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Abstract. We study sequential colonies introduced in [5], [9] from the
point of view of their environmental structures. We give expressions
for the languages Life, Garden-of-Eden, Doomsday and Non-life and we
present conditions for the emptiness of these languages for the sequential
colonies with basic and terminal mode of the derivation.
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1 Introduction

Grammars and grammar systems can be treated not only as language generative
devices, but also as rewriting systems for the states of the environment, which
arc represented by strings over the fixed alphabets. From this point of view,
the rules of the system and the way how are they applied are important for
the development of the environment, while the starting string and the terminal
alphabet play no role. Typical states of the environment, the garden-of-Eden,
life, doomsday and non-life, we will deal with, are known from the investigation
of theory of cellular automata. This classification of the states of the environment
is determined by (im)possibility of each state to produce next state as well as
by (im)possibility of each state to be produced by another state.

A state is called a garden of Eden, if it cannot be derived from another state
and it can produce next state. A state is called a doomsday if it is derived from
another state and it cannot produce any other state. A state life can be derived
from another state and can produce a new state and a state nonlife neither can
be derived nor can produce any new state.

In the present paper we study the above mentioned states and their sets
(languages) for grammar systems [2],[4], namely for their special case called the
colonies. By a colony we mean a grammar system with simple components, intro-
duced in {5]. The components of the colony, each of which is able to produce only
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the finite language, rewrite the common string by given protocol of the cooper-
ation. The study of the states garden-of-Eden, life, doomsday and non-life and
their sets was for colonies initiatized and motivated in [9], [10], where colonies
with point mutation, PM colonies for short, were introduced and studied. Re-
sults presented in [9] include among the others also the regularity of the above
languages for PM colonies. Environmental structures are studied more detaily
in [7], namely conditions for emptiness and finiteness of languages are discussed.

In the present paper the sequential colonies will be investigated from the
same view point. So we will continue the study of the structure and properties
of the garden-of-Eden, life, doomsday and non-life for sequential colonies. We
will discuss both b and ¢t mode of the derivation in colonies. We will character-
ize languages of these structures of the environment, discuss their emptiness,
(in)finiteness. We present new results for b mode of derivation. Results for ¢
mode are revised and extended version of our results from [8].

In Section 2 we introduce the languages Garden-of-Eden, Life, Doomsday
and Non-life generally, for any string rewriting systems, and the characteristic
vector of the structure of the environment of the rewriting system. Some basic
properties of these notions are included.

In Section 3 we turn to colonies and discuss above mentioned topics in detail
first for b-mode colonies and then for t-mode colonies.

2 States of the environment and their dynamical
properties

Assume the states of the environment to be given by V*, the set of all strings
over fixed alphabet V. Let a binary relation on V*, the derivation step =—>,
defines global transformation of the states of the environment determined by
local rewriting rules P. Let S = (V*, P,==) determine the rewriting system.

To characterize some low level dynamic of S we will study following sets of
states:

A state w € V* is said to be alive in S if there is a state z € V*, z # w such
that w == z. A state which is not alive is said to be dead.

A state w € V™ is said to be reachable in S if there is a state z € V*, z # w such
that 2 = w. A state which is not reachable is said to be unreachable in S.

We denote by Alive(S), Dead(S), Reachable(S) and Unreachable(S) the lan-
guages of all alive, dead, reachable and unreachable states, respectively. By in-
tersecting the classes in the two classifications above, we get four languages: the
Garden-of-Eden of § - GE(S), the Life of S — LF(S), the Doomsday of S -
DD(S) and the Non-life of S — NL(S).

Definition 1. GE(S) = Unreachable(S) N Alive(S),
LF(S) = Reachable(S) N Alive(S),
DD(S) = Reachable(S) N Dead(S),
NL(S) = Unreachable(S) N Dead(S).

To study the emptiness of the above languages for a given rewriting system S
we will use a characteristic function x of the language L defined as
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x(L) =0 for L =10
x(L) =1  otherwise.

The characteristic vector x(S) of the environment of S is defined as
X(S) = (X(GE(S)), x(LF(S)), x(DD(S)), x(NL(S)) )

Directly from the definitions we have

Lemma 1. At least one of the sets GE(S), LF(S), DD(S) and NL(S) is infi-
nite for any S.

If X(GE(S)) =1 then x(LF(S)) =1 or x(DD(S)) = 1.

If x(DD(S)) =1 then x(LF(S)) =1 or x(GE(S)) = 1.

