈ S′ do
4: fe ← subgraph rooted at e
5: if e ∈ S′\{f ′} then
6: sim[f ′, fe] ← sim(f ′, fe)
7: else
8: sim[f ′, fe] ← 0
9: end if

10: end for
11: end for

{annotation strategy}
12: for all element e ∈ S′ do
13: maxe ← maxf ′∈F ′{sim[f ′, fe]}
14: fmax ← f ′ ∈ F ′ s.t. sim[f ′, fe] = maxe

15: if maxe > Tsim then
16: fe.annotation ← fmax.annotation
17: F ′′ ← F ′′ ∪ {fe}
18: end if
19: end for
20: return F ′′

The question is whether this approach is correct actu-
ally. From another point of view it could be more rea-
sonable to annotate an element e using annotations of
all fragments f ′ ∈ F ′ s.t. sim(f ′, fe) > Tsim. To-
gether with the assumption that for each pair of anno-
tations the result of their composition is predefined and
that the annotations have priorities according to which
they are composed, this approach seems to be a better
choice since it does not omit important information. But,
on the other hand, let us consider the situation depicted
in Figure 3, where for i ∈ {1, 2, 3} sim(f ′, fi) > Tsim

and f ′ is the annotated fragment.

Figure 3: Similar fragments on the same root path

The problem is whether we can annotate all the three
fragments f1, f2, f3 using the annotation of f ′, espe-
cially what will be the result of intersection in case of
f1 and f3 or f2 and f3, i.e. fragments occurring on
the same root path5. We can naturally assume that in-
tersection of two identical annotations is overriding and
as such has no effect. Thus we could annotate only the
topmost fragment on each root path. In case of example
in Figure 3 this rule would be applied twice, resulting
in a single annotation of fragment f3. But what if we
knew, in addition, that sim(f ′, f1) > sim(f ′, f3) and
sim(f ′, f2) > sim(f ′, f3)? As it is obvious, in such
case it is seems to be more reasonable and natural to an-
notate fragments f1 and f2 rather than whole f3. Or this

5A path from the root node to a leaf node.



situation can be again a case for user intervention, de-
pending on the point of view of it. We will further con-
sider the former one.

If we generalize the idea, the algorithm annotates an
element e using annotations of all fragments f ′ ∈ F ′

s.t. sim(f ′, fe) > Tsim and 6 ∃ element e′ on any root
path traversing e s.t. sim(f ′, fe′) > sim(f ′, fe). The
resulting algorithm, so-called multiple annotation strat-
egy (MAS), is depicted by Algorithm 2, where e.ancs
denotes a set of (direct or undirect) ancestors of element
e and e.descs denotes a set of (direct or undirect) descen-
dants of e. The process of construction of the similarity
matrix remains the same as in case of Algorithm 1.

Algorithm 2 Multiple Annotation Strategy (MAS)
Input: S′, F ′, sim(fx, fy), Tsim

Output: F ′′, i.e. F ′ ∪ newly annotated fragments
1: F ′′ ← F ′

{construction of the similarity matrix}
2: -//-
{annotation strategy}

3: for all f ′ ∈ F ′ do
4: for all element e ∈ S′ do
5: if (sim[f ′, fe] > Tsim) ∧

( 6 ∃ea ∈ e.ancs : sim[f ′, fea ] > sim[f ′, fe]) ∧
( 6 ∃ed ∈ e.descs : sim[f ′, fed

] > sim[f ′, fe])
then

6: fe.annotation ← f ′.annotation
7: F ′′ ← F ′′ ∪ {fe}
8: end if
9: end for

10: end for
11: return F ′′

Using this approach we should consider what will
happen in case a user annotates two structurally identi-
cal (or too similar) fragments using different annotations.
We cannot simply rely on predefined type of their inter-
section and corresponding priorities, because the situa-
tion is a slightly different one. In this case the system
should rather ask for user intervention whenever it is not
able to decide. And this is again a problem of the partic-
ular implementation.

