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1 Introduction

In recent years, lightweight description logics (DLs) have experienced increased in-
terest because they admit highly efficient reasoning on large-scale ontologies. Most
prominently, this is witnessed by the ongoing research on the DL-Lite and EL families
of DLs, but see also [11, 14] for other examples. The main application of EL and its
relatives is as an ontology language [5, 1, 3]. In particular, the DL EL++ proposed in
[1] admits tractable reasoning while still providing sufficient expressive power to rep-
resent, for example, life-science ontologies. In contrast, the DL-Lite family of DLs is
specifically tailored towards data intensive applications [8, 6, 7]. In such applications,
instance checking and conjunctive query answering are the most relevant reasoning
tasks and should thus be computationally cheap, preferably tractable. When determin-
ing the computational complexity of these task for a given DL, it is often realistic to
consider data complexity, where the size of the input is measured only in terms of the
ABox (which represents the data and tends to be large), but not in terms of the TBox
and the query concept (which tend to be comparatively small). This is in contrast to
combined complexity, where also the size of the TBox and query concept are taken into
account.

The aim of this paper is to analyse the suitability of the EL family of DLs for data in-
tensive applications. In particular, we analyse the data complexity of instance checking
and conjunctive query answering in extensions of EL. For the DL-Lite family, such an
investigation has been carried out in [7], with complexities ranging from LOGSPACE-
complete to coNP-complete. It follows from the results in [7] that, at least w.r.t. general
TBoxes, we cannot expect the data complexity to be below PTIME for members of the
EL family. The reason is that, in a crucial aspect, DL-Lite is even more lightweight
than EL: in contrast to the latter, the former does not allow for qualified existential (nor
universal) restrictions and thus the interaction between different domain elements is
very limited. When analyzing the data complexity of instance checking and conjunctive
query answering in EL and its extensions, we therefore concentrate on mapping out the
boundary of tractability.

We consider a wide range of extensions of EL, and analyze the data complexity
of the mentioned tasks with acyclic TBoxes and with general TBoxes. When select-
ing extensions of EL, we focus on DLs for which instance checking has been proved
intractable regarding combined complexity in [1]. We show that, in most of these ex-
tensions, instance checking is also intractable regarding data complexity. The notable



exceptions are EL extended with globally functional roles and EL extended with inverse
roles. It is shown in [2] that instance checking in these DLs is EXPTIME-complete re-
garding combined complexity. On the other hand, it follows from results in [11] that
instance checking is tractable regarding data complexity in ELIf , the extension of EL
with both globally functional and inverse roles. In this paper, we extend this result to
conjunctive query answering in ELIf is still tractable regarding data complexity.

We recommend to the reader the papers [15, 16], which also analyze the complexity
of conjunctive query answering in extensions of EL. The results in these papers have
been obtained independently of and in parallel to the results in the current paper.

2 Preliminaries

We use standard notation for the syntax and semantics of EL and its extensions, see [4].
The additional constructors we consider are atomic negation ¬A, disjunction C t D,
sink restrictions ∀r.⊥, value restrictions ∀r.C, at-most restrictions (≤ n r), at-least
restrictions (≥ n r), inverse roles ∃r−.C, role negation ∃¬r.C, role union ∃r ∪ s.C,
and transitive closure of roles ∃r+.C. We denote extensions of EL in a canonical way,
writing e.g. EL∀r.⊥ for EL extended with sink restrictions and ELCtD for EL extended
with disjunction. Since we perform a very fine grained analysis, EL(≤nr) means the
extension of EL with (≤ n r) for some fixed n (but not for some fixed r). We will also
consider EL extended with global at-most restrictions: ELkf denotes the version of EL
obtained by reserving a set of k-functional roles that satisfy |{e | (d, e) ∈ rI}| ≤ k
for all interpretations I and all d ∈ ∆I . Instead of 1-functional roles, we will speak of
functional roles as usual.

