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1 Introduction

It is well known that a correspondence theory for description logics (DLs), propo-
sitional modal logics (MLs) and propositional dynamic logics (PDLs) was given
in [Sch91] and that an axiomatic system for a description logic with inverse roles
was presented in the same paper. Schild’s paper covers what is to be discussed
in this paper although his paper did not mention nominals1 as well as expressive
roles explicitly. On the other hand, reductions to eliminate converse programs
(inverse roles in DLs) are known even for full PDL (ALCIreg); the original re-
duction from converse PDL to PDL was in [Gia96]. Moreover, a direct tableaux
method for converse PDL and further discussions on the elimination of converse
programs were given in [GM00]. Besides graded modalities, it was pointed out in
[Gia96] that the previous reduction technique is also applicable to nominals.

This paper shares some viewpoints well made in [Gia96]. The proposed
mapping process here is based on the simple idea to capture possible back-
propagation caused by the use of inverse roles2. This process consists of three
steps, tagging, recording, polarisation, which are introduced below. Concept ex-
pressions/formulae are assumed to be in negation norm form (NNF). For sim-
plicity, existential restrictions and universal restrictions are called modal con-
straints somewhere. We refer to [BCM+03] for usual background knowledge on
description logics (DLs).

2 Concept Satisfiability with General Concept Inclusions

Concept expressions/formulae are in NNF. For simplicity, we consider a GCI
(general concept inclusion) of the form > v C, where C is in NNF. The following
shows how to use three simple steps (tagging, recording and polarisation) to
convert a concept formula (in NNF) of a source logic with inverse roles to a
target logic without inverse roles. Terminological knowledge bases with general
concept inclusions (GCIs) are also considered.

1 Such viewpoint can be found in the early literature on hybrid logics, which are logics
extending the propositional modal logic with nominals (a.k.a. named states).

2 The proposed mapping technique also relies on the model properties of the descrip-
tion logics concerned in the paper.



Definition 1. (Tagging-1) The tagging technique introduces new concept names
for modal constraints of concept expressions and axioms. The function tag(.) on
a concept formula x is defined as:
(1) if x is C uD, then tag(x) = tag(C) u tag(D);
(2) if x is C tD, then tag(x) = tag(C) t tag(D);
(3) if x is ∃R.C, then tag(x) = ∃R.(tag(C));
(4) if x is ∀R.C, then tag(x) = Q(x)⊕ ∀R.(tag(C));
(5) if x is > v C, then tag(x) = > v tag(C);
(6) otherwise tag(x) = x.
where Q(x) is a fresh name unique for each x; C,D are subformulae; the symbol
⊕ represents the conjunction operator in exactly the same way as u.

U(R) denotes tagged universal constraints of the form Q(x)⊕ ∀R.(tag(C)),
where R is a role and U are sets indexed by roles. E0/E1 denotes the formulae
before and after tagging; K0/K1 denotes the GCI before and after tagging. Let
∀R.C be a subformula before tagging, we have after tagging:
(?) for x = ∀R.C, there is Q(x)⊕ ∀R.tag(C) ∈ U(R);

Definition 2. (Recording-1) Initialize Ka = ∅. For each set U(R) indexed by
each role R, and for each element (Q(x) ⊕ ∀R.(tag(C))) ∈ U(R), perform the
operation: Ka = Ka ∪ {> v tag(C) t ∀R−.¬Q(x)}.

Definition 3. (Polarisation-1) Pol(x) is performed on the tagged input for-
mula E1 to get a polarized E2, and on K1 ∪ Ka to get the polarized K2:
(1) if x is C uD, then Pol(x) = Pol(C) u Pol(D);
(2) if x is C tD, then Pol(x) = Pol(C) t Pol(D);
(3) if x is ∃R.C, then Pol(x) = ∃Ra.Pol(C);
(4) if x is ∀R.C, then Pol(x) = ∀Ra.Pol(C);
(5) if x is ∃R−.C, then Pol(x) = ∃Rb.Pol(C);
(6) if x is ∀R−.C, then Pol(x) = ∀Rb.Pol(C);
(7) if x is > v C, then Pol(x) = > v Pol(C);
(8) otherwise, Pol(x) = x.
where Ra (Rb) is a fresh role name unique for R (R−).

