
A Method for Evaluating Full-text Search Queries in Native

XML Databases

Roman Pastukhov

Institute for System Programming of the Russian Academy of Sciences

ignatich@mail.ru

Ph.D. advisor: Grinev M. N.

Abstract

In this paper we consider the problem of

efficiently producing results for full-text

keyword search queries over XML documents.

We describe full-text search query semantics

and propose a method for efficient evaluation

of keyword search queries with these

semantics suitable for native XML databases.

Method uses inverted file index which may be

efficiently updated when a part of some XML

document is updated.

1 Introduction

One of the main features of XML databases is ability to

store semi-structured data as well as structured data.

XQuery and XPath languages allow addressing parts of

XML documents and querying them. These languages

are convenient for querying regularly structured data. If

data is semi-structured or its structure is unknown

making queries using these languages becomes difficult.

In such cases it is easier to use keyword search queries.

One of the key advantages of keyword search queries is

its simplicity – users do not have to learn a complex

query language and can issue queries without prior

knowledge about the structure of the underlying data.

Keyword searching over XML introduces new

challenges. The result of a keyword search query is not

always the entire document, but can be a deeply nested

XML element. In general XML keyword search results

can be arbitrarily nested elements, and returning the

“deepest” node containing the keywords usually gives

more context information (see [1, 2])

In this paper we describe semantics of full-text

queries over XML documents and a method for

evaluating such queries in an XML database system that

supports XQuery data model [3].

2 Related work

The recent increase in the number of XML repositories

[4] has motivated extensive work on designing

languages for XML full-text search [5, 6, 7, 8, 9].

There has been extensive research in information

retrieval on the efficient evaluation of full-text queries

[3], including structured full-text queries [10] and of

XML queries such as XQuery/IR [11], XSEarch [5],

XIRQL [7], XXL [8] and Niagara [12]. However, these

works develop algorithms for specific full-text

predicates in isolation.

The idea of computing the most specific elements

for conjunctive queries has been actively explored using

deepest common ancestors [13, 14, 15]. We extend this

idea to support the efficient evaluation of queries with

complex full-text predicates.

3 Data Model & Query Semantics

3.1 XML Data Model

The eXtensible Markup Language (XML) is a

hierarchial format for data representation and exchange.

An XML document consists of nested XML elements

starting with root element. Each element can have

attributes and text values, in addition to nested sub-

elements.

3.2 Full-text Search Query Semantics

Full-text search queries concerned in this paper are

composed of keywords and four operations –

conjunction, disjunction, proximity and order.

Conjunction and disjunction operations combine several

(at least 2) sub-queries into a single query. Proximity

and order operations are applied to a single query to

produce another query.

Consider a query Q consisting of several keywords

and a mapping M that maps some of these words to

occurrences of these words in an XML document. If Q

has a sub-query q than M|q denotes a restriction of M to

the set of keywords in q. Lets define a predicate

matches(Q, M) to be true when one of the following

conditions is true:

Proceedings of the Spring Young Researcher's

Colloquium On Database and Information Systems

SYRCoDIS, Moscow, Russia, 2007

01 Op-And(lists)

02 Current_match[i] = <empty list> for all i = {0, …, lists.count - 1}

03 while lists are not completely processed:

04 Choose i, such that lists[i] is the list with the lowest numbering scheme

number;

05 Elem = lists[i].next;

06 If nodes in current_match have no common ancestor with elem:

07 If all lists in current_match are not empty:

08 Put values from current_match to output stream

09 Current_match[i] = <empty list> for all i = {0, …, lists.count - 1}

10 Add elem to current_match[i];

12 If all lists in current_match are not empty:

13 Put values from current_match to output stream;

Listing 1

• If Q is a single keyword and M has a mapping

for this word.

• If Q is a conjunction query with sub-queries

S={q0, q1, … , qn} and {∀q∈S | matches(q,

M|q)}

• If Q is a disjunction query with sub-queries

S={q0, q1, … , qn} and {∃q∈S | matches(q,

M|q)}

• If Q is a proximity query with distance d and

sub-query q, such than matches(q, M) is true

and the maximal distance between the words in

image of M is no more than (d-1).

• If Q is an order query with sub-query q, such

that matches(q, M) is true, M is injective and

the order of the words in q matches the orders

of their images defined by M.

