
VP-tree: Content-Based Image Indexing

© Il'ya Markov TP

♣
PT

Saint-Petersburg State University
HTilya.markov@gmail.comTH

Abstract
Recently, a lot of indexing methods were
developed for multidimensional spaces and for
image feature vector spaces in particular. This
paper introduces an implementation of a
vantage point tree method. The goal is to
define dependencies between method's
parameters and index efficiency criteria in the
context of the content-based image retrieval
task.

1 Introduction
An image is just a two-dimensional array of pixels and
there are various ways of building up high-level
abstractions from it; for example, color distributions
based on histograms. This process is usually referred to
as a feature extraction process. Each scalar piece of
such high-level abstractions is called a feature. The set
of features that comprises coherent high-level
interpretations forms a feature class. Example feature
classes are color, texture and shape [4].

Images in the database go through the feature
extraction process, so every image is represented as a
K-dimensional feature vector, where K is the number of
features used to represent an image. The basic
assumption is that two image feature vectors are similar
according to a distance metric if and only if the
corresponding images are similar too. So the image
retrieval problem may be considered as a
multidimensional nearest-neighbor search problem.

2 Related works
Recently, a lot of indexing methods were developed for
multidimensional spaces and for image feature vector
spaces in particular. R*-tree [1], k-d-tree [2], K-D-B-
tree [8], SR-tree [7], SS-tree [9], VP-tree [4, 10], M-tree
[5] and MVP-tree [3] are among them.

VP-tree was firstly introduced in [10]. Basic index
building and search algorithms and their improvements
were proposed. Improved algorithms store additional
information about partition’s boundaries and distances
between each node and its ancestors to speed up the
search. Also they form buckets by collapsing subtrees
near leaf level into a flat structure in order to save
space. Characteristics of the VP-tree are compared with
those of the k-d-tree and the image retrieval task is
taken up as an example. The results show that even
simple implementation of the VP-tree is not worse than
the k-d-tree.

[4] is all about content-based image retrieval task
and the VP-tree is considered to be one of the solutions
for the image indexing problem in that area. Additive
and multiplicative optimistic adjustment mechanisms of
the search threshold parameter are proposed. Also N-
ary tree is taken as a data structure, instead of binary
tree.

[6] proposes n-nearest neighbor search algorithm,
which is shown by experiments to scale up well with
the size of the dataset and the desired number of nearest
neighbors. Experiments also show that the searching in
the VP-tree is more efficient than that for the R*-tree
[1] and M-tree [5]. In the same work solutions for the
update problem are proposed.

3 Problem definition
As mentioned in [4], partitioning methods are generally
based on absolute coordinate values of the vector space.
For example, a partition in a K-dimensional hypercube
is characterized by K pairs of coordinate values, each of
which specifies the covering interval in the respective
dimension. This type of partitioning structure is useful
for queries based on absolute coordinates (such as range
queries), but not so useful for nearest-neighbor search
because the search structure in general doesn’t maintain
the distance information between points within a
partition and partition’s boundaries. As it turns out, this
information is critical in pruning the search space for
multi-dimensional nearest-neighbor search. VP-tree
splits the search space by using relative distances
between vantage point and its children, therefore, it is
easy to calculate the distance between point and
boundaries of partition, which it belongs to.

Moreover, VP-tree employs bounding spheres and
therefore precision of space partitioning should be
better than of those based on bounding rectangles,

TP

♣
PT I would like to thank my scientific adviser Boris

Novikov and team leader Natalia Vassilieva for their
help and support.
TThis work was partially supported by RFBR (grant 07-
07-00268a).
Proceedings of the Spring Young Researcher's
Colloquium On Database and Information Systems
SYRCoDIS, Moscow, Russia, 2007

because with increase of space dimension sphere
volume decreases as compared to volume of cube in
which it can be inscribed.

In our case the problem of image database indexing
naturally appeared during the content-based image
retrieval system prototype development. In accordance
with previous statements the VP-tree was chosen as an
index structure for that task.