3 Concept Satisfiability/Abox Consistency with Tbox

The Tbox (a.k.a. terminological box) is a set of unfoldable axioms. The notion
of Tbox is related some fundamental notions such as name unfolding and GCI
absorption [BCM+03]. By descriptive semantics, equality axioms like A ≡ C are
expressed in two inclusion axioms A v C and ¬A v ¬C. The right-hand-sides
of the axioms are in NNF. An acyclic Tbox of only such inclusion axioms is called
simplified [Lut99]. In the following, we show how to use the three simple steps
(i.e., tagging, recording, polarisation) for Tboxes.

Definition 4. (Acyclic Ordering) The ordering relation3 is as following:
3 Due to acyclicity, ord(A) � ord(A) is not induced.



(1) for each axiom A v C, there is ord(A) � ord(C);
(2) ord(C uD) � ord(C) and ord(C uD) � ord(D);
(3) ord(C tD) � ord(C) and ord(C tD) � ord(D);
(4) ord(∃R.C) � ord(C);
(5) ord(∀R.C) � ord(C);

An Abox consists of concept assertions and role assertions. If an Abox has
several unconnected components, each of them can be treated alike separately.
We assume one individual has at most one label because d : C and d : D can
be replaced by d : C uD. W.l.o.g. we consider a single-component Abox A0 and
each individual has at most one label. We denote the label for di as L(di).

Definition 5. (Tagging-2) The function tag(x) is:
(1) if x is A v C, then tag(x) = A v tag(C);
(2) if x is ∃R.C, then tag(x) = P (x)⊕ ∃R.(tag(C));
(3) if x is individual di with L(di), then tag(x) = di : P (x)⊕ tag(L(di));
(4) if x is an individual di of no label, then tag(x) = di : P (x);
(5) otherwise, call Tagging-1 for x.
where P (x) is a unique name for each x, and the sign ⊕ stands for u.

The original Abox/Tbox are denoted as A0/T0, their tagged counterparts
are denoted as A1/T1. Notice we do not tag any role assertions. We also write
P (di) instead of P (x) if the tag is for an individual di. The set of tags for all
individuals of the Abox is D = {P (di)|di ∈ A0}. Let C denote any (sub)formula:
(?) for x = ∃R.C, there is P (x)⊕ ∃R.tag(C) ∈ E(R);
(?) for y = ∀R.C, there is P (y)⊕ ∀R.tag(C) ∈ U(R);
(?) for z = di, there is P (di) ∈ D;

We additionally stipulates ord(P (di)) � ord(tag(L(dj))) for any individual
di and dj . This forces P (di) to get a higher order than tag(L(dj)) (and higher
than subformulae of tag(L(dj)) but does not introduce cycles4.

Definition 6. (Recording-2) For two tuples β ∈ U(∗) and α ∈ (E(∗)
⋃
U(∗)

⋃
D)

where ∗ denotes any role name, if the following conditions are met:
(1) ord(α) � ord(β); and
(2) α = P (x)⊕ ∀R1.tag(C) or

α = P (x)⊕ ∃R1.tag(C) or
α = P (x) and x is some Abox individual di; and

(3) β = P (y)⊕ ∀R2.tag(D);
then perform the operation: Ta = Ta ∪ {P (x) v ∀R−

2 .¬P (y) t tag(D)}.

Definition 7. (Polarisation-2) Pol(x) is performed on the tagged Abox A1 to
get A2, and on the augmented Tbox T1 ∪ Ta to get T2:
(1) if x is A v C, then Pol(x) = A v Pol(C);
4 Please notice � is transitive. The extra requirement forces ord(P (di)⊕tag(L(di))) �

ord(P (di)) � ord(tag(L(di))). For i 6= j, we have: (1) ord(tag(L(di))) and
ord(tag(L(dj))) are incomparable; (2) ord(P (di)) and ord(P (dj)) are incompara-
ble; (3) ord(P (di)) � ord(tag(L(dj))).



