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Abstract 
Recently, a lot of indexing methods were 
developed for multidimensional spaces and for 
image feature vector spaces in particular. This 
paper introduces an implementation of a 
vantage point tree method. The goal is to 
define dependencies between method's 
parameters and index efficiency criteria in the 
context of the content-based image retrieval 
task. 

1 Introduction 
An image is just a two-dimensional array of pixels and 
there are various ways of building up high-level 
abstractions from it; for example, color distributions 
based on histograms. This process is usually referred to 
as a feature extraction process. Each scalar piece of 
such high-level abstractions is called a feature. The set 
of features that comprises coherent high-level 
interpretations forms a feature class. Example feature 
classes are color, texture and shape [4]. 

Images in the database go through the feature 
extraction process, so every image is represented as a 
K-dimensional feature vector, where K is the number of 
features used to represent an image. The basic 
assumption is that two image feature vectors are similar 
according to a distance metric if and only if the 
corresponding images are similar too. So the image 
retrieval problem may be considered as a 
multidimensional nearest-neighbor search problem. 

2 Related works 
Recently, a lot of indexing methods were developed for 
multidimensional spaces and for image feature vector 
spaces in particular. R*-tree [1], k-d-tree [2], K-D-B-
tree [8], SR-tree [7], SS-tree [9], VP-tree [4, 10], M-tree 
[5] and MVP-tree [3] are among them. 

VP-tree was firstly introduced in [10]. Basic index 
building and search algorithms and their improvements 
were proposed. Improved algorithms store additional 
information about partition’s boundaries and distances 
between each node and its ancestors to speed up the 
search. Also they form buckets by collapsing subtrees 
near leaf level into a flat structure in order to save 
space. Characteristics of the VP-tree are compared with 
those of the k-d-tree and the image retrieval task is 
taken up as an example. The results show that even 
simple implementation of the VP-tree is not worse than 
the k-d-tree. 

[4] is all about content-based image retrieval task 
and the VP-tree is considered to be one of the solutions 
for the image indexing problem in that area. Additive 
and multiplicative optimistic adjustment mechanisms of 
the search threshold parameter are proposed. Also N-
ary tree is taken as a data structure, instead of binary 
tree. 

[6] proposes n-nearest neighbor search algorithm, 
which is shown by experiments to scale up well with 
the size of the dataset and the desired number of nearest 
neighbors. Experiments also show that the searching in 
the VP-tree is more efficient than that for the R*-tree 
[1] and M-tree [5]. In the same work solutions for the 
update problem are proposed. 

3 Problem definition 
As mentioned in [4], partitioning methods are generally 
based on absolute coordinate values of the vector space. 
For example, a partition in a K-dimensional hypercube 
is characterized by K pairs of coordinate values, each of 
which specifies the covering interval in the respective 
dimension. This type of partitioning structure is useful 
for queries based on absolute coordinates (such as range 
queries), but not so useful for nearest-neighbor search 
because the search structure in general doesn’t maintain 
the distance information between points within a 
partition and partition’s boundaries. As it turns out, this 
information is critical in pruning the search space for 
multi-dimensional nearest-neighbor search. VP-tree 
splits the search space by using relative distances 
between vantage point and its children, therefore, it is 
easy to calculate the distance between point and 
boundaries of partition, which it belongs to. 

Moreover, VP-tree employs bounding spheres and 
therefore precision of space partitioning should be 
better than of those based on bounding rectangles, 
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because with increase of space dimension sphere 
volume decreases as compared to volume of cube in 
which it can be inscribed. 

In our case the problem of image database indexing 
naturally appeared during the content-based image 
retrieval system prototype development. In accordance 
with previous statements the VP-tree was chosen as an 
index structure for that task. 

While there are some works on this structure, the 
problem of the dependencies between index efficiency 
criteria and its parameters (arity, for instance) has not 
been investigated yet. We implement the VP-tree (based 
on [10] and [4]) and mark out a number of building 
algorithms and VP-tree parameters. Also some index 
efficiency criteria are considered. Our main goal is to 
define dependencies between them and give 
recommendations for tuning the VP-tree structure. 

4 Basics 
Given a metric space ),( dS  and its finite subset 

SSD ⊂  representing a database. Since any metric's 
range may be normalized to the interval [0, 1] without 
affecting the nearest-neighbor relation, we can consider 
only those metrics without loss of generality [10]. 

Let us discuss binary partitioning case for 
simplicity. Assume some data point v  from DS  is 
chosen as the vantage point. For any other point 

}{vSp D −∈  distances from v  are computed and the 
median µ  is chosen among them. Then the whole data 
set DS  is divided into two parts in accordance with the 
vantage point and the median: ≤S  is a set of points 
which distances from v  are equal or less than µ  and 

>S is a set of points which distances from v  are greater 
than µ . 