4.1.4 Similarity Measure and Optimization of the
Search Algorithm

Now let us consider the search strategy from the point
of view of complexity of the algorithm. Figure 4 depicts
an example of processing a single annotated fragment, in
particular the amount of similarity comparisons. Anno-
tated fragments f and g are highlighted using rectangles,
all schema fragments, which are compared with f are
highlighted using dotted ovals.

Figure 4: Exhaustive search strategy

If we do not know any features of the measure, there
are not many ways how to avoid the exhaustive search.
Also the order in which fragments in F ′ are processed
is then unimportant. But although we can assume that
card(F ′) = m is small, i.e. that a user annotates sev-
eral fragments but the number is not large, the exhaus-
tive search can be expensive due to the size of Gex

S . And
even from the simple example in Figure 4 it is obvious
that there are pairs of schema fragments which do not
have to be compared at all. Another problem is the com-
plexity of the if condition of Algorithm 2 (line 5) which
can in the worst case lead to multiple searching through
the whole Gex

S . So in both the cases we need to avoid the
unnecessary similarity evaluations.

It seems promising to borrow the idea of cluster-
ing, similarly to paper [22], where the distance between
schema fragments is determined by their mutual similar-
ity, e.g. dist(fx, fy) = 1− sim(fx, fy). An example is
depicted in Figure 5 for the sample schema in Figure 4.

Figure 5: Exploitation of clustering

All schema fragments (depicted using black-filled cir-
cles) are divided into clusters C1, C2,..., Ck (depicted us-
ing black circular lines) having their centroids c1, c2,...,
ck and radii r1, r2,..., rk (or one common radius r, de-
pending on the implementation). Having this informa-
tion, only those schema fragments have to be compared
with fragment f , whose clusters intersect the cluster with
centroid f and radius Tsim. In case of Figure 5 these are
clusters C1 and C2. Obviously, if the clusters were se-
lected appropriately, the amount of comparisons would
decrease rapidly. Hence the key concern of all clustering
algorithms is mainly the construction of the clusters.

The construction is usually performed using a k-
means algorithm or its variations (e.g. [22]), where the
initial clusters are selected randomly and then iteratively
improved. In the i-th iteration each fragment is com-
pared with centroids of all clusters and assigned to the
closest one. The algorithm terminates if none of the clus-
ters changes, otherwise new centroids are computed and
(i + 1)-th iteration follows. The complexity of the con-
struction is O(I · |Φ| · k), where I is the number of it-
erations. In case of complexity of similarity evaluation
the worst case is when either k = 1 or all k clusters
mutually intersect, i.e. when we cannot avoid any of
the similarity comparisons. Hence in the worst case the
number of comparisons is the same as in the exhaustive
search strategy and the complexity can worsen only the
pre-processing, i.e. the construction of clusters. And this
is the step we want to remove too.

For further optimization we can exploit characteris-
tics of the chosen similarity measure. The existing algo-
rithms for measuring similarity on schema level usually



exploit various supplemental matchers [20], i.e. func-
tions which evaluate similarity of a particular feature of
the given schema fragments, such as, e.g., similarity of
number and types of leaf nodes, similarity of root ele-
ment names, similarity of context, etc.

Definition 9 A matcher is a function m : Φ2 → [0, 1]
which evaluates similarity of a particular feature of two
schema fragments fx, fy ∈ Φ.

Definition 10 A partial similarity measure is a function
mpart : Φ2 → [0, 1]p which evaluates similarity of
the given schema fragments fx, fy ∈ Φ using matchers
m1, m2, ...,mp : Φ2 → [0, 1] and returns a p-tuple of
their results.

Then the partial results are combined using an appro-
priate approach, usually a kind of a weighted sum, into
the resulting composite similarity value.