We will consider acyclic TBoxes which are defined in the usual way, and general
TBoxes which are finite sets of concept inclusions C v D. As usual when analyzing
data complexity, we do not admit complex concepts in the ABox. Thus, ABoxes are
sets of assertions A(a) and r(a, b), where A is a concept name. Most of our results do
not depend on the unique name assumption (UNA), which states that aI 6= bI for all
distinct individual names a, b. Whenever they do, we will state explicitly whether the
UNA is adopted or not. We write A, T |= C(a) to denote that a is an instance of C
w.r.t. A and T (defined in the usual way). Also, we use Ind(A) to denote the set of
individual names occurring in A.

Since conjunctive query answering is not a decision problem, we will study con-
junctive query entailment instead. For us, a conjunctive query is a set q of atoms A(v)
and r(u, v), where A is a concept name, r a role name or an inverse role, and u, v are
variables. We use Var(q) to denote the variables used in q. If I is an interpretation and
π is a mapping from Var(q) to ∆I , we write I |=π A(v) if π(v) ∈ AI , I |=π r(u, v)
if (π(u), π(v)) ∈ rI , and I |=π q if I |=π α for all α ∈ q. If π is not important, we
simply write I |= q. Finally, A, T |= q means that for all models I of the ABox A and
the TBox T , we have I |= q. Now, conjunctive query entailment is to decide given A,
T , and q, whether A, T |= q. It is not hard to see that instance checking is a special
case of conjunctive query entailment. Note that we do not allow individual names in
conjunctive queries in place of variables. It is well-known that conjunctive query entail-



ment in which individual names are allowed in the query can be polynomially reduced
to conjunctive query entailment as introduced here, see for example [9].

3 Lower Bounds

In [17], Schaerf proves that instance checking in EL¬A w.r.t. empty TBoxes is co-NP-
hard regarding data complexity. He uses a reduction from a variant of SAT that he
calls 2+2-SAT. Our lower bounds for extensions of EL are obtained by variations of
Schaerf’s reduction. They all apply to the case of acyclic TBoxes.

Before we start, a note on TBoxes is in order. We will usually not consider the case
where there is no TBox at all because, then, ABoxes that are restricted to concept names
are extremely inexpressive. Actually, it is not hard to show that, without TBoxes, con-
junctive query containment is tractable regarding data complexity for all extensions of
EL considered in this paper with the exception of ELkf , for which it is coNP-complete
(which is proved below).

3.1 Basic Cases

A 2+2 clause is of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each of p1, p2, n1, n2 is
a propositional letter or a truth constant 1, 0. A 2+2 formula is a finite conjunction of
2+2 clauses. Now, 2+2-SAT is the problem of deciding whether a given 2+2 formula
is satisfiable. It is shown in [17] that 2+2-SAT is NP-complete. To get started with our
lower bound proofs, we repeat Schaerf’s proof showing that instance checking in EL
extended with primitive negation is co-NP-hard regarding data complexity.

Let ϕ = c0 ∧ · · · ∧ cn−1 be a 2+2-formula in m propositional letters q0, . . . , qm−1.
Let ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all i < n. We use f , the propositional letters
q0, . . . , qm−1, the truth constants 1, 0, and the clauses c0, . . . , cn−1 as individual names.
Define the TBox T as {A

.
= ¬A} and the ABox Aϕ as follows, where c, p1, p2, n1,

and n2 are role names:

Aϕ := {A(1), A(0), c(f, c0), . . . , c(f, cn−1)}

∪
⋃

i<n{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

Models of Aϕ and T represent truth assignments for ϕ by way of setting qi to true iff
qi ∈ AI . Set C := ∃c.(∃p1.A u ∃p2.A u ∃n1.A u ∃n2.A). Intuitively, C expresses
that ϕ is not satisfied, i.e., there is a clause in which the two positive literals and the
two negative literals are all false. It is not hard to show that Aϕ, T 6|= C(f) iff ϕ

is satisfiable. Thus, instance checking in EL¬A w.r.t. acyclic TBoxes is co-NP-hard
regarding data complexity.

