
  

Software Architectures for Real-time Embedded 
Applications for Broadcasting 

 Otto Železník1, Zdeněk Havlice2

 
1 Dept. of Computers and Informatics, Faculty of Electrical Engineering and Informatics, 

Technical University of Košice, Letná 9, 042 00  Košice, Slovak Republic 
o_zeleznik@yahoo.com 

2 Dept. of Computers and Informatics, Faculty of Electrical Engineering and Informatics, 
Technical University of Košice, Letná 9, 042 00  Košice, Slovak Republic 

zdenek.havlice@tuke.sk 

Abstract. The paper discusses a choice of appropriate software architecture 
with regards to the specifications of embedded applications as information 
systems particularly used in area of radio and television broadcast audio 
program processing. The main requirement of mentioned embedded systems is 
an extremely good real-time response and minimized latency between input 
signal and output signal after processing. The requirements imposed to software 
architecture from the viewpoint of methods and algorithms which process the 
signal are in our case subjected to the minimal input-output latency requirement 
and specifics of hardware architecture and data structures used in embedded 
systems. The software architecture components and options are discussed and 
reviewed with their assets and limitations. 

Keywords: software architecture, information system, artificial intelligence, 
real-time response, embedded application, broadcast processor 

1   Introduction 

We can think of the embedded systems in their particular area of focus as information 
systems since these basically analyze and process information in its specific form 
(signals, sounds, etc.). One of the information systems which belong to the mentioned 
group is an application of sound program processing in radio and television 
broadcasting. Even though the process itself, characterized by using proper 
psychoacoustic algorithms, has potential and function to improve-optimize the sound 
program for the audience, control of these algorithms is based on utilizing a simple 
fixed preset and coefficient methods. This approach is nowadays mostly used as a 
standard solution by the world top manufacturers. Another proposed method of 
control which is basically also a subject of my research and thesis is the analysis of 
sound program properties in relation to its informational content. This complex 
information is later processed in a carefully selected artificial intelligence method like 
trained neural network which should result in more optimal, natural and “intelligent” 



O. Železník and Z. Havlice 
 

64 

process control algorithm e.g. resulting in improved sound from the human hearing 
viewpoint. 

2  Broadcast embedded applications requirements 

Today’s broadcast embedded applications are designed exclusively in digital 
domain using modern DSP processors. The critical requirements in broadcast 
embedded applications are a minimal input-output signal latency and very good 
overall real-time response of the system. The first specification exists due to the 
nature of human hearing and sound perception [1], the second is a result of necessity 
to process signals with various feedback control signals. All of these requirements 
strongly affect choice of software architecture in the end. Recent research in the 
domain of embedded systems has demonstrated rather strong link between hardware 
and software architecture. Various limitations exist in software architecture choice 
due to the mentioned fact.  

2.1   Memory size and software architecture choice in embedded systems 

 
When considering for example a common PC platform where properties like 

memory size and/or CPU power are insignificant, these can accommodate very 
extensive and even complex software architectures and very large data structures with 
nearly no limitation.  

Embedded systems on the other hand are mostly designed on smaller processors 
and less powerful hardware platforms where specific architectural factors are due. 
One of these factors is small available memory and specific memory model within 
existing CPU. This unfortunately strongly handicaps for example object oriented 
software architectures [7] due to their rather large memory requirements. They are 
almost impossible to implement with reasonable performance results. 

Also memory model must strictly be questioned before the design is due since 
embedded hardware architectures [6] usually support only two access memory types 
of unequally partitioned sizes: 

• Fast Layer 1 memories for execution critical code and data storage 
(available only in several kBytes) 

• Slower Layer 2 memories for execution non-critical code and data storage 
(depending on CPU available up to max. few Mbytes) 

There is also a cache support but with limited performance especially when 
executing critical code. Layer 1 memories are usually 3-10times faster than Layer 2 
memories and full CPU performance is obtained only when executing code from 
Layer 1 memories. Adhering to the above facts, programmer or software architecture 
designed must carefully evaluate which data structure will be stored and operated 
from Layer 1 memory and which will be stored and operated from Layer 2 memory. 
The same applies for code separation as well.  



Software Architectures for Real-time Embedded Applications for Broadcasting 
 

65 

Available memory size also affects the way how data and information is handled in 
the embedded system. Proper algorithm design helps reducing size of temporary data 
structures used for data processing. Using rather one common variable/buffer for data 
storage and processing in all processing algorithms is one way how to use memory 
properly. Moving less critical data buffers into Layer 2 memory and more critical data 
buffers into Layer 1 memory improves performance as well. 