Suppose we need to find nearest neighbors for some 
point q  with their distances from q  being less than a 
specific thresholdσ . It turns out that if σµ −≤),( qvd  
we need to explore only the ≤S  subset and if 

σµ +>),( qvd  the only >S  subset has to be explored. 
This observation is based on the triangle inequality: 

if σµ −≤),( qvd  then for each >∈ Sp  the following is 
true: σσµµ =−−>−≥ |)(||),(),(|),( qvdpvdpqd , i.e. 

σ>),( pqd . It means that the  subset can be 
excluded from a search. 

And if σµ +>),( qvd  then for each ≤∈ Sp  we 
have σµσµ =−+>−≥ |))(||),(),(|),( pvdqvdpqd . So 

σ>),( pqd  and we can exclude the ≤S  subset. 
Preceding is shown in Figure 1. 

So we can effectively prune one half of the search 
space if the following conditions are met: the power of 
the >S  subset approximately equals the power of the 

≤S  subset and ),( qvd  does not meet the following 
two-sided inequality: σµσµ +≤<− ),( qvd . Thus, 
the main task is to build approximately balanced tree 

with the quantity of points falling within the two 
concentric circles being as little as possible. [10] shows 
that in order to meet these requirements we need to 
choose vantage points from the corners of the space 
with the maximum second moment of their distances 
from the other points. 

 

Figure 1: Data set partitioning and nearest-neighbor 
search. All points from the >S  subset (such as p′ ) are 
too far from the data point q′  (further thanσ ). And 

points from ≤S  (such as p ′′ ) are too far from q ′′ . 

5 Algorithms and parameters 

5.1 Building the index 

We use simple algorithms based on [10] to find vantage 
points and build VP-tree. In accordance with [4], N-ary 
tree was chosen as a data structure. It means that we 
need to find N-1 border instead of one median to split 
search space into N partitions. 

It is necessary to mention that the index structure 
implementation is not the main problem of our image 
retrieval system prototype, therefore, database tables 
instead of disk blocks were chosen as an index data 
storage for simplicity. 

function BuildVP_TreeLevel(S) 
if ∅=S  return ∅  
node.vp := GetVP(S) 
node.borders := GetBorders(S, vp, N) 
for each sequential lborder, uborder from borders 

BuildVP_TreeLevel(
uborder}s)d(p,lborder|{vp}-S{s ≤<∈ ) 

return node 

function GetVP(S) 
P := random sample of S 
for each Pp∈  

D := random sample of S 
spread = GetSecondMoment(D, p) 
if (spread > best_spread) 

best_spread := spread 
vp := p 



return vp 

function GetBorders(S, vp, N) 
P := random sample of S 
sort P in accordance with distances from vp 
for i from 1 to N – 1 

p_low := P[i * |P| / N] 
p_up := P[i * |P| / N + 1] 
border = (d(vp, p_up) – d(vp, p_low)) / 2 
borders.add(border) 

return borders 

5.2 Parameters 

It is necessary to discuss GetBorders function in more 
detail. This simple algorithm works as follows: selected 
sample set is sorted by the distances from each Pp∈  to 
the vantage point in ascending order. Sorted set is 
divided into N parts. Arithmetic mean of the distances 
of the two boundary points is treated as a border 
between those parts. 

Such implementation is too straightforward and can 
violate the following restriction from the previous 
section: the quantity of points falling within the two 
concentric circles must be as little as possible. The 
restriction will be violated if the margins between 
boundary points and borders are too small (smaller 
thanσ ). Thus, the DDR (distance delta rate) parameter 
is used to increase the margins. In that case the border 
can be set not only between boundary points of the two 
sets, but between points with the maximum distance 
from each other within bounds determined by the DDR. 
The example is shown in Figure 2. 

 
a) Simple border detection algorithm 

 
b) Improved algorithm: border was moved to the right 

by one point (it is allowed by the current DDR value). If 
we move it to the left by 3 points margins will increase 

but the tree will be too unbalanced 
Figure 2: Border detection between two sets 

DDR parameter is a trade-off between balancing and 
margins. So it has an influence on both conditions of the 
tree building process mentioned in the previous section 
and must be chosen carefully. 

There are three other parameters that take part in the 
process: the CRVP (capacity rate for vantage point), the 
CRSM (capacity rate for second moment) and the CRB 
(capacity rate for borders). Each of them defines a ratio 
of the sample set size in the vantage point search, the 
second moment calculation and the border detection, 
accordingly, to the whole database size. Here is a trade-
off between precision of that objects detection and the 
duration of the tree building process. The bigger the 
sample sets are – the more precise vantage points and 
borders we have, but the more time it takes to build a 
tree (more points are involved in the process while each 
point needs some calculations). The smaller the sample 

sets are – the less time the computations take and the 
more inaccurate vantage points and borders are. 

The fifth important parameter is a tree arity (AR). 