(2) if x is (c, d) : R ∈ A1, then A2 = A2 ∪ {(c, d) : Ra, (d, c) : Rb};
(3) if x is (c, d) : R− ∈ A1, then A2 = A2 ∪ {(d, c) : Ra, (c, d) : Rb};
(4) if x is di : P (di)⊕ L(di) ∈ A1, then A2 = A2 ∪ {di : P (di)⊕ Pol(L(di))};
(5) otherwise, call Polarisation-1.
where Ra (Rb ) is a fresh role name unique for R (R−).

Though in the above only acyclic Tboxes are emphasized, the exact mapping
method also applies to cyclic Tboxes by simply dropping the acyclic ordering
condition prescribed at the recording step.

4 Experiments

We have implemented the mapping as presented in Section 1 to evaluate its
practicality. All satisfiability tests were performed with RacerPro 1.9.0 on a
Pentium PC with 3.5 GB memory. The tested ontologies were also converted on
the same machine. Note that the expressivity of the original ontologies is ALCI.

KB Name
Coherence Check
(original Tbox)

Conversion
Coherence Check
(converted Tbox)

galen-ir1-alci-new1 9.141 50.657 84.625

galen-ir2-alci-new1 9.549 52.547 76.156

uml-no-max-min-new4 timeout after 1 hour 1.156 0.110

revised-9-alci (partial) timeout after 20 mins 17.016 3.297

Table 1. Experimental results (all times are given in seconds)

KB Name
Num. of Axioms
(original/converted)

Classes/Properties
(original Tbox)

Classes/Properties
(converted Tbox)

galen-ir1-alci-new1 4645/5495 3107/234 3597/228

galen-ir2-alci-new1 4666/5508 3107/234 3597/228

uml-no-max-min-new4 524/739 233/213 448/213

revised-9-alci (partial) 3077/3099 2427/56 2449/37

Table 2. KBs before and after conversion (number of axioms, classes and properties)

Table 1 shows some empirical results (coherence check only), where the time
indicated is the average of 5 independent runs of the conversion system. It can
been seen that although more time is spent for testing Tbox coherence for the
converted versions of the first two KBs, the performance is still acceptable since
the KB sizes after conversion are nearly five times of the original ones. Evidently,
for the UML ontology the runtime after conversion is quite impressive. Besides,
we have also divided the UML ontology into two sub-ontologies, both of which,
if converted, require less time to compute the satisfiability of all the concepts.
Dramatic increase of performance is shown in the last case, where the ontology
contains one major class extracted from ontology “revised-9-alci”.



5 Discussions

The question about whether a decision procedure that has to work both “for-
ward” and “backward” could be implemented to run efficiently was raised long
ago in the literature, among them we mention [Gia96]. Nonetheless, the highly
optimized tableau-based reasoning systems (the 3rd generation [BCM+03]) are
convincingly found “to behave quite well” in practice for many realistic prob-
lems. As description logics are widely used in diverse application domains, dif-
ferent “application patterns” produce a lot of realistic problems that might not
be quite “tractable” as previous ones in terms of “problem size” and “problem
structure”. Several application domains are known to easily give “practically
intractable problems”, e.g., the model checking field, probably due to their in-
distinct narrative styles, i.e., extensive use of tightly constrained constraints.
Recently, it was even found that some small-size ontologies are “hard” enough
to kill some best tableau-based DL systems currently available. The existence
of latest “intractable realistic problems” is more baffling than any indistinct
narrative style that people have seen before.

