
Concept Lattice Reduction by Singular Value Decomposition

c© Vaclav Snasel Martin Polovincak Hussam M. Dahwa

VSB Technical University Ostrava, Czech Republic
{vaclav.snasel, martin.polovincak.fei, hussamdahwa}@vsb.cz

Abstract

High complexity of lattice construction algo-
rithms and uneasy way of visualising lattices
are two important problems connected with the
formal concept analysis. Algorithm complexity
plays significant role when computing all con-
cepts from a huge incidence matrix. In this pa-
per we try to modify an incidence matrix us-
ing matrix decomposition, creating a new ma-
trix with fewer dimensions as an input for some
known algorithms for lattice construction. Re-
sults are presented by visualising neural net-
work. Neural network is responsive for reduc-
ing result dimension to two dimensional space
and we are able to present result as a picture that
we are able to analyse.

1 Introduction
We are dealing with uses of matrix decompositions for
reduction of concept lattice. These methods are well
known in the area of information retrieval under the
name Latent Semantic Indexing (LSI) or Latent Seman-
tic Analysis (LSA). LSI and LSA have been used for dis-
covery of latent dependencies between terms (or docu-
ments) [1], [6]. We would like to apply this approach
in the area of formal concept analysis (FCA). In this pa-
per, we want to present decomposition’s results with neu-
ral network [5]. First, we will introduce basic terms of
Formal Concept Analysis (FCA) [3] and then we will
describe the rank-k singe value decomposition (SVD)
[8]. Singular Value Decomposition is one of the various
matrix decomposition techniques arising from numeri-
cal linear algebra. SVD reduces both the column space
and the row space of the term-document matrix to lower
dimensional spaces [4]. After using SVD on input ma-
trix we can build lattices and visualise them using neural
networks[5] and u-matrix [9]. Numerous studies suggest
that graphical representation and display of results can
improve information retrieval performance [10]. Once
having visualisation we can analyze result of matrix re-
duction.

2 Concept Lattice Reduction
In the following paragraphs we would like to introduce
important basic terms of formal concept analysis, singu-

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Moscow, Russia, 2007

lar value decomposition, self organized maps and unified
distrance matrix.

2.1 Formal concept analysis

Formal Concept Analysis was first introduced by Rudolf
Wille in 1980. FCA is based on the philosophical under-
standing of the world in terms of objects and attributes.
It is assumed that a relation exists to connect objects to
the attributes they possess. Formal context and formal
concept are the fundamental notions of Formal Concept
Analysis [3].

A formal context C = (G,M, I) consists of two sets;
G and M , with I in relation to G and M . The elements
of G are defined as objects and the elements of M are
defined as attributes of the context. In order to express
that an object g ∈ G is related to I with the attribute
m ∈ M , we record it as gIm or (g,m) ∈ I and read it
as the object g has the attributem. I is also defined as the
context incidence relation.

For a set A ⊂ G of object we define

A
′

= {m ∈M | gIm for all g ∈ A}

(the set of attributes common to the objects in A). Cor-
respondingly, for a set B of attributes we define

B
′

= {g ∈ G | gIm for all m ∈ B}

(the set of objects which have all attributes in B).
A formal concept of the context (G,M, I) is a pair

(A,B) with A ⊆ G, B ⊆ M , A
′

= B and B
′

= A.
We call A the extent and B the intent of the concept
(A,B). B(G,M, I) denotes the set of all concepts of
context (G,M, I).

The concept lattice B(G,M, I) is a complete lattice
in which infimum and supremum are given by:

∧
t∈T

(At, Bt) =
(⋂

t∈T

At,

(⋃
t∈T

Bt

)′′)
∨
t∈T

(At, Bt) =
((⋃

t∈T

At

)′′

,
⋂
t∈T

Bt

)
.

We refer to [3].

2.2 Singular Value Decomposition

Singular value decomposition (SVD) is well known be-
cause of its application in information retrieval as LSI.
SVD is especially suitable in its variant for sparse matri-
ces [7].