 

2.2   Programming language selection and software architecture choice in 
embedded systems 

Choice or rather a necessity of using a certain programming language in embedded 
systems defines another group of constrains in software architecture selection 
possibilities.  

Broadcast embedded systems require for some specific processing algorithms a 
very optimized and dense code since it may enhance execution performance. This is 
achievable only by designing hand-optimized assembly written routines and so 
avoiding use of any higher-level compiler available for embedded systems design. 
Programming and design experience indicates that even the best-of-the-class 
compilers are unable to achieve performance of well optimized hand-written 
assembly code. Gain in performance is about 5 to 10 per cent in favour of hand-
optimized code.  It is up to programmer to decide carefully which part of application 
requires such a high performance (routines running most of execution time) and 
which part of application can be designed using higher level programming languages 
like C and running least of execution time but with high software architecture 
complexity. 

Broadcast embedded systems usually work fine with assembly language used for 
audio processing routines. These usually require very basic data structure types 
(circular buffers, simple variables) use with nearly no abstract models and only Layer 
1 fast memory partitioning. On the other hand C language is mostly used for control 
algorithms which are of higher software complexity. Data structures become also 
more complex with use of dynamic memory allocation and management.  They are 
however strictly located in Layer 2 memory region only. This complexity gain also 
gives a possibility to employ more complex and perhaps more useful software 
architecture components and interconnection in-between them. 

2.3   Real-time response of embedded systems and software architecture choice  

As mentioned earlier, one of the main broadcast embedded systems requirements is 
a minimal input-output signal latency and good overall real-time response.  

The good overall real-time response is basically due in case of algorithms which 
are controlled from outside by external signals (feedback control). Since these need 
rather immediate reaction, they are strictly designed using hand-optimized assembly 
code and located in Layer 1 memory to assure safe critical execution.  



O. Železník and Z. Havlice 
 

66 

Minimal input-output signal latency is another area of focus. In order to understand 
how this criteria affects software architecture choice, we need to know how signal is 
processed within the hardware architecture itself. One of the main principal 
requirements for correct digital signal processing is a sampling and processing 
theorem so-called Shannon-Kotelnikov theorem [2]. It generally requires that any 
input signal with a bandwidth FBW is being sampled at sampling frequency at least 2* 
FBW which ensures that the frequency information contained in the input signal is 
sampled without loss of any frequency component. Since human hearing is capable of 
sensing frequencies up to 20 kHz correct sampling frequency FT would be 40 kHz. 
Practice over years of use by almost all professional world manufacturers indicates 
the standard to be 48 kHz [3] or 2n multiplies for n = 0..2 [4]. Let the final FT choice 
depend on the processing requirements.  

If there was an ideal case with virtual hardware architecture, we could achieve the 
latency of the system as good as 1/ FT. The only specification would be the ability of 
the hardware architecture to apply the process algorithm on every sample 
individually. Real situation is however rather complicated. First need in the digital 
signal process chain is to convert analog form of the sound into the digital 
representation and vice versa. AD and DA conversion serves for this purpose. Group 
of converters used for sampling audio signals due to its principle [2] unfortunately 
insert additional 2msec of signal latency into the digital stream. Tolerable overall 
signal latency based on human hearing properties is about 7msec [1].  

Signal processing within the hardware architecture is basically controlled and 
managed using interrupt service routine. Each processing routine invocation requires 
several DSP service cycles (varying from 2 to 10 per cent of all available cycles on 
one sampling period, depending on DSP architecture). If invocation is done on every 
sample basis, the DSP spends service cycles pretty often, the overall input-output 
latency however would only be 1/ FT however wasting a lot of computational power 
of DSP on mentioned service cycles. A solution to this computational loss is called a 
block processing technique [5]. Depending on maximum allowed input-output signal 
latency (can vary with application) a block processing technique is utilized using 
either short or long buffer sizes. Given signal processing algorithm (if a feasible 
implementation exists) is invoked only once per block of samples of size n which 
saves interrupt service routine cycles spent on every 1/n samples rather than on every 
sample processed. This improves overall performance of embedded system by 2 to 10 
per cent. A general rule applies here, the bigger the block is the higher memory 
requirements are since larger memory block is allocated for samples buffer. 
Fortunately increasing block size is advantageous towards computational performance 
since the interrupt service routine is invoked less often and cycle saving becomes 
significant. A reasonable and often employed compromise for the block size is 
between 8 and 64 samples. This is however always individual to a given application. 
Thanks to the block-processing technique the DSP computational capacity as 
hardware architecture is 100 per cent loaded by the code execution and optimal 
performance is achieved while keeping the minimal input-output latency requirement 
due as well as achieving rather quick overall real-time response from the system. 
Employing block sizes from 8 to 64 samples the overall input-output latency values 
would be from 1 to 4msec depending on used sampling frequency. It is however 
necessary to mention that a latency gap created by difference between the critical 



Software Architectures for Real-time Embedded Applications for Broadcasting 
 

67 

minimal latency (7msec) and the latency achieved by using block processing (1-
4msec) is often consumed by signal processing algorithms  usually of convolution or 
look-ahead type [2] which often employ rather bigger block sizes for samples stored 
temporarily for processing in the DSP memory. 