The result of query Q consists of elements E such

that E is the “deepest” common ancestor of image of

some mapping M that makes predicate matches(Q, M)

true.

4 Query processing

In order to evaluate the result of a query Q we will

translate this query into a query plan tree. Each node

corresponds to one of the four operations (conjunction,

disjunction, proximity or order), leaves correspond to

keywords in the query and edges correspond to relations

between queries and sub-queries.

Each operator node receives a list of all matches

from its child nodes and produces a result to its parent.

Output of the root operator (corresponding to the

whole query) is transformed to a set of nodes.

4.1 Index structure

To allow efficient query evaluation we will use an

inverted index which contains a list of all word

occurrences (including position of word in node text) in

nodes along with their identifiers and numbering

scheme labels.

A numbering scheme assigns a unique label to each

node of an XML document according to some scheme-

specific rules. The labels encode information about

relative position of the node in the document. Thus, the

main purpose of numbering scheme is to provide

mechanisms to quickly determine the structural

relationship between a pair of nodes.

Most native XML databases use some sort of

numbering scheme.

We will require numbering scheme to provide these

mechanisms:

(1) determining ancestor-descendent

relationship between to nodes;

(2) comparing nodes by document order;

(3) determining whether two nodes have a

common ancestor;

Practically every numbering scheme used in native

XML databases provides mechanisms (1) and (2). If it

doesn’t provide mechanism (3) we can easily modify it

by adding document root identifier to numbering

scheme labels. This modified numbering scheme will

provide mechanism (3).

4.2 Data used by operations

To represent a list of all matches that is transferred

between operators we will use tuples that consist of lists

of word occurrences similar to the contents of inverted

files in the index. Operators in the query plan tree

leaves corresponding to keywords in the query will

simply read an inverted file for this word and return

tuples consisting of a single list describing some node

and word positions of the keyword in the text of this

node. Just like inverted files, lists in tuples contain

numbering scheme labels for nodes.

01 Op-Or(lists)

02 while lists are not completely processed:

03 choose i, such that lists[i] is the list with the lowest numbering scheme

number;

04 output l[i].next to the output stream;

Listing 2

01 Op-Order(list)

02 while list is not completely processed:

03 elem = list.next;

04 if elem.width == 1:

05 put elem to output stream;

06 else:

07 create a list ord_list of all word occurrences in lists of elem along with

list number (list contains pairs <list number, word occurence>) in document order;

08 initialize array of pointers to ord_list p, to make p[i] point to the first

occurrence of a word from elem’s i’th list, which is after p[i-1] in the ord_list

(for i>0);

09 p[n] points to the end of ord_list, n = elem.width

10 while all elements of p are defined:

11 output tuple i’th list of which consists of elements of elem’s i’th list

between p[i] and p[i+1] in ord_list;

12 p[0] = first element belonging to 0’th list which is after p[1] in

ord_list;

13 for each i in [1..n-1]:

14 p[i] = first element belonging to i’th list which is after p[i-1] in

ord_list;

Listing 3

 If a tuple consists of n lists, then we will say that

width of this tuple is n (denoted as t.width in the

pseudo-code, here t is a variable referencing some

tuple).

A tuple represents a set of matches that is Cartesian

product of sets of word occurrences in each list (i.e. if

we choose one word in each list of a tuple we will get

one of the matches represented by this tuple)

All nodes in a tuple always have a common

ancestor. Tuples in an output stream of some operator

are returned in the document order of their respective

“deepest” common ancestors of nodes in each tuple.

4.3 Conjunction operation

This operator simply combines tuples from its sub-

queries to a single tuple. Pseudo-code for this operation

is shown in listing 2.

4.4 Disjunction operation

Disjunction operation returns all tuples produced by its

sub-query operators in document order. Pseudo-code for

this operation is shown in listing 1.

4.5 Order operation

Order operation filters tuples returned by its sub-query

operator, so that all word occurrences in matches are in

the correct order (it’s always corresponds to the orders

of lists in tuple). This may split one tuple into several

tuples. Pseudo-code for this operation is shown in

listing 3.