Figure 1: k-reduced singular value decomposition

Theorem 1: Let A is an m n rank-r matrix. Be
σ1 ≥ · · · ≥ σr eigenvalues of a matrix

√
AAT . Then

there exist orthogonal matrices U = (u1, . . . , ur) and
V = (v1, . . . , vr), whose column vectors are orthonor-
mal, and a diagonal matrix Σ = diag(σ1, . . . , σr). The
decomposition A = UΣV T is called singular value de-
composition of matrixA and numbers σ1, . . . , σr are sin-
gular values of the matrix A. Columns of U (or V) are
called left (or right) singular vectors of matrix A.

Now we have a decomposition of the original matrix
A. It is not needed to say, that the left and right singular
vectors are not sparse. We have at most r nonzero sin-
gular numbers, where rank r is the smaller of the two
matrix dimensions. However, we would not conserve
much memory by storing the term-by-document matrix
this way. Luckily, because the singular values usually
fall quickly, we can take only k greatest singular values
and corresponding singular vector co-ordinates and cre-
ate a k-reduced singular decomposition of A.

Let us have k, 0 < k < r and singular value decom-
position of A

A = UΣV T = (UkU0)
(

Σk 0
0 Σ0

)(
V T

k

V T
0

)

We call Ak = UkΣkV
T
k a k-reduced singular value de-

composition (rank-k SVD).
In information retrieval, if every document is relevant

to only one topic, we obtain a latent semantics - semanti-
cally related words and documents will have similar vec-
tors in the reduced space. For an illustration of rank-k
SVD see figure 1, the grey areas determine first k coor-
dinates from singular vectors, which are being used.

Theorem 2: (Eckart-Young) Among all m× n matri-
ces C of rank at most k Ak is the one, that minimises
||Ak −A||2F =

∑
i,j

(Ai,j − Cw,j)2.

Because rank-k SVD is the best rank-k approxima-
tion of original matrix A, any other decomposition will
increase the sum of squares of matrix A−Ak.

The SVD is hard to compute and once computed, it
reflects only the decomposition of the original matrix.
The recalculation of SVD is expensive, so it is impossi-
ble to recalculate SVD every time new rows or columns
are inserted. The SVD-Updating is a partial solution, but
since the error increases slightly with inserted rows and
columns when updates occur frequently, the recalcula-
tion of SVD may be needed.

Note: From now on, we will assume rank-k singular
value decomposition when speaking about SVD.

2.3 Self-organizing maps

Kohonen Self-Organizing Map (SOM) [5] is a compet-
itive artificial neural network. They are used to clasify
and cluster data set according to similarity [2]. SOM ar-
tifical network is structured in two layers. The first one
represents the input data, the second one is a neuron’s
grid, usually bidimensional, full connected. Each input
is connected to all output neurons. Output neurons are
arranged in low dimensional (usually 2D or 3D) grid. At-
tached to every neuron there is a weight vector with the
same dimensionality as the input vectors. The number of
input dimensions is usually a lot higher than the output
grid dimension. SOMs are mainly used for dimensional-
ity reduction rather than expansion.

2.4 Unified distance matrix

The unified distance matrix (U-matrix) makes the 2D vi-
sualization of multi-variate data possible using SOM’s
codevectors as data source [9]. This is achieved by using
topological relations property among neurons after the
learning process. U-matrix contains the distances from
each unit center to all of its neighbours. By U-matrix we
can detect topological relations among neurons and in-
fer about the input data structure. High values in the U-
matrix represent a frontier region between clusters, and
low values represent a high degree of similarities among
neurons on that region, clusters. This can be a visual task
when we use some color schema.