Schild has provided an axiomatic system [Sch91] for ALCI, the DL extending
the basic description logic ALC with inverse roles. A correspondence theory for
description logics, propositional modal logics and propositional dynamic logics
was also given in [Sch91]. In [Gia95] and [CGR98], the “converse elimination
technique” was presented for the CPDL and ALCIreg. Their technique is more
general than what is presented in this paper and was extended in various aspects.
Important literature on “converse elimination” and a direct tableaux approach
include [Gia96] and [GM00]. Their transformation leads to target problems in
the ExpTime class. Their technique could possibly lead to good implementations
in practice. However, it is not very clear if there was any empirical result about
their elimination of converse for the so-called “realistic problems”.

A worst-case optimal tableau procedure for testing concept satisfiability w.r.t.
general Tbox was given in [DM00] for ALC in details. Their technique of caching
intermediate results and nogoods has deep influence on tableau-based DL sys-
tems. The belief that description logics without inverse roles lend themselves
better to optimisations (e.g. the caching technique) originates from [DM00] and
is well supported from practice. Lutz discussed the complexity cliff phenomenon
for the problem of concept satisfiability test w.r.t. an acyclic Tbox in several
logics in [Lut99]. One of the results showed is a tableaux procedure that takes
a polynomial space for concept satisfiability test w.r.t. an acyclic Tbox in ALC.
The pre-completion technique was proposed in [DLNS94] [Hol94] for reducing
the Abox consistency problem to a number5 of concept satisfiability tests to be
carried out independently. For a pre-completion technique for SH Abox (which
strictly contains the logic ALC) w.r.t. Tbox, see [TG99].

The proposed mapping in this paper allows tableau-based decision procedures
to safely use the global sub-tableaux caching technique. This gives a hope that the
run-time performance should not be much worse than using the dynamic block-

5 It is the exact number of Abox individuals.



ing and the pseudo-model merging techniques, two best optimisations currently
available [BCM+03] to tableau-based decision procedures for DLs with inverse
roles. This conjecture is supported by our first-hand experiments. Further, the
pseudo-model merging technique coexists with the global sub-tableaux caching
technique. Also, the new axioms introduced in the recording step can be “selec-
tively” used to simulate the well-known tableau expansion rules in such a way
that if the well-known tableau algorithm (that allows bi-directional propagation
of constraints) constructs a pre-model for the source problem, then this construc-
tion process can be repeated to construct a pre-model for the target problem at
an equal cost. The only possible disadvantage of the proposed mapping is that
it introduces extra concept names and extra axioms (with one disjunction per
axiom). However it should be noted that these extra names and axioms are for
“simulating” the well-known tableau expansion rules that rely on the dynamic
blocking technique. Moreover, the newly recorded axioms are not necessarily GCIs
but can always be unfoldable axioms (as shown in Section 3).

We require each role has a unique inverse role. For a role R, for example,
we consider R− as the only inverse role. This takes a linear cost. The presented
transformation is equisatisfiability preserving, and is fine-grained in the sense that
the target problems stay in the same complexity class as the source problems.
The recording operation descends from the C-rule (the Ramsey-Rule) which
states an equivalence of ∃R.C v D and C v ∀R−.D [Ram31]. This equivalence
was rediscovered in DLs and was lately used for new absorption techniques, for
example [HW06] and [SGP06].

This paper largely follows and extends our previous work in [DH05]. In
[DH05], we proposed three different ways to deal with ALCI. The first was a dy-
namic caching technique that extends the dynamic blocking technique to work on
different traces and thus allows anywhere blocking. The second was a reachability
analysis to guarantee the soundness of the global sub-tableaux caching technique
through a pre-compilation of a Tbox. The third was about the equivalence men-
tioned above. In this paper, rather than to enrich the absorption technique as
previously perceived, we used the equivalence in a different and novel way. Here
we have presented two versions of a mapping technique to deal with GCIs and
(acyclic) Tboxes6. It also works for nominals and expressive roles. Moreover, the
mapping without polarisation is quite interesting in itself for it brings a back-
propagation don’t-care property for the target problems (now in DLs with inverse
roles). Here is a summary conclusion of the proposed mapping technique:

– every knowledge base in fragments of SHOI that contain SHI (or ALCOI)
can be converted to a unfoldable Tbox in the corresponding fragments con-
taining SH (or ALCO);

– every (acyclic) unfoldable Tbox in ALCHI (or its fragments) can be con-
verted to an (acyclic) unfoldable Tbox in ALCH (or corres. fragments);

– the mapping is fine-grained in the sense that the target problems stay in the
same complexity class as the source problems.

