
A Note on the Parsing of Complete VHDL-?OO2

Lubo5 Lorencl, Rudoif Schoneckerl, and Zbynek Ki ivkal

Dept. of Information Systems,
Faculty of Information Technology,

Brno University of Technology,
BoZetechova 1, 612 66 Brno, Czech Republic

lorenc@fit . vutbr . cz, schonec@fit . vutbr . cz, kr ivka@fi-t . vutbr . cz

Abstract. The paper gives a brief view on the process of analysis and
adapting formal description of the current version of the VHDL lan-
guage, described by VHDL 1076-2002 standard. The work searches the
possibility to build the effective syntax analyser of the entire language
by using automatic tools for parsers generation.

I{eywords: computer languages, EBNF, LALR, parsing, VHDL

Introduction

VHDL is the acronym for VHSIC Hardware Description Language. It is a lan-
guage that can be used to describe the structure of digital circuits or even be-
havior of the hardware design at the various levels of abstraction. It is a powerful
language, but always restricted by the capabilities and aim of used tools.

The fundamental motivation for the construction of the complete VHDL
parser is to be able to analyze arbitrary VHDL source code without dependency
on the source tool. In past, there were introduced some methods (..S. [a]), but
only for very old version of VHDL standard. The concrete utilization is in au-
tomatic or semi-automatic VHDL-based modules generation that represents the
user components design.

VHDL Language

The VF{DL-2002 standard (see [1]) describing VHDL using EBI{F consists of
approximately 800 productions. Due to the repeated revisions and extensiveness
of the description, the description is inconsistent on many places and contains
errors. Used extensions allow to describe VHDL language in an advantageous
and economical way, unfortunately the1, include both the syntax and also se-
mantic features in the actual syntax dcscription. These semantic features are
not supported by parser generators nor other tools for dealing with grammars.

The forrn of the extension is given by italicized prefix of the nonterminal's
name. l 'he prefix carries crucial sernantic inforrnation. For example, nonterminals

246 L. Lorenc. R. Schonecker and Z. Klivka

type-name and subtypename are both syntactically equivalent to name, but
carry the semantic information about the context in which they were derived.
In this paper, call this extension semant'ic condi,t'ion.

Semantic conditions are unusual in parsing theory (see [2] and/or [3]) and
turn up some questions about the reliition between poor syntax and on the other
hand the semantic analysis when describing the VHDL language:

- Is it possible to describe poor VHDL syntax with context-free grammar?
- Is it possible to express the semantic conditions in current standard in an-

other way to obtain LALR grammar that can be simply processed by parser
generator tools?

- Is there any other way to parse entire VHDL?

Experiments with Parsing

In the case of our fundamental research, the existing EBNF description of the
VHDL-2002 language has been transcripted into the input grammar for the Bison
tool. The semantic conditions were left unchanged in this step.

The second part of the transformation had to separate the syntax part of
the description from the semantic information. All nonterminals with italicized
prefixes were renamed onto original names without these prefixes. In this moment
the grammar stopped to remember the context of transformed nonterminals, this
context has to be added later.

The context had previously influenced the selection process of currently used
rule when deriving sentential form by parsing the input VHDL source. The
consequence is that the transformed grammar became ambiguous due arisen
reduce/reduce conflicts. The basic task is to eliminate the ambiguity in the
grammar and simultaneously preserve the ability of the grammar to generate
the entire VHDL-2002. The grammar constructed by standard rewriting of the
EBNF contains 743 productions, 78 shif[/reduce conflicts and foremostly 579
reduce/reduce conflicts.

The huge ambiguity in VHDL grammar is solved in two independent ways.
The former uses conditional building of syntax tree in the process of syntax anal-
ysis. For making decision about the next advance of its production there is used
some semantic knowledge acquired by the analysis of already processed source
code. The latter way uses consecutive merging of all corresponding conflicting
syntactic categories into one. This way consecutively eliminates ambiguities but
it also removes the original semantic dependencies established in the VHDL-2002
standard.

3.1 Conditional Building of the Syntax Tbee

This method of semantic conditions elimination utilizes inserting of new auxil-
iary terminal symbols to the input of the parser. It means that the output of the
lexical analyser is not directly connected to the input of the parser but there is an

A Note on the Parsing of Complete VHDL-2002 241

auxil iary generator that they are connected through. This generator is t ightly
bound to the semantic analyser and syntactic analyser and during analysis it
inserts auxiliary terminals at the right places in the input streani of tokens (sim-
plif ied schema of such analyser is shown on the figure 1). The binding between
auxiliary generator and parser has to be created as special semantic actions in
the parser code.