3 Our Experiment
3.1 Input data

Data from the Ostrava Mass Transit Authority was used
in this experiment. We can describe data in a graph.
Rows represent tram stops, columns represent tram lines.
Let 1 represent a tram stopping at a tram stop in the ap-
propriate row and column crossing, otherwise zero. This
data was chosen because we can easily see if the SVD
is working. Many tram lines share the same tram stops.
These parts of tram lines should be minimized with SVD
and it should also be visible after using SVD.

3.2 Steps of our Experiment

Our experiment included several steps. The first step was
to read and transform data into adjacency matrix. After
transforming and computing (using SVD) three new ma-
trixes were obtained as results from SVD A = UΣV T .
After choosing rank-k, a new matrix was computed. Lat-
tices were build from both original matrix and matrix
computed by SVD. Concepts of lattices acted as the
source for SOMs learning phase. Having learned SOMs,
visualisation as done using U-matrix technique.

3.3 Reading and transforming data

Data was obtained from tram timetables. The first ten
tram lines and their tram stops were chosen. The trans-
formed matrix had 92 rows and 10 columns. Transfor-
mation was simple. If a tram stops at a particular tram
stop, the number 1 appeared in the appropriate row and
column crossing, otherwise zero. The matrix is also an

Figure 2: Original data

Figure 3: Data after using SVD

incidence matrix and was used in SVD, NMF and FCA
computations.

3.4 Using SVD

SVD computations were made by SVDLIBC-fix soft-
ware. This software is free and is written in C language.
An incidence matrix acts as the input. Software can com-
pute all three matrixes - U and Σ and V T . k-rank was
chosen k = 4. Matrixes were U (92x10), Σ(10x10) and
V T (10x10).

3.5 Visualising result

Data from the Ostrava Mass Transit Authority was used
in this experiment. We can describe data in a graph.
Rows represent tram stops, columns represent tram lines.
Let ones represent a tram stopping at the tram stop in the
appropriate row and column crossing, otherwise zero.

First SOM was learned by giving these initial data.
Second SOM was learned by giving data after applying
SVD on initial data. There were two SOM networks ac-
cording to type of input data.

Next part of research was about visualising SOM net-
work via unified distance matrix (U-matrix) algorithm.
Euclidean metric was used for computing distances be-
tween nodes. We got two greyscale pictures (figure 2,
figure 3) that we are able to analyze, especialy number
and form of visible clusters.

4 Conclusion
There are two u-matrix visualisations. Figure 2 matches
concepts of lattice built from the original matrix, figure 3
matches concepts of lattice built from the original matrix
changed with SVD. The number of differencies between
rows in tables was decreased by SVD computation. Thus
you can see smaller number of clusters. There is no doubt
method was successful in reducing number of concepts.

References
[1] M. Berry and M. Browne. Understanding search

engines. Mathematical Modeling and Text Re-
trieval, 1999.

[2] C. Lee C. Kiu. Discovering ontological semantics
using fca and som. M2USIC 2004, 2004.

[3] B. Ganter and R. Wille. Formal Concept Analysis.
Springer-Verlag Berlin Heidelberg, 1999.

[4] Douglas Vogel Karen S.K. Cheung. Complexity re-
duction in lattice-based information retrieval. Infor-
mation Retrieval, 8, page 285299, 2005.

[5] T. Kohonen. Self-organizing maps. Springer, 2001.

[6] T.Letsche M. Berry, S. Dumais. Computation meth-
ods for intelligent information access. Proceed-
ings of the 1995 ACM/IEEE Supercomputing Con-
ference, 1995.

[7] T.Letsche M. Berry, S. Dumais. Computation meth-
ods for intelligent information access. Proceed-
ings of the 1995 ACM/IEEE Supercomputing Con-
ference, 1995.

[8] P. Moravec P. Gajdos. Concept lattice generation
by singular value decomposition. CLA 2004, pages
13–22, 2004.

[9] J. Vesanto. Som-based data visualization methods.
pages 6–9, 1999.

[10] Lin X. Map displays for information retrieval.
Journal of the American Society of Information Sci-
ence, pages 40–54, 1997.