This reduction can easily be adapted to EL∀r.⊥. In all interpretations I, ∃r.> and
∀r.⊥ partition the domain ∆I and can thus be used to simulate the concept name A and
its negation ¬A in the original reduction. We can thus simply replace the TBox T with
T ′ := {A

.
= ∃r.>, A

.
= ∀r.⊥}.

In some extensions of EL, we only find concepts that cover the domain, but not
necessarily partition it. An example is EL(≤kr), k ≥ 1, in which ∃r.> and (≤ k r)



provide a covering (for k = 0, observe that (≤ k r) is equivalent to ∀r.⊥). Interestingly,
this does not pose a problem for the reduction. In the case of EL(≤kr), we use the TBox
T := {A

.
= ∃r.>, A

.
= (≤ k r)}, and the ABox Aϕ as well as the query concept C

remain unchanged. Let us show that Aϕ, T 6|= C(f) iff ϕ is satisfiable. For the “if”
direction, it is straightfoward to convert a truth assignment satisfying ϕ into a model I
of Aϕ and T such that f /∈ CI . For the “only if” direction, let I be a model of Aϕ and
T such that f /∈ CI . Define a truth assignment t by choosing for each propositional
letter qi, a truth value t(qi) such that t(qi) = 1 implies qIi ∈ A and t(qi) = 0 implies
qIi ∈ A. Such a truth assignment exists since A and A cover the domain. However, it
is not necessarily unique since A and A need not be disjoint. To show that t satisfies
ϕ, assume that it does not. Then there is a clause ci = (pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2)
that is not satisfied by t. By definition of t and Aϕ, it is not hard to show that cIi ∈
(∃p1.A u ∃p2.A u ∃n1.A u ∃n2.A)I and thus f ∈ CI , which is a contradiction.

The cases EL∀r.C and EL∃¬r.C can be treated similarly because a covering of the
domain can be achieved by choosing the concepts ∃r.> and ∀r.X in the case of EL∀r.C ,
and ∃r.> and ∃¬r.> in the case of EL∃¬r.C . In the case, ELCtD, we use a TBox
T ′ := {V

.
= X t Y }. In all models of T ′, the extension of V is covered by the

concepts X and Y . Thus, we can use the above ABox Aϕ, add V (qi) for all i < m, and
use the TBox T := T ′ ∪ {A

.
= X,A

.
= Y } and the same query concept C as above.

The case EL∃r+.C is quite similar. In all models of the TBox T ′ := {V
.
= ∃r+.C}, the

extension of V is covered by the concepts ∃r.C and ∃r.∃r+.C. Thus, we can use the
same ABox and query concept as for ELCtD, together with the TBox T := T ′∪{A

.
=

∃r.C,A
.
= ∃r.∃r+.C}.

Theorem 1. For the following, instance checking w.r.t. acyclic TBoxes is co-NP-hard
regarding data complexity: EL¬A, EL∀r.⊥, EL∀r.C , EL∃¬r.C , ELCtD, EL∃r+.C , and
EL(≤kr) for all k ≥ 0.

3.2 Cases that depend on the UNA

The results in the previous subsection are independent of whether or not the UNA is
adopted. In the following, we consider some cases that depend on the (non-)UNA, start-
ing with EL(≥k r).

In EL(≥k r), k ≥ 2, it does not seem possible to find two concepts that a priori cover
the domain and can be used to represent truth values in truth assignments. However, if
we add slightly more structure to the ABox, such concepts can be found. We treat only
the case k = 3 explicitly, but it easily generalizes to other values of k. Consider the
ABox

A = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), r(b2, b3), r(b1, b3)}.

Without the UNA, there are two cases for models of A: either two of b1, b2, b3 identify
the same domain element or they do not. In the first case, a satisfies ∃r4.>, where ∃r4

denotes the four-fold nesting of ∃r. In the second case, a satisfies (≥ 3 r). It follows
that we can reduce satisfiability of 2+2 formulas using a reduction very similar to the
one for EL(¬A). The main differences are that (i) a copy of A is plugged in for each qi,
with a replaced by qi and (ii) we use the TBox T := {A

.
= ∃r4.>, A

.
= (≥ 3 r)}.