4.6 Proximity operation

Proximity operation filters tuples returned by its sub-

query operator, so that all word occurrences in matches

are within a window of specific size. Pseudo-code for

this operation is shown in listing 4.

Since we do not have information about indices of

the first word in the nodes, this operator may produce

false matches which should be checked at later stages of

query execution by computing exact values of node

staring word index array (sw array in the pseudo-code).

This is not needed if all words in the match that need to

fit in some window are in the same node.

01 Op-Window(list, window):

02 while list is not completely processed:

03 elem = list.next

04 if elem.width == 1:

05 put elem to output stream;

06 else:

07 create a list L of all different nodes in elem with a maximal word number

for each node. List is ordered by document order of nodes;

08 for each node U in the list L compute sw[U] as the sum of maximal word

numbers of nodes before node u;

09 while all lists elem[i], i={0..elem.width-1} are not empty:

10 choose word W with minimum S(W) = sw[node that contains W] + the ordinal

number of word W in the text of node;

11 if all lists elem[i], i={0..elem.width-1} contain words W1, such that

S(W1) < S(W) + window:

12 output a tuple that consists of all words W1 from lists of elem, such

that S(W1) < S(W) + window (if word W1 is in i’th list of elem, it will be in the

i’th list of the resulting tuple) to the output stream;

Listing 4

5 Conclusion

In this article we described semantics for full-text

search queries over XML data and proposed query

evaluation method suitable for native XML databases.

Method uses inverted file indices which can be

effectively updated: if node changes do not affect its

ancestor or sibling nodes in the index.

Proposed method allows efficient evaluation of most

full-text queries described in [9].

6 Future work

 Investigating the following problems may lead to

improving the proposed query evaluation method:

• devise an efficient compression method

suitable for proposed inverted file index (and a

fixed numbering scheme);

• add relevance calculation and see how can

index be changed to allow efficient evaluation

of ranked queries;

• if the result of a full-text query will be

presented as a set of nodes, some operations

may not need to return a full set of matches

that include word occurrences, instead they can

return just a set of matching nodes. This may

be used to improve query evaluation

performance;

• see whether the proposed method can be

modified to allow “not“ or “mild not”[9]

queries;

References

[1] N. Fuhr, K. Grobjohann, “XIRQL: A Language for

Information Retrieval in XML Documents”, SIGIR

Conf., 2001.

[2] A. Schmidt, M. Kersten, M. Windhouwer,

“Querying XML Documents Made Easy: Nearest

Concept Queries”, ICDE Conf., 2001.

[3] XQuery 1.0 and XPath 2.0 Data Model (XDM)

http://www.w3.org/TR/xpath-datamodel/

[4] Initiative for the Evaluation of XML Retrieval.

http://inex.is.informatik.uni-duisburg.de/2005/

[5] S. Cohen, J. Mamou. Y. Kanza, Y. Sagiv.

XSEarch: A Semantic Search Engine for XML.

VLDB 2003.

[6] D. Florescu, D. Kossmann, I. Manolescu.

Integrating Keyword Search into XML Query

Processing. WWW 2000.

[7] N. Fuhr, K. Grossjohann. XIRQL: An Extension of

XQL for Information Retrieval. SIGIR 2000.

[8] A. Theobald, G. Weikum. The Index-Based XXL

Search Engine for Querying XML Data with

Relevance Ranking. EDBT 2002.

[9] The World Wide Web Consortium. XQuery 1.0

and XPath 2.0 Full-Text. Working draft.

http://www.w3.org/TR/xquery-full-text/.

[10] E. W. Brown. Fast Evaluation of Structured

Queries for Information Retrieval. SIGIR 1995.

[11] J. M. Bremer, M. Gertz. XQuery/IR: Integrating

XML Document and Data Retrieval. WebDB 2002.

[12] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G.

Lohman. On Supporting Containment Queries in

Relational Database Management Systems.

SIGMOD 2001.

[13] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram.

XRANK: Ranked Keyword Search over XML

Documents. SIGMOD 2003.

[14] A. Schmidt, M. Kersten, M. Windhouwer.

Querying XML Documents Made Easy: Nearest

Concept Queries. ICDE 2001.

[15] Y. Xu, Y. Papakonstantinou. Efficient Keyword

Search for Smallest LCAs in XML Databases.

SIGMOD 2005.