Legend: ----)- Common Dataflow
- - L- Auxiliary Dataflow

Fig. 1. Simple schema of an partially complete VHDL analyser with generator of aux-
il iary terminals.

The auxiliary terrninals are inserted in the grammar immediately after con-
flicting (really only after conflicting not all semantically conditioned) nonter-
minals originalll' containing semantic conditions. Each inserted terminal has its
name deduced from this semantic condition. Consequently during analysis, if it
is detected such a nonterminal is in progress, the auxiliary terminal generator
is activated. The decision whether insert an appropriate auxiliary terminal or
not is based on the information provided by the semantic analyser. For example,
there is shorvn a solution of conflicts in part of VHDL-2002 grammar containing
nonterminals type-rame and sub typename in the Example l.

Erample 1. Solution of the typical reduce/reduce conflict in VHDL grammar.
The symbols -TYPE- and -SUBTYPE- are the new auxiliary terminals.

subtype-declarat ion : SUBTYPE 1d IS subtype_lndicat lon , ; ,

subtype- indicat ion => . . . :+ type_mark
type-mark : nane _TYPE_

I name -SUBTYPE-

report-statement :

e x p r e s s i o n + . . . +
pr imary : name

;

t . t
t

U

There was eliminated all the reduce/reduce conflicts in the VHDL gram-
mar using this rnethod. But prnctical usabil ity of this method has not been yet

REP0RT expression

prinary

248 L. Lorenc, R. Schonecker and Z. Kiivka

verified because it needs a working basic semantic analyser providing sufficient
information to the auxiliary generator. However, the semantic analysis was not
the main focus of this research phase and will be handled in the future.

This method seems to be a good candidate for the construction of a complete
analyser of VHDL, because it does not modify original form of VHDL grammar.
Therefore, it may be possible to use it as a base of an universal tool enabling
both simulation and synthesis without the need of separate working with some
VHDL code for simulations and another VHDL code for svnthesis.

3.2 Creation of an Unambiguous Grammar

It is certainly the best solution to use an unambiguous grammar as a base of
a parser. Thus, we are working on an unambiguous version of VHDL grammar.
Currently, we have solved about 500 reduce/reduce conflicts and 76 remain for
future work. As a result of this work, there should be an universally usable VHDL
grammar suitable as a base of standalone syntactic analyser of VHDL. Because
of the big number of modifications in the grammar structure, it is supposed. to
be too awkward as a base of complete VHDL analyser or synthesis tool.

As in the first approach, here is one big problem too. The grammar is too
complex and eliminating of confl icts is very hard task. In addition, it is not
known whether it is possible to describe entire VHDL using LALR grammar
or not. There are sonle additionat possibilities like for example generalized LR
parsing provided by Bisorr. but tirese powerful analysers have generally very poor
performance in case of complex languages with many conflicts.

4 Conclusions

VHDL is a very complex language. It contains a number of semantic enhance-
tnents in its standard syntax definition. From this fact follows that the process
of the universal VHDL parser creation is very hard task. Currently, we havi:
found some \^,'ays which may tend to achieve this goal. These ways were briefly
described in this paper same as some open problems.

This work has been supported by MinistrV of Education, Youth and, Sports of
the Czech Republic arant hISIV'IT 2C06008 "Vi,rtual Laboratory of Microprocessor
Technology A ppli,cat,ion" .

References

1. IEEE Std 1076-2002 (Revision of IEEE Std 1076, 2000 Edit ion), IEEE Std, VHDL
L anguag e Ref e ren ce ivl anual, http : / /stdsbbs. ieee. org/descr/ 1 0T 6-2002

2. Alfred V. Aho, \ lonica S. Lam, Ravi Sethi, Jeffrey D. Ul lman: Com,pi, lers: Pr-tnci-
ples, Techniques and rooLs, Addison-!!'esley, 2006, ISBN 0-321-.l2gg0-0

3. Bisort, GNU T)a?-ser generator, Ittp:f f www.gnrr.org/softwarr:/bison
4. Rodrrey Farrorv, AIec G. Stanculescu: A VHDL compiler basetl on at,tribute gram-

mu,r nt'ethorloLogy. In: Proceedings of the AC\'I SIGPLAN 1989, Aclvl Press. New
\brk , 19E9, pp. 120-130, ISSN 0302-13"10