While there are some works on this structure, the
problem of the dependencies between index efficiency
criteria and its parameters (arity, for instance) has not
been investigated yet. We implement the VP-tree (based
on [10] and [4]) and mark out a number of building
algorithms and VP-tree parameters. Also some index
efficiency criteria are considered. Our main goal is to
define dependencies between them and give
recommendations for tuning the VP-tree structure.

4 Basics
Given a metric space),(dS and its finite subset

SSD ⊂ representing a database. Since any metric's
range may be normalized to the interval [0, 1] without
affecting the nearest-neighbor relation, we can consider
only those metrics without loss of generality [10].

Let us discuss binary partitioning case for
simplicity. Assume some data point v from DS is
chosen as the vantage point. For any other point

}{vSp D −∈ distances from v are computed and the
median µ is chosen among them. Then the whole data
set DS is divided into two parts in accordance with the
vantage point and the median: ≤S is a set of points
which distances from v are equal or less than µ and

>S is a set of points which distances from v are greater
than µ .

Suppose we need to find nearest neighbors for some
point q with their distances from q being less than a
specific thresholdσ . It turns out that if σµ −≤),(qvd
we need to explore only the ≤S subset and if

σµ +>),(qvd the only >S subset has to be explored.
This observation is based on the triangle inequality:

if σµ −≤),(qvd then for each >∈ Sp the following is
true: σσµµ =−−>−≥ |)(||),(),(|),(qvdpvdpqd , i.e.

σ>),(pqd . It means that the subset can be
excluded from a search.

And if σµ +>),(qvd then for each ≤∈ Sp we
have σµσµ =−+>−≥ |))(||),(),(|),(pvdqvdpqd . So

σ>),(pqd and we can exclude the ≤S subset.
Preceding is shown in Figure 1.

So we can effectively prune one half of the search
space if the following conditions are met: the power of
the >S subset approximately equals the power of the

≤S subset and),(qvd does not meet the following
two-sided inequality: σµσµ +≤<−),(qvd . Thus,
the main task is to build approximately balanced tree

with the quantity of points falling within the two
concentric circles being as little as possible. [10] shows
that in order to meet these requirements we need to
choose vantage points from the corners of the space
with the maximum second moment of their distances
from the other points.

Figure 1: Data set partitioning and nearest-neighbor
search. All points from the >S subset (such as p′) are
too far from the data point q′ (further thanσ). And

points from ≤S (such as p ′′) are too far from q ′′ .

5 Algorithms and parameters

5.1 Building the index

We use simple algorithms based on [10] to find vantage
points and build VP-tree. In accordance with [4], N-ary
tree was chosen as a data structure. It means that we
need to find N-1 border instead of one median to split
search space into N partitions.

It is necessary to mention that the index structure
implementation is not the main problem of our image
retrieval system prototype, therefore, database tables
instead of disk blocks were chosen as an index data
storage for simplicity.

function BuildVP_TreeLevel(S)
if ∅=S return ∅
node.vp := GetVP(S)
node.borders := GetBorders(S, vp, N)
for each sequential lborder, uborder from borders

BuildVP_TreeLevel(
uborder}s)d(p,lborder|{vp}-S{s ≤<∈)

return node

function GetVP(S)
P := random sample of S
for each Pp∈

D := random sample of S
spread = GetSecondMoment(D, p)
if (spread > best_spread)

best_spread := spread
vp := p

return vp

function GetBorders(S, vp, N)
P := random sample of S
sort P in accordance with distances from vp
for i from 1 to N – 1

p_low := P[i * |P| / N]
p_up := P[i * |P| / N + 1]
border = (d(vp, p_up) – d(vp, p_low)) / 2
borders.add(border)

return borders

5.2 Parameters

It is necessary to discuss GetBorders function in more
detail. This simple algorithm works as follows: selected
sample set is sorted by the distances from each Pp∈ to
the vantage point in ascending order. Sorted set is
divided into N parts. Arithmetic mean of the distances
of the two boundary points is treated as a border
between those parts.