The input-output latency requirement forces the embedded system software 
architecture to be designed so that it will be able to achieve such a performance. Most 
of the time, all of signal processing routines are designed using assembler hand-
optimized code and executed from Layer 1 memory region for the highest 
performance. Only the simple software architectural components are allowed to use 
mostly in conjunction with circular buffers and direct variables. 

 

3.   Software architecture components for broadcast embedded 
systems 

 
So far we have been speaking rather of broadcast embedded system 

implementation and technical requirements.  While it is crucial to adhere to these 
specifications strictly, they result in rather limited options for choosing broadcast 
embedded system appropriate software architecture. There is no general software 
architecture available fulfilling all mentioned needs.  Embedded systems however 
typically involve a combination of one or more partial software architecture types 
which in proper utilization and combination create a very well performing software 
system. Basic partial software architecture types [7] which adhere to these 
specifications are the following: 

• Domain-specific systems: could be described as “reference” systems for a 
domain specific area of application. By specializing the architecture to the 
domain it is often possible to create an improved the descriptive power of 
structures used in the architecture. Embedded systems software architecture is 
assumed to be a domain-specific system indeed. 

• Process control components: these architectural components are basically 
intended to provide very dynamic control over a signal processing 
environment with rather instant real-time response. In embedded systems, 
these are assembler written hand-optimized codes with very limited data 
structures focusing strictly on performance. They usually work with instant 
feedback control signals.  

• Pipes and filters: are based on a structure of a black-box in the middle with a 
set of inputs and outputs. The black-box is the processing algorithm itself 
whereas it processes the inputs and generates the outputs. Their advantageous 
property is they could be interconnected in between each other in various 
orders thus creating possibility of highly configurable system if processing 
order on signal does make a difference in the final result. One of the example 
implementation in the broadcast embedded system is any general audio 
processing algorithm used on a common circular buffer of audio samples. The 
advantage of using pipes-and-filters architecture here is that the order of 



O. Železník and Z. Havlice 
 

68 

process is easily defined since all algorithms work on the same data structure 
here. This gives programmer and user an easy way to modify the process itself 
on-the-fly in dynamic fashion thus achieving different process behaviors. The 
pipes-and-filters architecture is very well implemented in higher-level 
languages such as C due to its descriptive power to abstract structures rather 
than in assembly written code which is more difficult to approach from the 
above mentioned point of view. 

• Layered systems: are ones of the most used software architecture components 
in embedded systems. Since a very precise scheduling of tasks is required in 
such systems, these are most useful for the given purpose. Some of the layered 
systems may even involve hiding certain outer layers from inner layers thus 
creating a sort of “protected” environment for sharper overall stability of the 
whole system. A good example is a real-time OS driven embedded application 
where core and peripheral drivers are the most inner layer in the system and 
the user applications are the most outer layer, communicating with the core via 
communication and scheduler layer. Inner layers usually also serve as interrupt 
service routines for sampling and processing. Since scheduling reliability of 
these must be 100 per cent they are usually (with the OS core when 
implemented) on the same layer with highest priority of execution. Otherwise 
missing process for input sample causes strong and audible signal distortion 
and degrades system performance significantly. 

• Event-based invocation: is a specific software architecture component which 
is useful for controlling user input and implementing user interface. The 
advantage of this architecture component is in how algorithms can be layered 
by their priority and still be able to communicate-invocate themselves in 
event-based fashion with very good real-time response. One good example for 
system of this kind is a simple volume regulator. The sound processing part of 
algorithm is running at very high priority applying gain constant which is read 
from the control component volume, while there is another software 
component on the outer layer priority which does not need such sharp timing 
and can run much slower (difference in schedule intervals is more than 1000 
times). The algorithm there serves reading the control component volume and 
storing appropriate gain value into the common gain variable used by both 
components. Another useful example is generating events on button 
components when these are pressed-released. Each given button has assigned 
its own software component which is always invoked only when an event 
occurs on the button itself. More event-based invocation schemes are available 
and often used in the DSP embedded applications not only for broadcasting.  