Corollary 1. For arbitrary S
x(S) €{(0,1,0,1),(0,1,1,1),(1,0,1,0),(1,0,1,1),(1,1,0,0),(0,1,1,0)
(1,1,0,1),(0,1,0,0),(0,0,0,1),(1,1,1,0),(1,1,1,1) }.

Proof. DD(S),GE(S), LF(S), NL(S) form the partition on V*, so at least one
component of the x(S) is equal 1 and x(S) = (0,0,0,0) for no S.

The condition x(GE(S)) = 1 from Lemma 1 gives x(S) = (1,0,0,1) for no &
and x(S) = (1,0,0,0) for no S.

The condition x(DD(S)) = 1 from Lemma 1 gives x(S) = (0,0,1,0) for no &
and x(S) = (0,0,1,1) for no S. O

In this paper we will discuss vectors x(S) for rewriting systems called colonies.

3 Colonies

Colonies were introduced in [5] as grammar systems [2],[4] consisting of a finite
collection of very simple grammars rewriting symbols on common string envi-
ronment. Each agent is allowed to trasform its start symbol into finite set of
words.

Definition 2. A colony C is 3-tuple C = (V,T, R), where

V is a finite non-empty alphabet of the colony,

T CV is a non-empty terminal alphabet,

R={(S,F)|SeV, FC(V-{S}H*,F finite, F+#0}
is a finite multiset of components (S, F), where S is a start symbol of the com-
ponent (S, F) and F is a finite language generated by the component (S, F).

Note 1. Terminal alphabet T, which plays basic role in the definition of the
language determined by a colony will play no role in our considerations. Never-
theless, we decided to present here the original, i.e. grammar system, definition
of the colony rather then grammar scheme version C = (V, R).
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For C = (V,T,R) and R = {c1,...,cn}, where ¢; = (S;, F}) for 1 < i < n we fix
the notations:
Dom ¢; = §; Val ¢; = F;

n

Dom C={Dom¢;:1<i<n} Val C = J,_, Val ¢;

Depending on the motivation, several ways were considered to introduce the
derivation step == in colonies C = (V,T,R). This led to the different variants
of colonies introduced e.g. in [3], [9], etc.

In next section we will consider sequential colonies C = (V, T, R) with basic
and terminal modes of the derivation, where the derivation steps will be denoted
by == for € {b,t}. Corresponding rewriting systems specified by (V*, R, =)
will be denoted as C, for = € {b,t}.

In a sequential colony, there is active exactly one component, in each deriva-
tion step. In a basic mode the active component is allowed to rewrite one occur-
rence of its start symbol in an actual string — we speak on b -mode derivation and
b -mode colony. In a terminal mode the active component has to rewrite all the
occurrences of its start symbol in an actual string — we speak on t -mode deriva-
tion and ¢ -mode colony. In next subsections, formal definitions of the rewriting
steps and the characterization of structures of these colonies will be presented.

3.1 Colonies with b-mode derivation

For the sequential colony we first recall the definition of the basic mode of
derivation.

Definition 3. Let C = (V,T,R) be a colony and R = {(S,F) | S € V,F C
(V = {S})*, Ffinite, F # 0}. Then

T = v iff @ =z1812, y=z1wxs for some component (S,F) € R and w € F.

We denote by C, the rewriting system determined by the colony C = (V,T,R)
and by the derivation step =b>, ie. Gy = (V*, R, =b>) and we denote by COL,
the collection of all rewriting systems Cp.

To express languages of environment for C, we have directly from the defini-
tion

Lemma 2. Alive(Cy) = V*Dom C,V*
Dead(Cy) = (V — Dom Cy)*
Reachable(Cy) = V*Val C,V*
Unreachable(Cy) = V* — V*Val C,V*

This leads to the following expressions for our languages.

Theorem 1. LF(C,) = V*Dom C,V* NV*Val CV*

GE(Cpy) = V*Dom C,V* = V*Val C,V*

DD(Cy) = (V = Dom Cy)*(Val C, — V*Dom C,V*)(V — Dom Cp)*
NL(Cy) = (V = Dom Cp)* = V*Val C,V*
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Proof. Follows from the definitions and Lemma 2.

Each word in LF(Cs) has to contain an element of Dom Cy and a subword from
Val Cb.

Each word in GE(Cp) has to contain an element of Dom Cp and no subword from
Val Cp.

Each word in DD(C;) has to contain subword from Val C, and no element of
Dom Cy.