Such implementation is too straightforward and can
violate the following restriction from the previous
section: the quantity of points falling within the two
concentric circles must be as little as possible. The
restriction will be violated if the margins between
boundary points and borders are too small (smaller
thanσ). Thus, the DDR (distance delta rate) parameter
is used to increase the margins. In that case the border
can be set not only between boundary points of the two
sets, but between points with the maximum distance
from each other within bounds determined by the DDR.
The example is shown in Figure 2.

a) Simple border detection algorithm

b) Improved algorithm: border was moved to the right

by one point (it is allowed by the current DDR value). If
we move it to the left by 3 points margins will increase

but the tree will be too unbalanced
Figure 2: Border detection between two sets

DDR parameter is a trade-off between balancing and
margins. So it has an influence on both conditions of the
tree building process mentioned in the previous section
and must be chosen carefully.

There are three other parameters that take part in the
process: the CRVP (capacity rate for vantage point), the
CRSM (capacity rate for second moment) and the CRB
(capacity rate for borders). Each of them defines a ratio
of the sample set size in the vantage point search, the
second moment calculation and the border detection,
accordingly, to the whole database size. Here is a trade-
off between precision of that objects detection and the
duration of the tree building process. The bigger the
sample sets are – the more precise vantage points and
borders we have, but the more time it takes to build a
tree (more points are involved in the process while each
point needs some calculations). The smaller the sample

sets are – the less time the computations take and the
more inaccurate vantage points and borders are.

The fifth important parameter is a tree arity (AR).

5.3 Searching the tree

To perform a search on the VP-tree we generalize the
searching algorithm from [10] for the N-ary tree. The
following function returns all nearest neighbors for a
query point q within a thresholdσ . Vp parameter is a
root of a VP-tree at first.

function GetNN(vp, q, σ , result)
dist := d(vp, q)
if (dist <= σ) and (vp != q) result.add(vp)
if vp is a leaf return
lborder := }-distb|vp.bordersmax{b σ<∈
uborder := }distb|vp.bordersmin{b σ+≥∈
for each new_vp between lborder and uborder

GetNN(new_vp, q, σ , result)

6 Theoretical basics of experiments and
hypotheses
The goal of the experiments is to define the index
efficiency criteria, which are further discussed, and to
determine the dependencies between these criteria and
the parameters mentioned in the previous section. We
plan to define such dependencies from each of the
parameters (leaving other ones unchanged during each
experiment) and from some parameters combinations.

6.1 Searching time

We consider the searching time to be the most
important criterion, because the main purpose of an
index is to speed up a fetching process. This value can
be compared with the time of the whole database scan,
since we need to look through the whole database to
find the nearest neighbors for some point without using
any index. More formally, the following ratio can be

calculated to define the criterion:
rs

ind
s t

t
t = , where indt

is a nearest-neighbors searching time with an index
utilization and rst is a row scan time.

Moreover, this criterion can be computed in terms of
distance metric (.)d evaluation operations. Obviously,
to find nearest neighbors for some point without using
an index, one needs to do as many metric evaluation
operations as many images there are in the database. So
we can denote this type of criterion as dt and equate it

to the following:
|| D

ind

rs

ind

S
Σ

=
Σ
Σ

, where indΣ is a

quantity of the distance metric evaluation operations
during a nearest-neighbor search with an index
utilization.

st and dt are not necessarily proportional, because
the second representation does not take the sorting
process duration into account, while we have to sort
points to get the final result.

Two kinds of experiments can be conducted to
compute these values: single-neighbor and multiple-
neighbors searches with a query-point q . The first one
looks up for the most relevant point p , i.e. the point
with the minimum),(pqd value, while the second one
has to find nearest neighbors with their distances from
q being less than a specific thresholdσ . In the first
case, system with an index has to calculate only one
subset of the node q to find the most relevant point, that
one with the lowest upper border, whereas it may need
to look into other sub-trees to get more points in the
second case.

6.2 Index degradation

As the database size grows new points are added to the
index, so the tree gets more and more unbalanced. This
process affects the criteria, mentioned above, and can
completely reduce the index efficiency right up to the
need of its full rebuilding. We plan to hold some
experiments to define this affection, especially that
cases with complete degradation.