 
 



Software Architectures for Real-time Embedded Applications for Broadcasting 
 

69 

LAYER 3

LAYER 2

OS CORE
SCHEDULER

SIGNAL PROCESS
SHARP

SCHEDULING

LAYER 1

CONTROL

PROCESS SYSTEMS

USER’S INTERFACE

SCHEDULING 
TOLERATES
EXECUTION 

MISSES

WEAK
SCHEDULING

WITH
FILTER-AND-PIPES

COMPONENTS

INFORMATION 
GATHERING

STORAGE AND 
ANALYSIS

INFORMATION BASE

Figure 1: Broadcast embedded system software architecture model 
 

As we have already mentioned the necessity of a proper combination of partial 
software architectures to achieve well performing overall system, over several years 
of extensive development in area of broadcast embedded applications I always ended 
up in the basic domain-specific software architecture as depicted in Figure 1.  

It is performance oriented and strictly adheres to the requirement of a minimal 
input-output latency still keeping user-programmer a possibility of generating quite 
dynamic and easily reprogrammable and customizable system.  

As a basis here is used distributed layered system with several components 
including architectural elements of other types. Core scheduler for user’s interface 
components is on the Layer 1 in conjunction with all signal based processing for its 
strict schedule timing requirement. The signal processing software components are 
usually written in assembly language due to weak code optimization performance of 
higher-level languages that however depends on hardware architecture used. The 
layer above in the model is usually serving for components which still need relatively 
sharp scheduling but missing few scheduled executions will not degrade system 
performance. Here are included analysis tools and routines which gather information 
from the signal and communicate with information base which is another part of 
distributed system. The outermost layer is usually implementing user’s interface 
written strictly in higher-level languages like C. Good combination at this layer is a 
use of event-based invocation components as well as auxiliary routines in filter-and-
pipes fashion. This software architecture model gives a very good overall 
performance and helps use DSP computational capability up to 100 per cent at nearly 
full execution time.  

Embedded system depicted as in Figure 1. is considered an information system 
because it also serves as analysis and storage function for incoming information/data 
represented by signal itself. The signal is analyzed by appropriate signal processing 
techniques and by artificial intelligence analysis algorithms resulting in a stream of 
knowledge information (musical genre, program type, voice genre, history of styles 
changes, commercial breaks history) stored in the distributed information base where 



O. Železník and Z. Havlice 
 

70 

it is later used for several statistical analysis and direct purposes for optimizing neural 
network for signal process control. Information base is rather large due to the fact that 
sound as a signal after digitalization represents lots of data necessary to analyze 
resulting in rather large information data as well. This is why the choice is rather in 
favour of distributed system. 

4.   Conclusions 

Continued modernization and improvement of the hardware DSP architectures 
enables implementing and using more and more complex software architectures in 
various areas of applications. Even more parallel functioning DSP processors 
challenge software optimization to higher levels and using improved parallelism they 
achieve sustained performance gain. This paper discusses aspects of appropriate 
software architecture selection for broadcast embedded applications used in broadcast 
processors. It faces strict philosophy requirements such as minimal input-output 
latency and analyses how this specification compromises options for software 
architecture selection. Paper also proposes a performance oriented software 
architecture model for broadcast oriented embedded applications including distributed 
information system components for data processing and storage. Further study is 
possible in area of improving software architecture to achieve better portability and 
re-use using higher-level programming languages even in inner layers of the 
architectural model, perhaps optimizing model for information base within the 
embedded system itself. 

 
 This work is supported by VEGA 1/2176/05 – Technologies for Agent-based and 

Component-based Distributed Systems Lifecycle Support.  

References 

[1] Gold, B., Morgan N.: Speech and Audio Signal Processing: Processing and Perception of 
Speech and Music, Hardcover, August 1999 

[2] Lathi, B. P.: Signal Processing & Linear Systems. Oxford University Press, New York 
(1998) 

[3] Mapes-Riordan, D.: A Worst-Case Analysis for Analog-Quality (Alias-Free) Digital 
Dynamics Processing, 105th Convention of the Audio Engineering Society (AES), USA 
San Francisco 1998 

[4] Foti, F.: Digital Dynamic Processing: “It’s All In The Samples!”, A Omnia Telos 
Company White Paper, Cleveland OH USA 2002 

[5] Ko, M., Shen, Ch., Bhattacharaya, S..: Memory-constrained Block Processing 
Optimization for Synthesis of DSP Software, International Conference on Embedded 
Computer Systems, Samos Greece 2006 

[6] Analog Devices.: ADSP-BF533 Blackfin Processor Hardware Reference, Analog Devices 
One Technology Way, USA 2003 

[7] Garlan, D., Shaw, M..: An Introduction to Software Architecture, CMU Software 
Engineering Institute Technical Report, CMU/SEI-94-TR-21, ESC-TR-94-21 