Definition 11 A composite similarity measure is a func-
tion mcomp : [0, 1]p → [0, 1] which combines the results
of particular matchers and returns the total similarity
value.

Due to the features of selected partial matchers the
existing techniques usually exploit a bottom-up strategy,
i.e. starting from leaf nodes towards the root node. To-
gether with the previously mentioned problem of simi-
lar intersecting fragments this is why we need to know
the behavior of the similarity measure on particular root
paths.

For instance, if we knew that the similarity measure
is concave, i.e. that it has only one global maximum,
we could skip processing of all the ancestors on the
current root path whenever we reach the fragment with
the extreme value. A sample situation can be seen in
Figure 6 which depicts an example of a graph of sim-
ilarity function for an annotated fragment f ′ and frag-
ments f1, f2, ..., fr on a single root path. From the
graph we can see, that only fragments f1, f2, f3, f4 need
to be processed (f4 for testing the extremity), then the
similarity evaluation can terminate, skipping fragments
f5, f6, ..., fr.

As it is obvious, this way we can decrease the num-
ber of unnecessary similarity evaluations as well as avoid
pre-processing of the schema and expensive checking of
the if condition of Algorithm 2. Naturally, the efficiency
of such approach depends strongly on the position of the
extreme on the root path. The key problem is how to de-
fine such similarity measure. For our purpose we need
a measure which focuses especially on the structure of
the compared fragments, known equivalences or rela-
tions between regular expressions, differences between
simple and complex types, etc., i.e. on features that in-
fluence the efficiency of database processing the most.
But it is hard, if not impossible, to propose a measure
with concave behavior which is at the same time enough
precise in relation to these requests. Nevertheless, we
can exploit a relaxed version of this idea as a kind of
heuristic of the bottom-up strategy.

Although we can hardly ensure that mcomp is con-
cave, we can assume that at least q of the matchers, where
1 ≤ q ≤ p, have this property. Without loss of generality

we suppose that these are m1,m2, ...,mq . For instance a
trivial matcher with such behavior can compare the num-
ber of distinct element or attribute names, the amount of
similar operators, the depth of the corresponding regu-
lar expression, etc. The heuristic is then based on the
idea that if at least “sufficient amount” of the q matchers
exceed their extreme value, we can terminate processing
of the current root path too. There are just two differ-
ences from the previously mentioned idea. Firstly, the
exceeding of the particular extreme is expressed using
a threshold Tex ∈ [0, 1] which guarantees that process-
ing of the current root path does not terminate neither
too soon (to reach the optimum of the composite similar-
ity measure) nor too late (to avoid unnecessary similar-
ity evaluations). Secondly, as it is obvious, the matchers
themselves are not precise in terms of similarity evalu-
ation. Hence each of them is assigned a user-specified
reliability r1, r2, ..., rq ∈ [0, 1], where 0 expresses strong
unreliability and 1 strong reliability of the matcher. The
reliabilities then influence the real value of threshold Tex

for particular matchers multiplying its value.
The whole optimization of the approach, so-called

basic annotation strategy (BAS), is depicted by Algo-
rithm 3, where function terminate returns true if the
search algorithm should terminate in the given node, oth-
erwise it returns false. Furthermore, we assume that each
element of the graph is assigned an auxiliary list of can-
didates consisting of pairs < fragment, similarity >,
i.e. references to fragments (and corresponding similar-
ity values) within its subtree that are candidates for an-
notation.

The algorithm processes schema graph starting from
leaf nodes. For each root path the optimal similarity
value and the reference to corresponding fragment are
propagated until a better candidate is found or the con-
dition of the heuristic is fulfilled. Then the processing
of the current root path is terminated and current can-
didates are annotated. The complexity of the algorithm
depends on the heuristics. In the worst case it does not
enable to skip processing of any node that results in the
exhaustive search. But in contrast to the clustering ap-
proach we have avoided the expensive preprocessing of
the algorithm.