The first type of experiments implies adding
arbitrary points to the database and computing the
above criteria to define the rules of their changing. For
the second reason, i.e. defining the worst cases, we plan
to add quite similar points to force the tree to become
unbalanced rapidly. All types of experiments imply
adding a great amount of points to affect the searching
criteria.

6.3 Index building process duration

Based on section 5.3, the tree building process duration
can be quite an important criterion in some cases. It
depends on four parameters, mentioned in section 4:
CRVP, CRSM, CRB and AR. From the algorithms of
that section we can derive the following formula for the
mean tree building time:

|)|||(2 SCRBSCRSMCRVPkt vpmean ⋅+⋅⋅⋅Σ⋅= , where

k is some coefficient and vpΣ is a vantage points
quantity (which strongly depends on the AR parameter).
This formula arises from the following reasoning: we
need |)|(|)|(SCRSMSCRVPk ⋅⋅⋅⋅ time to process a
vantage point sample set and to calculate a second
moment for each point, based on another sample set,
while searching for a vantage point. And additional

|)|(SCRBk ⋅⋅ quantity of time is needed to find point's
borders. We plan to check this formula during the
experiments.

6.4 Image feature vector space dimension

There are different image features we intend to use in
our system, so the dependencies between the dimension
of the image feature vectors and index efficiency
criteria, mentioned above, are very important to us and
we plan to hold some experiments to define them.

As we said before, the VP-tree is based on bounding
spheres. And the main advantage of a sphere is that its

volume is less than the volume of a cube, in which the
sphere is inscribed and this ratio decreases with the
increase of the searching space dimension.

7 Conclusion
We have implemented the VP-tree index structure as an
alternate solution for the nearest-neighbor search
problem in the context of the content-based image
retrieval task. Different criteria were proposed to
estimate index efficiency. We plan to hold a number of
experiments to define those criteria and to determine the
dependencies between them and algorithms' parameters,
stated in the work.

References
[1] N. Beckmann, H. P. Kriegel, R. Schneider, and B.

Seeger. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. In ACM
SIGMOD Record, volume 19(2), pages 322–331,
1990.

[2] J. L. Bentley. Multidimensional Binary Search
Trees Used for Associative Searching. In
Communications of ACM, volume 18(9), pages
509–517, 1975.

[3] T. Bozkaya and M. Ozsoyoglu. Distance-based
Indexing for High-Dimensional Metric Spaces. In
ACM SIGMOD Record, volume 26, pages 357–368,
1997.

[4] T. C. Chiueh. Content-based image indexing. In
Proceedings of the 20th VLDB Conference, pages
582–593, 1994.

[5] P. Ciaccia, M. Patella, P. Zezula. M-tree: An
Efficient Access Method for Similarity Search in
Metric Spaces. In Proceedings of the 23rd
International Conference on VLDB, Athens,
Greece, pages 426-435, 1997.

[6] TA. W.-C. Fu, P. M.-S. Chan, Y.-L. Cheung, Y. S.
Moon. Dynamic vp-tree indexing for n-nearest
neighbor search given pair-wise distances. VLDB
Journal, volume 9(2), pages 154-173, 2000.T

[7] N. Katayama, S. Satoh. The SR-tree: An Index
Structure for High-Dimensional Nearest Neighbor
Queries. In Proceedings of the 1997 ACM
SIGMOD International Conference on
Management of Data, Tucson, Arizona.

[8] J. T. Robinson. The K-D-B-tree: A Search
Structure for Large Multidimensional Dynamic
Indexes. In Proceedings of the ACM SIGMOD, Ann
Arbor, USA, pages 10-18, 1981.

[9] D. A. White, R. Jain. Similarity Indexing With the
SS-tree. In Proceedings of the 12th International
Conference on Data Engineering, New Orleans,
USA, pages 516-523, 1996.

[10] P. Yianilos. Data Structures and Algorithms for
Nearest Neighbor Search in General Metric Spaces.
In Proceedings of the 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms, Orlando, pages
311-322, 1992.