Each word in NL(Cy) has to contain no element of Dom C, neither a subword
from Val Cp. 0O

Depending on the mutual position of symbols from Dom C, and words from
Val Cy we can express the life states as follows

Corollary 2. LF(Cy) = V*Val CoV*Dom CV* UV*Dom C, V*Val C,V*
UV*(V*Dom CyV*NVal Cp)V*

For (non)emptiness of the languages above we obtain following conditions:

Theorem 2. a) LF(Cy) # @ for any Cy
b) GE(Cy) # 0 #ff V*Dom CV* —V*Val C,V* #0
c) DD(Cy) #0 iff Val Cpb— V*Dom CV* # 0
d) NL(Cy) # 0 iff (V —Dom Cp)* —V*Val C,V* # 0

Proof. a) By the definition we have S € Dom C, and w € F for some (S, F) € R
which gives Sw € LF(Cy).

¢) Evidently Val C, —V*Dom CyV* C DD(Cp). On the other side if w € DD(Cp),
then w € (V — Dom Cp)*, and w = wyuw, for some u € Val C,. This gives
u € Val C, — V*Dom C,V*.

Points b) and d) follow directly from the Theorem 2. ]

Corollary 3. a) LF(Cp) is infinite for any Cp.
b) If DD(Cy) # 0 then it is infinite.

Proof. a) For the string Sw from the proof of Theorem 2 we have Stw C LF(Cp).
b) For v € DD(Cy) we have also u™ € DD(Cy).

Note 2. Nonempty GE(Cy) and nonempty N L(Cy) can be either finite or infinite.

Denote by x(COL,) the set of all characteristic vectors of Cj.

Theorem 3. x(COL,) ={ (1,1,0,1),(1,1,1,0),(1,1,1,1), (1,

1,1,1,0), (1 1,1,
(0,1,1,1),(0,1,1,0), (0,1,0,1), (0,1

0,0),
,0,0

,0) 1.

Proof. By Corollary 1 and Theorem 2 we have
x(COLy) € { (1,1,0,1),(1,1,1,0),(1,1,1,1),(1,1,0,0),(0, 1,1, 1),
(0,1,1,0),(0,1,0,1),(0,1,0,0) }.
All these vectors can be reached.
x(Cs) = (1,1,0,1) for C, with R = {(a, {b, cb}), (b, {a}), (d, {a}), } and
d* C GE(Cy), at CLF(Cy), DD(Cy) =0, ctc NL(C).
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x(Cp) = (1,1,1,0) for Cp with R = {(a, {b,d}), (b,{a}), (c,{a})} and
¢t C GE(Cy), bT C LF(Cy), dT C DD(Cp), NL(C,,) = 0.

x(Cy) = (1,1,1,1) for Cp with R = {(a, {bb}), (b, {ce})} and
at C GE( b), (bb)* C LF(Cy), (ce)t € DD(Cy), ¢t < NL(Cy).

x(Cy) = (1,1,0,0) for Cp with R = {(a, {bb}), (b,{c}, (c,{b})} and
at C GE(Cy), (bb)* € LF(Cy), DD(Cy) =0, NL(Cy) = 0.

x(Cy) = (0,1,1,1) for Cy with R = {(a, {b,cc}), (b, {a,cc})} and
GE(Cy) = @ at C LF(Cy), cct C DD(Cb) c € NL(Cp).

x(Cy) = (0,1,1,0) for C, with R = {(a, {b}), (b,{a,c})} and
GE(C[;) = @, at C LF(C(,), ct C DD(Cb) NL(Cb) = .

x(Cy) = (0,1,0,1) for C, with R = {(a, {b, cb}), (b,{a})} and
GE(Cy) =0, at C LF(Cy), ¢+ C NL(C), DD(Cy) = 0.

x(Cy) = (0,1,0,0) for C, with R = {(a, {b}), (b,{a})} and
{a,b}" = LF(Cp) and all the other sets are empty. O

3.2 Colonies with t-mode derivation

Another possibility to define a derivation step in a sequential colony is that an
active component is allowed to rewrite all occurrences of its start symbol in an
actual string. We speak on a terminal mode of derivation (t-mode for short).

Definition 4. Let C = (V,T,R) be a colony and R = {(S,F) | S € V,F C
(V = {S})*, Ffinite, F # 0}. Then

== y ifft =215%25%3 ... 2 STmi1, T1T2.. . Ty € (V — {S})7,
Y= D1 W1T2WaT3 . . . T WmTm41,
for some (S,F) € R and w; € F,1<j<m.