In general we could use an arbitrary similarity mea-
sure, not exactly the above defined composite one. It
is also possible to use disjoint sets of matchers for the
heuristic and for the composite similarity measure. Nev-
ertheless, we will deal with the above described ones,
since it is the typical and verified way for evaluating sim-
ilarity among XML schemes.

4.1.5 Recursive Elements

Last but not least, we have to solve the open problem of
expanded recursive elements, since the expansion is not
a lossless operation as in case of shared elements. As
we have already indicated, we will exploit the results of
analysis of real-world XML data which shows two im-
portant aspects [17]:

1. Despite it is generally believed that recursive ele-
ments are of marginal importance, they are used in
a significant portion of real XML data.



Figure 6: Exploitation of behavior of similarity function

2. Although the recursive elements can have arbitrarily
complex structure, the most common type of recur-
sion is linear and the average depth of recursion is
low.

If we realize that we need the “lost” information about
recursion only at one stage of the algorithm, the solution
is quite obvious. We analyze the structure of schema
fragments when evaluating matchers m1,m2, ..., mp,
whereas each of the matchers describes similarity of a
particular feature of the given fragments. In case the
fragments contain recursive elements we will not use the
exact measure, but its approximation with regard to the
real complexity of recursive elements. For instance if
the matcher analyzes the maximum depth of fragment
containing a recursive element, the resulting depth is not
infinite, but considers the average depth of real-world re-
cursive elements.

The question is whether it is necessary to involve
a matcher which analyzes the amount of recursive ele-
ments in schema fragments. On one hand it can increase
the precision of the composite measure. But from an-
other point of view the approximation transforms the re-
cursive element to a “classical” element and hence such
matcher can be misleading.

4.2 Adaptive Mapping Strategy

At this stage of the algorithm we have a schema S′ and
a set of annotated fragments F ′ which involve the user-
defined fragments and fragments identified by Algorithm
3. As the second enhancing we want to apply an adaptive
mapping strategy to the remaining parts of the schema.

As mentioned previously, the key idea of adaptive
strategies is to adapt the target relational schema R to
the expected future application, which is specified by
a sample set of XML data and/or XML queries. The
techniques define a set of XML-to-XML transformations
which produce a space of equivalent or more general
XML schemes. A search algorithm is used to find a
schema, where the evaluation of the given queries is most
efficient. Thus at first glance the user-driven techniques
have nothing in common with the adaptive ones. Or, we
could expect that the user provides not only a set of an-
notations, but also sample XML documents and XML
queries. Then we could use a classical adaptive strategy
for not annotated parts of schema S′. Such combina-
tion should not be difficult considering the fact that user-
driven techniques enable to store various schema frag-
ments in various ways. Nevertheless, the key shortcom-
ing of such approach is that the user is expected to pro-
vide too many information.

Under a closer investigation we can see that the user-
given annotations provide a similar information – they
say how particular schema fragments should be stored
to enable efficient data querying and processing. Thus
we can simply reuse the user-given information. For this
purpose we define an operation contraction which en-
ables to omit those schema fragments, where we already
know the storage strategy, and focus on the remaining
ones.

Definition 12 A contraction of an expanded schema
graph Gex

S′ with annotated fragment set F ′ is an opera-
tion which replaces each fragment f ′ ∈ F ′ with a single
auxiliary node called a contracted node.

The resulting graph is called a contracted graph Gcon
S′ .

From Definitions 4 and 12 we can easily prove the
following simple statement which enables to reuse the
search algorithm on the contracted graph.

Lemma 3 Contracted graph Gcon
S′ of a connected ex-

panded schema graph Gex
S′ is connected.

The basic idea of the adaptive strategy is as follows:
Having a contracted graph Gcon

S′ we repeat the search al-
gorithm (in particular its slight modification) and oper-
ation contraction until there can be found any fragment
to annotate. Contrary to the previous situation the search
algorithm has the following differences:

• It searches for schema fragments which are not in-
volved in the schema, i.e. it searches among all
nodes of the given (contracted) graph and returns
the (eventually empty) set of found fragments.

