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Abstract 

In this paper we consider the problem of 

efficiently producing results for full-text 

keyword search queries over XML documents. 

We describe full-text search query semantics 

and propose a method for efficient evaluation 

of keyword search queries with these 

semantics suitable for native XML databases. 

Method uses inverted file index which may be 

efficiently updated when a part of some XML 

document is updated. 

1 Introduction 

One of the main features of XML databases is ability to 

store semi-structured data as well as structured data. 

XQuery and XPath languages allow addressing parts of 

XML documents and querying them. These languages 

are convenient for querying regularly structured data. If 

data is semi-structured or its structure is unknown 

making queries using these languages becomes difficult. 

In such cases it is easier to use keyword search queries. 

One of the key advantages of keyword search queries is 

its simplicity – users do not have to learn a complex 

query language and can issue queries without prior 

knowledge about the structure of the underlying data. 

Keyword searching over XML introduces new 

challenges. The result of a keyword search query is not 

always the entire document, but can be a deeply nested 

XML element. In general XML keyword search results 

can be arbitrarily nested elements, and returning the 

“deepest” node containing the keywords usually gives 

more context information (see [1, 2]) 

In this paper we describe semantics of full-text 

queries over XML documents and a method for 

evaluating such queries in an XML database system that 

supports XQuery data model [3]. 

2 Related work 

The recent increase in the number of XML repositories 

[4] has motivated extensive work on designing 

languages for XML full-text search [5, 6, 7, 8, 9]. 

There has been extensive research in information 

retrieval on the efficient evaluation of full-text queries 

[3], including structured full-text queries [10] and of 

XML queries such as XQuery/IR [11], XSEarch [5], 

XIRQL [7], XXL [8] and Niagara [12]. However, these 

works develop algorithms for specific full-text 

predicates in isolation. 

The idea of computing the most specific elements 

for conjunctive queries has been actively explored using 

deepest common ancestors [13, 14, 15]. We extend this 

idea to support the efficient evaluation of queries with 

complex full-text predicates. 

3 Data Model & Query Semantics 

3.1 XML Data Model 

The eXtensible Markup Language (XML) is a 

hierarchial format for data representation and exchange. 

An XML document consists of nested XML elements 

starting with root element. Each element can have 

attributes and text values, in addition to nested sub-

elements. 

3.2 Full-text Search Query Semantics 

Full-text search queries concerned in this paper are 

composed of keywords and four operations – 

conjunction, disjunction, proximity and order. 

Conjunction and disjunction operations combine several 

(at least 2) sub-queries into a single query. Proximity 

and order operations are applied to a single query to 

produce another query. 

Consider a query Q consisting of several keywords 

and a mapping M that maps some of these words to 

occurrences of these words in an XML document. If Q 

has a sub-query q than M|q denotes a restriction of M to 

the set of keywords in q. Lets define a predicate 

matches(Q, M) to be true when one of the following 

conditions is true:  
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01 Op-And(lists) 

02   Current_match[i] = <empty list> for all i = {0, …, lists.count - 1} 

03   while lists are not completely processed: 

04    Choose i, such that lists[i] is the list with the lowest numbering scheme 

number; 

05     Elem = lists[i].next; 

06     If nodes in current_match have no common ancestor with elem: 

07       If all lists in current_match are not empty: 

08         Put values from current_match to output stream 

09       Current_match[i] = <empty list> for all i = {0, …, lists.count - 1} 

10     Add elem to current_match[i]; 

12   If all lists in current_match are not empty: 

13     Put values from current_match to output stream; 

Listing 1 

• If Q is a single keyword and M has a mapping 

for this word. 

• If Q is a conjunction query with sub-queries 

S={q0, q1, … , qn} and {∀q∈S | matches(q, 

M|q)} 

• If Q is a disjunction query with sub-queries 

S={q0, q1, … , qn} and {∃q∈S | matches(q, 

M|q)} 

• If Q is a proximity query with distance d and 

sub-query q, such than matches(q, M) is true 

and the maximal distance between the words in 

image of M is no more than (d-1). 

• If Q is an order query with sub-query q, such 

that matches(q, M) is true, M is injective and 

the order of the words in q matches the orders 

of their images defined by M. 

The result of query Q consists of elements E such 

that E is the “deepest” common ancestor of image of 

some mapping M that makes predicate matches(Q, M) 

true. 

4 Query processing 

In order to evaluate the result of a query Q we will 

translate this query into a query plan tree. Each node 

corresponds to one of the four operations (conjunction, 

disjunction, proximity or order), leaves correspond to 

keywords in the query and edges correspond to relations 

between queries and sub-queries. 

Each operator node receives a list of all matches 

from its child nodes and produces a result to its parent.  

Output of the root operator (corresponding to the 

whole query) is transformed to a set of nodes. 

4.1 Index structure 

To allow efficient query evaluation we will use an 

inverted index which contains a list of all word 

occurrences (including position of word in node text) in 

nodes along with their identifiers and numbering 

scheme labels. 

A numbering scheme assigns a unique label to each 

node of an XML document according to some scheme-

specific rules. The labels encode information about 

relative position of the node in the document. Thus, the 

main purpose of numbering scheme is to provide 

mechanisms to quickly determine the structural 

relationship between a pair of nodes. 

Most native XML databases use some sort of 

numbering scheme. 