6 The transformation is presented for the Abox consistency check problem w.r.t.
(acyclic) Tboxes.



It is observed in our current experiments that some (not all) very hard on-
tologies the coherence of which could not even be tested are able to be classified
in reasonable time. For optimisations of the classification, they are beyond the
satisfiability test based (tableau-based) decision procedures. It is well known
that classification could even be done without resorting to any satisfiability test
at all, for example [BHN+92] [TH05]. Right now, we are preparing an opti-
mized and extended implementation. An in-depth empirical analysis is under
way. For a parallel work on a worst-case ExpTime (binary coding of numbers)
tableau-based decision procedure forALCQI, a description logic containing both
qualified number restrictions and inverse roles, see [DH07].
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A One Working Example

Give a concept E0 = ∃s−.C2, and a Tbox K0 of the following nine general axioms
in logic ALCI:

(a1)> v ¬C1 t ∃q.C2 (a2)> v ¬C2 t ∀s.C4

(a3)> v ¬C4 t ∃p.C3 (a4)> v ¬C3 t ∃s−.C2

(a5)> v ¬C2 t ∀s.C5 (a6)> v ¬C5 t ∀p−.C6

(a7)> v ¬C6 t ∀p−.C7 (a8)> v ¬C7 t ∀s−.C8

(a9)> v ¬C8 t ∀q−.C9

Source Problem: the satisfiability of E0 w.r.t. K0 in ALCI.
Step-1: perform tagging. For each ai, there is a′i = tag(ai).

(a′1)> v ¬C1 t ∃q.C2 (no change from a1)
(a′2)> v ¬C2 t (A1 ⊕ ∀s.C4)
(a′3)> v ¬C4 t ∃p.C3 (no change from a3)
(a′4)> v ¬C3 t ∃s−.C2 (no change from a4)



(a′5)> v ¬C2 t (A2 ⊕ ∀s.C5)
(a′6)> v ¬C5 t (A3 ⊕ ∀p−.C6)
(a′7)> v ¬C6 t (A4 ⊕ ∀p−.C7)
(a′8)> v ¬C7 t (A5 ⊕ ∀s−.C8)
(a′9)> v ¬C8 t (A6 ⊕ ∀q−.C9)
The tagging operation changes nothing for axioms a1, a3 and a4. Aj are newly

introduced tags for occurrences of universal constraints. Now, K1 = {a′i}; the
tagged concept is E1 = tag(E0) = ∃s−.C2.
Step-2: perform recording. Each Aj has an axiom rj .

(r1)> v ∀s−.¬A1 t C4 (r2)> v ∀s−.¬A2 t C5

(r3)> v ∀p.¬A3 t C6 (r4)> v ∀p.¬A4 t C7

(r5)> v ∀s.¬A5 t C8 (r6)> v ∀q.¬A6 t C9

Now, Ka = {rj}.
Step-3: perform polarisation. Notice K2 = Poly(K1∪Ka). Accordingly, we have
ci = Poly(a′i) and dj = Poly(rj) as following.

(c1)> v ¬C1 t ∃qa.C2

(c2)> v ¬C2 t (A1 ⊕ ∀sa.C4)
(c3)> v ¬C4 t ∃pa.C3

(c4)> v ¬C3 t ∃sb.C2

(c5)> v ¬C2 t (A2 ⊕ ∀sa.C5)
(c6)> v ¬C5 t (A3 ⊕ ∀pb.C6)
(c7)> v ¬C6 t (A4 ⊕ ∃pb.C7)
(c8)> v ¬C7 t (A5 ⊕ ∀sb.C8)
(c9)> v ¬C8 t (A6 ⊕ ∀qa.C9)
(d1)> v ∀sb.¬A1 t C4 (d2)> v ∀sb.¬A2 t C5