• For similarity evaluation we do not take into ac-
count contracted nodes, i.e. neither their current,
nor their previous structure or any other features.
These were already analyzed and processed in pre-
vious steps of the algorithm.

• The annotations of contracted nodes are always
overriding in relation to the newly defined ones.

• The required threshold is more precise, i.e. we use
a threshold Tcon < Tsim.

We denote this modification of BAS as a contraction-
aware annotation strategy (CAS). (We omit its formal
description for obviousness and the paper length.) The
resulting annotating strategy, so called global annotation
strategy (GAS), is depicted by Algorithm 4, where func-
tion contract applies operation contraction on expanded
graph of the given schema and corresponding fragments,



Algorithm 3 Basic Annotation Strategy (BAS)
Input: S′, F ′, m1, m2, ..., mq , mq+1, ..., mp, r1, r2, ..., rq , Tex, mcomp, Tsim

Output: F ′′, i.e. F ′ ∪ newly annotated fragments
1: F ′′ ← F ′

2: for all f ′ ∈ F ′ do
3: listToProcess ← leaf elements of Gex

S′\{f ′}
4: listOfProcessed ← ∅
5: while listToProcess 6= ∅ do
6: for all e ∈ listToProcess do
7: e.candidates ← ∅
8: fe ← subgraph rooted at e
9: sime ← mcomp(f ′, fe)

10: for all c ∈ e.subelems do
11: for all < f, sim > ∈ c.candidates do
12: if sim > sime then
13: e.candidates ← e.candidates ∪ {< f, sim >}
14: end if
15: end for
16: end for
17: if e.candidates = ∅ ∧ sime > Tsim then
18: e.candidates ← e.candidates ∪ {< fe, sime >}
19: end if
20: if terminate(f ′, e, m1, m2, ..., mq , r1, r2, ..., rq , Tex) then
21: for all < f, sim > ∈ e.candidates do
22: f .annotation ← f ′.annotation
23: F ′′ ← F ′′ ∪ {f}
24: end for
25: else
26: if ∀ s ∈ e.siblings : s ∈ listOfProcessed then
27: listToProcess ← listToProcess ∪ {e.parent}
28: end if
29: end if
30: listToProcess ← listToProcess \ {e}
31: listOfProcessed ← listOfProcessed ∪ {e}
32: end for
33: end while
34: end for
35: return F ′′

Algorithm 4 Global Annotation Strategy (GAS)
Input: S′, F ′, m1, m2, ..., mq , mq+1, ..., mp, r1, r2,

..., rq , Tex, mcomp, Tsim, Tcon

Output: F ′′, i.e. F ′ ∪ newly annotated fragments
1: F ′′ ← BAS(S′, F ′, m1, m2, ..., mp, r1, r2, ..., rq ,

Tex, mcomp, Tsim)
2: F tmp ← F ′′

3: while F tmp 6= ∅ do
4: contract(S′, F tmp)
5: F tmp ← CAS(S′, F ′, m1, m2, ..., mp, r1, r2, ...,

rq , Tex, mcomp, Tcon)
6: F ′′ ← F ′′ ∪ F tmp

7: end while
8: expand contractions(S′, F ′′)
9: return F ′′

and function expand contractions expands all the con-
tracted nodes of the given schema to the original ones.

The resulting complexity of the algorithm depends on
the number of iterations of the cycle (lines 3 – 7). In the
worst case each iteration results in annotating of a single
element, i.e. the search algorithm repeats (|Φ|−|F ′|+1)
times.

Considering the whole approach, we are especially

interested in the efficiency of the resulting XML-to-
relational storage strategy which can be verified only
through appropriate tests on real XML data. We discuss
it in the following section.