Unlike the previous results, this lower bound clearly depends on the fact that the
UNA is not adopted. We leave it as an open problem whether instance checking in
EL(≥k r) w.r.t. acyclic TBoxes is tractable if the UNA is adopted. In the following, we
show that instance checking becomes coNP-hard under the UNA if we admit general
TBoxes. Again, we only treat the case k = 3 explicitly. Define a TBox

T := { V v ∃r.X u ∃r.Y u ∃r.Z

(≥ 3 r) v A

∃r.(X u Y ) v A ∃r.(X u Z) v A ∃r.(Y u Z) v A }.

In models of T , the extension of V is covered by A and A. Therefore, we can adapt the
reduction by using the reduction ABox defined for ELCtD.

Theorem 2. For EL(≥k r) with k ≥ 2, instance checking is co-NP-hard in the follow-
ing cases: (i) w.r.t. acyclic TBoxes and without UNA and (ii) w.r.t. general TBoxes and
with (or without) UNA.

Another case that depends on the (non-)UNA is ELkf with k ≥ 2. We can prove coNP-
hardness provided that the UNA is not adopted. For the case EL1f , we will prove in
Section 4 that instance checking (and even conjunctive query entailment) is tractable
regarding data complexity, with or without the UNA. For simplicity, we only treat the
case EL2f explicitly. It is easy to generalize our argument to larger values of k. Like in
EL(≥3r), in EL2f it does not seem possible to find two concepts that cover the domain
without providing additional structure via an ABox. Set

A′ = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), A(b1), A(b2), B(b3)}}.

where r is 2-functional and thus at least two of b1, b2, b3 have to identify the same
domain element. We can distinguish two cases: either b3 is identified with b1 or b2, then
a satisfies ∃r.(A u B). Or b1 and b2 are identified, then a satisfies ∃r3.>, where ∃r3

denotes the three-fold nesting of ∃r. It follows that we can reduce satisfiability of 2+2
formulas using a reduction very similar to that for EL(≥3r) above. Interestingly, we
do not need a TBox at all to make this work. We take the original ABox Aϕ defined
for EL¬A, add a copy of A′ for each qi with a replaced by qi, and replace A(1) with
{r(1, e), A(e), B(e)} and A(0) with {r(⊥, e0), r(e0, e1), r(e1, e2)}. Thus, 1 satisfies
∃r.(A u B) (representing true) and 0 satisfies ∃r3.> (representing false). It remains to
modify the query concept to C ′ := ∃c.(∃p1.∃r3.> u ∃p2.∃r3.> u ∃n1.∃r.(A u B) u
∃n2.∃r.(A u B)).

With the UNA and without TBoxes, instance checking in ELkf , k ≥ 2 is tractable
regarding data complexity. The same holds for conjunctive query answering. In a nut-
shell, a polytime algorithm is obtained by considering the input ABox as a (complete)
description of an interpretation and then checking all possible matches of the conjunc-
tive query. A special case that has to be taken into account are inconsistent ABoxes such
as those containing {r(a, b1), r(a, b2), r(a, b3)} for a 2-functional role r and with the
bi mutually distinct. Such inconsistencies are easily detected. If found, the algorithm
returns “yes” because an inconsistent ABox entails every consequence.



If we add TBoxes, instance checking in ELkf , k ≥ 2 becomes co-NP-hard also
with the UNA. We only treat the case k = 3, but our arguments generalize. As in the
case of EL2f without UNA, we have to give additional structure to the ABox. Consider
the TBox T ′ = {V

.
= ∃r.B} and the ABox

A = {V (a), r(a, b1), r(a, b2), r(a, b3), s(a, b1), s
′(a, b2), s

′(a, b3)}.

with r a 3-functional role. Then a satisfies ∃r.B in all models I of A and T . Because
of the UNA, we can distinguish two cases: either b1 satisfies B or one of b2, b3 does.
In the first case, a satisfies ∃s.A and in the second case, it satisfies ∃s′.A. We can
now continue the reduction as in the previous cases. Start with the ABox Aϕ from the
reduction for EL¬A and add V (qi) for all i < m. Then use the TBox T = T ′ ∪ {A

.
=

∃s.A,A
.
= ∃s′.A} and the original query concept C.