5.3 Searching the tree 

To perform a search on the VP-tree we generalize the 
searching algorithm from [10] for the N-ary tree. The 
following function returns all nearest neighbors for a 
query point q within a thresholdσ . Vp parameter is a 
root of a VP-tree at first. 

function GetNN(vp, q, σ , result) 
dist := d(vp, q) 
if (dist <= σ ) and (vp != q) result.add(vp) 
if vp is a leaf return 
lborder := }-distb|vp.bordersmax{b σ<∈  
uborder := }distb|vp.bordersmin{b σ+≥∈  
for each new_vp between lborder and uborder 

GetNN(new_vp, q, σ , result) 

6 Theoretical basics of experiments and 
hypotheses 
The goal of the experiments is to define the index 
efficiency criteria, which are further discussed, and to 
determine the dependencies between these criteria and 
the parameters mentioned in the previous section. We 
plan to define such dependencies from each of the 
parameters (leaving other ones unchanged during each 
experiment) and from some parameters combinations. 

6.1 Searching time 

We consider the searching time to be the most 
important criterion, because the main purpose of an 
index is to speed up a fetching process. This value can 
be compared with the time of the whole database scan, 
since we need to look through the whole database to 
find the nearest neighbors for some point without using 
any index. More formally, the following ratio can be 

calculated to define the criterion: 
rs

ind
s t

t
t = , where indt  

is a nearest-neighbors searching time with an index 
utilization and rst  is a row scan time. 

Moreover, this criterion can be computed in terms of 
distance metric (.)d  evaluation operations. Obviously, 
to find nearest neighbors for some point without using 
an index, one needs to do as many metric evaluation 
operations as many images there are in the database. So 
we can denote this type of criterion as dt  and equate it 

to the following: 
|| D

ind

rs

ind
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Σ
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, where indΣ  is a 

quantity of the distance metric evaluation operations 
during a nearest-neighbor search with an index 
utilization. 

st  and dt  are not necessarily proportional, because 
the second representation does not take the sorting 
process duration into account, while we have to sort 
points to get the final result. 



Two kinds of experiments can be conducted to 
compute these values: single-neighbor and multiple-
neighbors searches with a query-point q . The first one 
looks up for the most relevant point p , i.e. the point 
with the minimum ),( pqd  value, while the second one 
has to find nearest neighbors with their distances from 
q  being less than a specific thresholdσ . In the first 
case, system with an index has to calculate only one 
subset of the node q  to find the most relevant point, that 
one with the lowest upper border, whereas it may need 
to look into other sub-trees to get more points in the 
second case. 

6.2 Index degradation 

As the database size grows new points are added to the 
index, so the tree gets more and more unbalanced. This 
process affects the criteria, mentioned above, and can 
completely reduce the index efficiency right up to the 
need of its full rebuilding. We plan to hold some 
experiments to define this affection, especially that 
cases with complete degradation. 

The first type of experiments implies adding 
arbitrary points to the database and computing the 
above criteria to define the rules of their changing. For 
the second reason, i.e. defining the worst cases, we plan 
to add quite similar points to force the tree to become 
unbalanced rapidly. All types of experiments imply 
adding a great amount of points to affect the searching 
criteria. 

6.3 Index building process duration 

Based on section 5.3, the tree building process duration 
can be quite an important criterion in some cases. It 
depends on four parameters, mentioned in section 4: 
CRVP, CRSM, CRB and AR. From the algorithms of 
that section we can derive the following formula for the 
mean tree building time: 

|)|||( 2 SCRBSCRSMCRVPkt vpmean ⋅+⋅⋅⋅Σ⋅= , where 

k  is some coefficient and vpΣ  is a vantage points 
quantity (which strongly depends on the AR parameter). 
This formula arises from the following reasoning: we 
need |)|(|)|( SCRSMSCRVPk ⋅⋅⋅⋅  time to process a 
vantage point sample set and to calculate a second 
moment for each point, based on another sample set, 
while searching for a vantage point. And additional 

|)|( SCRBk ⋅⋅  quantity of time is needed to find point's 
borders. We plan to check this formula during the 
experiments. 

6.4 Image feature vector space dimension 

There are different image features we intend to use in 
our system, so the dependencies between the dimension 
of the image feature vectors and index efficiency 
criteria, mentioned above, are very important to us and 
we plan to hold some experiments to define them. 

As we said before, the VP-tree is based on bounding 
spheres. And the main advantage of a sphere is that its 

volume is less than the volume of a cube, in which the 
sphere is inscribed and this ratio decreases with the 
increase of the searching space dimension. 

7 Conclusion 
We have implemented the VP-tree index structure as an 
alternate solution for the nearest-neighbor search 
problem in the context of the content-based image 
retrieval task. Different criteria were proposed to 
estimate index efficiency. We plan to hold a number of 
experiments to define those criteria and to determine the 
dependencies between them and algorithms' parameters, 
stated in the work. 
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