(d3)> v ∀pa.¬A3 t C6 (d4)> v ∀pa.¬A4 t C7

(d5)> v ∀sa.¬A5 t C8 (d6)> v ∀qa.¬A6 t C9

We get E2 = Poly(E1) = Poly(∃s−.C2) = ∃sb.C2; and K2 = {ci} ∪ {dj} as
listed above. The newly introduced roles {sa, pa, qa, sb, pb, qb} replace the old
roles {s, p, q, s−, p−, q−}. Replace ⊕ with u and we get the problem in ALC.
Target problem: the satisfiability of E2 w.r.t. K2 in ALC.

B Proofs

Definition 8. (Fischer-Ladner Closure) The Fischer-Ladner closure[FL79]
FL(H) of a set of formulae H is the least set of formulae which is inductively
generated as follows:
(1) H is a subset of FL(H); (2) if C ∈ FL(H), then so is ¬C;
(3) if C uD ∈ FL(H), then so are C and D;
(4) if C tD ∈ FL(H), then so are C and D;
(5) if ∃R.C ∈ FL(H), then so is C; (6) if ∀R.C ∈ FL(H), then so is C.

To denote a modal constraint, we use ∃
∀R.tag(C). The tag(.) operation (re-

cursively) converts one modal constraint to a conjunction having two conjuncts.



In each tagged constraint we stipulate that the tag is on the left and the modal
constraint is on the right. This excludes cases like ∃

∀R.tag(C) uQ(x).

Definition 9. Let Q(x)u ∃
∀R.tag(C) be a tagged constraint in the Tbox KT and

the formula E. Consider the Fischer-Ladner closure FL(KT ∪{E}), a generating
formula for ∃

∀R.tag(C) is a formulae α such that FL({α}) ⊃ FL({∃∀R.tag(C)}),
and α /∈ {∃∀R.tag(C),¬(∃∀R.tag(C))}.

Definition 10. The generating formula α for ∃
∀R.tag(C) is least if there exists

no other generating formula β s.t. FL({β}) ⊂ FL({α}).

A few comments are necessary: (1) Each tag Q(x) is unique and occurs only
as a conjunct; its negation ¬Q(x) occurs only as a disjunct; (2) Q(x)u ∃

∀R.tag(C)
and ¬(Q(x) u ∃

∀R.tag(C)) are two least generating formulae for ∃
∀R.tag(C). We

call the former positive and the latter negative; (3) The formulae have already
been converted into NNF before performing the mapping; (4) The tagging op-
eration assigns a set of unique tags for one modal constraint and that a least
generating formula for the tag Qi(x) will also be a least generating formula
for the tagged modal constraint; (5) Only positive generating formulae need to
be considered[BCM+03] when building a model7. These lead to the notion8 of
p-model.

Definition 11. Given E and KT that are tagged formula and Tbox. Let Q1(x)u
∃
∀R.tag(C), ..., Qm(x) u ∃

∀R.tag(C) be tagged constraints. A p-model for E and
KT is a model (∆I , .I) such that for any n ∈ ∆I there are
(1) if n ∈ (Qi(x))I then n ∈ (∃∀R.tag(C))I ; and
(2) if n ∈ (∃∀R.tag(C))I , then there is Qi(x) for ∃

∀R.tag(C) s.t. n ∈ (Qi(x))I .

Lemma 1. Given E and KT as the tagged formula and the tagged Tbox. Let
Qi(x) u ∃

∀R.tag(C) be tagged constraints in E and KT , where i = 1, ...,m. E
and KT is satisfiable only if it is satisfiable in a p-model.