5 Open Issues
In the previous section we have described and discussed
the proposed algorithm on theoretical level. We have
mentioned several possible solutions and discussed their
consequences and disadvantages as well as reasons for
the choices we have made. But despite the detailed de-
scription there are still several open issues. We distin-
guish two main categories:

1. Features of the particular implementation and

2. Behavior of the algorithm on real XML data.

As for the former case the key implementation deci-
sions are especially:

• the set of supported schema annotations, types of
their mutual intersection (or forbiddance), and their
priorities,



• the matchers m1, m2, ..., mq, mq+1, ..., mp and
corresponding reliabilities r1, r2, ..., rq,

• the composite similarity measure mcomp, and

• the thresholds Tsim, Tex, and Tcon.

The key problem lies especially in tuning of reliabili-
ties and thresholds, since both influence the precision and
efficiency of the system strongly. The remaining charac-
teristics are related rather to its usefulness and versatility.
There are also marginal questions such as, e.g., whether
the system will support final elements or user interven-
tion if there are more candidates for a particular situa-
tion. But these features do not have the key influence on
the proposed approach itself.

The latter category of open issues is quite unpre-
dictable, despite the existing statistics of real XML data
[17]. It is caused mainly by two facts. Firstly, although
we know the usual characteristics of the real data, we
cannot predict especially the behavior of more complex
similarity measures due to the above mentioned tuning
of the characteristics. And secondly, we cannot predict
the behavior of the proposed adaptive strategy, since we
have no information about the structure of contracted
graphs of real data. Furthermore, the choice of particu-
lar schema fragments will be strongly related to the type
of the tested data and thus the efficiency of the resulting
storage strategy can vary remarkably.

As it is obvious, both the categories are also related
significantly. And though some particular features can be
estimated or preset according to the existing user-driven
systems and statistical analysis of data, most of them will
still require a series of experimental tests.

6 Conclusion
The main aim of this paper was to illustrate that since the
idea of database-based XML processing methods is still
up-to-date, the techniques should and can be further en-
hanced. On this account we have proposed a user-driven
mapping algorithm which is able to exploit the user given
information, i.e. schema annotations, more deeply and,
at the same time, to find the mapping strategy for the
not annotated parts more efficiently – using an adaptive
approach. We have described and discussed the algo-
rithm on theoretical level as well as summed up the cor-
responding open issues related to particular implementa-
tion decisions.

A natural next step of our work is the implementation
of the proposed algorithm and especially experimental
tests of its behavior on real data. For this purpose we
are enhancing our previous implementation of a fixed
XML-to-relational mapping strategy [14], which exploits
object-oriented features of XML Schema language to-
gether with features of object-relational database sys-
tems. For the testing we will exploit information about
categories of real XML data and their typical features
[17] as well as existing related works which could help
with tuning the system.

A possible further enhancing of our approach can be
found in focussing on statistically frequent XML schema
patterns. They can be used in several ways – e.g. as
a reasonable default setting or as XML patterns with a
higher priority.

Another improvement can be an exploitation of the se-
mantic of element and/or attribute names. The similarity
can be searched not only on structural level, but using a
kind of thesaurus or appropriate user-given information.
Although our proposal focuses mainly on structural sim-
ilarities related to efficiency of database processing, it is
at least worth testing whether the semantic of the names
carries additional important information useful for this
purpose too.

Next interesting task could be also a combination of
our approach with a real cost-driven one, i.e. an exploita-
tion of both user-given annotations and a sample set of
XML data and XML queries together. As we have al-
ready mentioned, the key disadvantage is in the amount
of required input data. But, on the other hand, the com-
bination of the two approaches could bring interesting
results or the efficiency of the two approaches can be at
least compared.

And last but not least, the key enhancing lies in dy-
namic adaptability of the system [15]. This challenging
but non-trivial task would solve the remaining disadvan-
tage of the adaptive methods – the fact that the schema
is adapted only once, at the beginning but not in case the
application changes.
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