We will require numbering scheme to provide these 

mechanisms: 

(1) determining ancestor-descendent 

relationship between to nodes; 

(2) comparing nodes by document order; 

(3) determining whether two nodes have a 

common ancestor; 

Practically every numbering scheme used in native 

XML databases provides mechanisms (1) and (2). If it 

doesn’t provide mechanism (3) we can easily modify it 

by adding document root identifier to numbering 

scheme labels. This modified numbering scheme will 

provide mechanism (3). 

4.2 Data used by operations 

To represent a list of all matches that is transferred 

between operators we will use tuples that consist of lists 

of word occurrences similar to the contents of inverted 

files in the index. Operators in the query plan tree 

leaves corresponding to keywords in the query will 

simply read an inverted file for this word and return 

tuples consisting of a single list describing some node 

and word positions of the keyword in the text of this 

node. Just like inverted files, lists in tuples contain 

numbering scheme labels for nodes. 

01 Op-Or(lists) 

02   while lists are not completely processed: 

03     choose i, such that lists[i] is the list with the lowest numbering scheme 

number; 

04      output l[i].next to the output stream; 

Listing 2 



01 Op-Order(list) 

02   while list is not completely processed: 

03     elem = list.next; 

04   if  elem.width == 1: 

05     put elem to output stream; 

06   else: 

07     create a list ord_list of all word occurrences in lists of elem along with 

list number (list contains pairs <list number, word occurence>) in document order; 

08     initialize array of pointers to ord_list p, to make p[i] point to the first 

occurrence of a word from elem’s i’th list, which is after p[i-1] in the ord_list 

(for i>0); 

09     p[n] points to the end of ord_list, n = elem.width 

10     while all elements of p are defined: 

11       output tuple i’th list of which consists of elements of  elem’s i’th list 

between p[i] and p[i+1] in ord_list; 

12       p[0] = first element belonging to 0’th list which is after p[1] in 

ord_list; 

13       for each i in [1..n-1]: 

14         p[i] = first element belonging to i’th list which is after p[i-1] in 

ord_list; 

 

Listing 3 

 If a tuple consists of n lists, then we will say that 

width of this tuple is n (denoted as t.width in the 

pseudo-code, here t is a variable referencing some 

tuple). 

A tuple represents a set of matches that is Cartesian 

product of sets of word occurrences in each list (i.e. if 

we choose one word in each list of a tuple we will get 

one of the matches represented by this tuple) 

All nodes in a tuple always have a common 

ancestor. Tuples in an output stream of some operator 

are returned in the document order of their respective 

“deepest” common ancestors of nodes in each tuple. 

4.3 Conjunction operation 

This operator simply combines tuples from its sub-

queries to a single tuple. Pseudo-code for this operation 

is shown in listing 2. 

4.4 Disjunction operation 

Disjunction operation returns all tuples produced by its 

sub-query operators in document order. Pseudo-code for 

this operation is shown in listing 1. 

 

4.5 Order operation 

Order operation filters tuples returned by its sub-query 

operator, so that all word occurrences in matches are in 

the correct order (it’s always corresponds to the orders 

of lists in tuple). This may split one tuple into several 

tuples. Pseudo-code for this operation is shown in 

listing 3. 

 

4.6 Proximity operation 

Proximity operation filters tuples returned by its sub-

query operator, so that all word occurrences in matches 

are within a window of specific size. Pseudo-code for 

this operation is shown in listing 4. 

Since we do not have information about indices of 

the first word in the nodes, this operator may produce 

false matches which should be checked at later stages of 

query execution by computing exact values of node 

staring word index array (sw array in the pseudo-code). 

This is not needed if all words in the match that need to 

fit in some window are in the same node. 

 

01 Op-Window(list, window): 

02   while list is not completely processed: 

03     elem = list.next 

04     if elem.width == 1: 

05       put elem to output stream; 

06     else: 

07       create a list L of all different nodes in elem with a maximal word number 

for each node. List is ordered by document order of nodes; 

08       for each node U in the list L compute sw[U] as the sum of maximal word 

numbers of nodes before node u; 

09       while all lists elem[i], i={0..elem.width-1} are not empty: 

10         choose word W with minimum S(W) = sw[node that contains W] + the ordinal 

number of word W in the text of node;  

11         if all lists elem[i], i={0..elem.width-1} contain words W1, such that 

S(W1) < S(W) + window: 

12           output a tuple that consists of all words W1 from lists of elem, such 

that S(W1) < S(W) + window (if word W1 is in i’th list of elem, it will be in the 

i’th list of the resulting tuple) to the output stream; 

Listing 4 

 



5 Conclusion 

In this article we described semantics for full-text 

search queries over XML data and proposed query 

evaluation method suitable for native XML databases.  

Method uses inverted file indices which can be 

effectively updated: if node changes do not affect its 

ancestor or sibling nodes in the index. 

Proposed method allows efficient evaluation of most 

full-text queries described in [9]. 

6 Future work 

 Investigating the following problems may lead to 

improving the proposed query evaluation method: 

• devise an efficient compression method 

suitable for proposed inverted file index (and a 

fixed numbering scheme); 

• add relevance calculation and see how can 

index be changed to allow efficient evaluation 

of ranked queries; 

• if the result of a full-text query will be 

presented as a set of nodes, some operations 

may not need to return a full set of matches 

that include word occurrences, instead they can 

return just a set of matching nodes. This may 

be used to improve query evaluation 

performance; 

• see whether the proposed method can be 

modified to allow “not“ or “mild not”[9] 

queries; 
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