Proof. Only proof outline. Let M1 = (∆I1 , .I1) be any model for E and KT .
We use the well-known sub-model generating technique9 to get a p-model

from M1. To guide the extraction process, it is only necessary to consider the
positive generating formulae. To be precise, for any n ∈ ∆I1 , the extraction
process ignores assertions like n ∈ (¬(Qi u ∃

∀R.tag(C)))I1 , where ∃
∀R.tag(C) is

a tagged constraints with a unique set of tags {Q1, Q2, ..., Qm}.
Starting from a (root) node with L(n) ⊇ {E} ∪ KT , a guided extraction

process (focusing on positive least generating formulae) generates a sub-model
7 This is true forALCI and expressive logics without the qualified number restrictions.
8 Consider a multi-valued function from modal constraints to tags f(∃∀R.tag(C)) =
{Q1, ..., Qm} s.t. f(x) ∩ f(y) = ∅ for x 6= y. The model of interest is such a model
(∆J , .J ) that ∀n ∈ ∆J : (i) for all 1 ≤ i ≤ m, (Qi)

J ⊆ (∃∀R.tag(C))J ; and (ii) if
n ∈ (∃∀R.tag(C))J , then n ∈ QJ

i for some 1 ≤ i ≤ m.
9 It has also been extensively used in the literature in the completeness proof of certain

tableau-calculus for DLs with inverse roles.



from M1. It is verifiably a model by routinely showing/checking it is saturated
and clash-free, and it meets p-model definition. So, there is a p-model (∆I2 , .I2)
provided that (∆I1 , .I1) be a model (which is saturated and has no clash). ut

Lemma 2. Given a concept formula E′ and a Tbox KT ′. Let the tagged formula
and Tbox be E and KT . E′ is satisfiable w.r.t. KT ′ iff E is satisfiable w.r.t. KT .

Proof. The proof uses the same sub-model generating technique as above and a
mapping from the ∃

∀R.tag(C) to Qi u ∃
∀R.tag(C) and vice versa.

From the p-model (out of the above sub-model generating) for E and KT ,
taking away (negated) tags leads to a model for E′ and KT ′ (having no tags).

In the other direction, for any model of E′ and KT ′, a mapping reflecting
the tag operation (from the ∃

∀R.tag(C) to Qiu ∃
∀R.tag(C) for some Qi) will lead

to a model (interpreting tags) for E and KT . Since a p-model is a model, this
concludes that the tagging operation preserves satisfiability. ut

B.1 Concept Satisfiability Test with General Concept Inclusions
Lemma 3. if E1 and K1 has a p-model, then Ka is satisfiable in that model.
Proof. This follows from the definition of p-model Q(x)I ⊆ (∀R.tag(C))I . ut

Lemma 4. E1 is satisfiable w.r.t. K1 ∪ Ka iff E1 is satisfiable w.r.t. K1.
Proof. (Only If Direction) It is trivial.

(If Direction) Let M2 a p-model for E1 and K1. According to the lemma
above, Ka is always satisfied in the p-model for both E1 and K1. It follows that
M2 is a model for E1 and K1 ∪ Ka. ut

Lemma 5. E1 is satisfiable w.r.t. K1 ∪ Ka iff E2 is satisfiable w.r.t. K2.

Proof. Note E2 = Pol(E1) and K2 = Pol(K1 ∪ Ka).
(If Direction) Let M2 = (∆I2 , .I2) be a p-model (possibly non-tree) for E2

and K2. For m′, n′ ∈ ∆I2 , consider a mapping to m,n ∈ ∆I1 such that
(1) if (m′, n′) ∈ (Ra)I2 , then (m,n) ∈ RI1 ;
(2) if (m′, n′) ∈ (Sb)I2 , then (m,n) ∈ (S−)I1 ;
(3) if m′, n′ ∈ Poly(C)I2 , then m,n ∈ CI1 .
(Only If Direction) Let M1 = (∆I1 , .I1) be a p-model (possibly non-tree) for