We denote by C; the rewriting system determined by the colony C = (V,T,R)

and by the derivation step ==, i.e. C; = (V*, R, -—i>) and we denote by COL;
the collection of all rewriting systems Cs.
To express languages of environment for C; we have directly from the definition:

Lemma 3. Alive(C:) = V*Dom C,V*
Dead(C;) = (V — Dom C;)*
Reachable(Cy) = e (V — Dom ¢)*Val ¢ (V — Dom c)*.
Unreachable(Cy) = V* — {J,er(V — Dom ¢)*Val ¢ (V — Dom ¢)*.

Note that C, and C; differs in the sets Reachable and Unreachable but not in
Alive and Dead.
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Theorem 4. LF(C;) = er(V—Dom c)*Val ¢ (V—Dom c)* N V*Dom C,V*
GE(Ct) = V*Dom CiV™ — e (V—Dom ¢)*Val ¢ (V—Dom c)*
DD(Ct) = (V —Dom Ct)*(Val Ct - V*Dom CtV*)(V — Dom Ct)*
NL(C) = (V=Dom C;)*— U er (V—=Dom c)* Val c (V—Dom c)*

Proof. Tt follows from Lemma 3 and definitions. i

Theorem 5. a) GE(C;) # 0 for any C;.
¢) DD(C.)# 0 iff (Val Ci — V*Dom CiV'*) # 0
d) NL(C) £ 0 iff (V — Dom C)* — V*Val CV* # 0

Proof. a) Let Dom Cy = {S1,...,Sp}. Then ($152...5,)% € GE(C,). It follows
from the condition that F C (V — {§})* for (S, F) € R.

b) Let [Dom C;| > 2 and 51,52 € Dom C;. Let w € F for (S;,F) € R. Then
(w52)+ C LF(Ct)

Let Dom C; = {S}. Then words containing S cannot be derived and words not
containing S do not produce any word. Therefore LF(C;) = 0.

Points ¢) and d) follow from definitions. 0

Corollary 4. GE(C:) is infinite.
If LE(Cy) # O then it is infinite.
If DD(Cy) # 0 then it is infinite.

Proof. Results for GE and LF follows from the previous proof. Let DD(C;) # 0
and u € Val C; — V*Dom C,V*. Then ut C DD(C,). m]

Note 3. Nonempty NL(C;) can be either finite or infinite.

Denote by x(COL;) the set of all characteristic vectors of C;.

Theorem 6. x(COL,) = { (1,0,1,0),(1,0,1,1),(1,1,1,1),(1,1,0,0),
(1,1,0,1),(1,1,1,0) }.

Proof. By Corollary 1 and Theorem 5 we have

x(COLy) € {(1,0,1,0),(1,0,1,1),(1,1,1,1),(1,1,0,0),(1,1,0,1),(1,1,1,0) }.
All these vectors can be reached.
x(Ct) = (1,0,1,0) for C; with R = {(a,{b})} and

GE(Ct) =S {a,b}+ - b+, LFY(Ct) = @, DD(Ct) = b+, NL(Ct) = @

x(Ct) = (1,0,1,1) for C; with R = {(a,{b, ccc})} and
{a,b}T — bt C GE(C,), LF(C) =0, bt CcDD(C), {c,cc}C NL(C,).

X(C) = (1,1,1,1) for C; with R = {(a, {b, bdd}), (b, {c})} and
at C GE(C,), b* C LF(C), ¢t CDD(C), d* C NL(C).

x(Ct) = (1,1,0,0) for C; with R = {(a, {b}), (b,{a})} and
GE(Cy) = {a,b}" —a™ —b%, LF(C;)=atub*, DD(C) =0, NL(C;) = 0.
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x(Ct) = (1,1,0,1) for C; with R = {(a, {b,bec}), (b, {a})} and
(ab)* C GE(C,), b+ C LF(C), DD(C) =0, ¢ c NL(C).

x(Ct) = (1,1,1,0) for C; with R = {(a, {b}), (b, {c})} and
0.+ C GE(C&), b+ C LF(Ct), C+ - DD(Ct), NL(Ct) = 0 O

4 Conclusions

Structures of the environment of the b-mode colonies and t-mode colonies differ
in some aspects. According to the presented results we have

1) LF(Cy) is infinite for every C, and GE(C;) is infinite for every C;.

2) Nonempty DD(Cy) implies that DD(Cp) is infinite, while nonempty GE(Cy)
and NL(Cy) can be either finite or infinite.

Nonempty LF(C;) and nonempty DD(C;) imply that these languages are

infinite, while nonempty NL(C,) can be either finite or infinite.

3) The set of characteristic vectors of COL, consists of 9 vectors, while the
set of characteristic vectors of COL; consists of 6 vectors.
The topic studied in this paper is applicable to all other variants of colonies [6]
as well as for the other types of rewriting systems.
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