E1 and K1. For m,n ∈ ∆I1 , consider a mapping that maps them to m′, n′ ∈ ∆I2

(1) if (m,n) ∈ RI1 , then (m′, n′) ∈ (Ra)I2 and (n′,m′) ∈ (Rb)I2 ;
(2) if (m,n) ∈ (S−)I1 , then (m′, n′) ∈ (Sb)I2 and (n′,m′) ∈ (Sa)I2 ;
(3) if m,n ∈ CI1 then m′, n′ ∈ Poly(C)I2 .
R, S− are roles in ALCI; Ra, Rb, Sa, Sb are roles in ALC.
Note the definition of p-models and the special axioms acquired by the record-

ing operation. In both directions, at each element of the target interpretation, all
constraints are satisfied both locally and w.r.t. its neighbor elements provided
the given (∆Ik , .Ik) be a p-model. This concludes that the polarisation operation
preserves equisatisfiability (for a tagged and recorded problem). ut

Lemma 6. ‖E2‖+ ‖K2‖ is of O(n2) where n = ‖E0‖+ ‖K0‖.



Theorem 1. (1) E0 is satisfiable w.r.t. K0 iff E2 is satisfiable w.r.t. K2. (2)The
satisfiability of E0 w.r.t. K0 in ALCI can be decided by a test of E2 w.r.t. K2

in ALC. (3) The concept satisfiability w.r.t. GCIs in ALCI can be decided in
exponential time by the tableaux procedure in ALC [DM00].

B.2 Concept Satisfiability/Abox Consistency with (Acyclic) Tbox

Regarding to acyclic Tboxes in DLs without inverse roles, we refer to [Lut99] and
[Tes01] for their results. We list supporting theorems and lemmas. The proofs
are similar to the ones previously done for general axioms.

Theorem 2. (Acyclic ALC Tbox[Lut99]) The concept satisfiability w.r.t.
an acyclic Tbox in ALC is decidable in PSPACE by a tableau-based procedure.

Lemma 7. For an input concept E0 and an acyclic Tbox T0 in ALCI, by
tagging-recording-polarisation the concept E2 and the acyclic Tbox T2 in ALC
is of size O(n3), where n = ||E0||+ ||T0||.
Proof. (outline only) By a similar step-by-step proof10 (as in the case of gen-
eral axioms), it is able to show E2 and T2 is equisatisfiable to E0 and T0. The
acyclicity of T2 is easy to verify. The number of combinations (formulae α, β s.t.
ord(α) � ord(β)) is at most n2 and each new axiom is of size at most n. ut
Lemma 8. The concept satisfiability problem w.r.t. an acyclic Tbox in ALCI
can be decided in PSPACE by tableau procedures as given in [Lut99].

Lemma 9. For Abox Consistency, T2 is acyclic. The conversion (a streamlined
tagging, recording and polarisation operations) takes a polynomial space.

Lemma 10. The consistency of an Abox w.r.t. an acyclic Tbox in ALCI can
be decided by the consistency check of an Abox w.r.t. an acyclic Tbox in ALC.
Theorem 3. (Precompletion[Tes01]) A precompletion of an Abox w.r.t. a
Tbox can be nondeterministically computed in a polynomial space; the size of
each precompletion is polynomial bounded.

Theorem 4. The consistency of an Abox w.r.t. an acyclic Tbox in ALCI can
be decided in PSPACE by tableau-based decision procedures.

Proof. (1) Perform the conversion to get the target problem, which is of a poly-
nomial size to the source problem. The conversion itself takes a polynomial
space; (2) Nondeterministically compute one precompletion. Then individuals
of the target Abox are subject to satisfiability tests by the PSPACE procedure
in [Lut99] w.r.t. the target Tbox independently. If each individual of the target
Abox is satisfiable, the source problem is consistent. The Abox consistency prob-
lem w.r.t. an acyclic Tbox is decidable in a nondeterministic polynomial space.
Consider Savitch’s theorem[Sav70]. This ends the proof11. ut

10 Proofs of equisatisfiability do not use acyclicity or properties of Aboxes in our case.
These properties are however needed in proofs of particular decision procedures that
are PSPACE and they are taken into account by previous work [Lut99] [Tes01]. We
cite those results as theorems.

11 Similar arguments were extensively used for PSPACE tableaux in the literature.