Theorem 3. For ELkf with k ≥ 2, instance checking is

– tractable w.r.t. the empty TBox and with UNA;
– co-NP-hard in the following cases: (i) w.r.t. the empty TBox and without UNA, and

(ii) w.r.t. acyclic TBoxes and with UNA.

4 Upper Bound

We consider the extension ELIf of EL with inverse roles and globally functional roles.
If any of these two is added to EL, instance checking w.r.t. general TBoxes becomes
EXPTIME-complete regarding combined complexity [1]. However, it follows from the
results on Horn-SHIQ in [11] that instance checking in ELIf w.r.t. general TBoxes is
tractable regarding data complexity. A direct proof can be found in [12]. Here, we show
that even conjunctive query answering in ELIf is tractable regarding data complexity.

In ELIf , roles and also their inverses can be declared functional using statements
> v (≤ 1 r) in the TBox. For conveniently dealing with inverse roles, we use the
following convention: if r = s− (with s a role name), then r− denotes s.

As a preliminary, we assume that TBoxes and ABoxes are in a certain normal form,
which we introduce next. For TBoxes, we assume that all concept inclusions are of one
of the following forms, where A, A1, A2, and B are concept names or > and r is a role
name or an inverse role:

A v B, A v ∃r.B, > v (≤ 1 r)
A1 u A2 v B, ∃r.A v B

The normal form for ABoxes simply requires that r(a, b) ∈ A iff r−(b, a) ∈ A, for all
role names r and individual names a, b.

Let A be an ABox and T a TBox. T can be converted into normal form T ′ in
polytime, by introducing additional concept names. See [1] for more details. Converting
A into normal form A′ can obviously also be done in polytime. Moreover, it is not too
difficult to see that for every conjunctive query q not using any of the concept names
that occur in T ′ but not in T , we have A, T |= q iff A′, T ′ |= q.



Another (standard) assumption that we make w.l.o.g. is that conjunctive queries are
connected, i.e., for all u, v ∈ Var(q), there are atoms r(u0, u1), . . . , r(un−1, un) ∈ q,
n ≥ 0, such that u = u0 and v = un. Entailment of non-connected queries is easily
(and polynomially) reduced to entailment of connected queries, see e.g. [9].

Our algorithm for conjunctive query answering in ELIf is based on canonical mod-
els. To introduce canonical models, we need some preliminaries. Let T be a TBox and
Γ a finite set of concept names. We use

subT (Γ ) := {A ∈ N
T
C | u

A′∈Γ
A′ vT A}

to denote the closure of Γ under subsuming concept names w.r.t. T . For the next def-
inition, the reader should intuitively assume that we want to make all elements of Γ
(jointly) true at a domain element in a model of T . If A ∈ Γ and A v ∃r.B ∈ T , then
we say that Γ has ∃r.B-obligation O, where

O = subT

(

{B} ∪ {B′ ∈ N
T
C | ∃A′ ∈ Γ : ∃r−.A′ v B′ ∈ T } ∪ O′

)

,

and O′ = ∅ if > v (≤ 1 r) /∈ T and O′ = {B′ ∈ N
T
C

| ∃A′ ∈ Γ : A′ v ∃r.B′ ∈ T }
otherwise.

Let T be a TBox and A an ABox, both in normal form, for which we want to decide
conjunctive query entailment (for a yet unspecified query q). To define a canonical
model for A and T , we have to require that A is admissible w.r.t. T . What admissibility
means depends on whether or not we make the UNA: A is admissible w.r.t. T if (i) the
UNA is made and A is consistent w.r.t. T or (ii) the UNA is not made and (> v (≤
1 r)) ∈ T implies that there are no a, b, c ∈ Ind(A) with r(a, b), r(a, c) ∈ A and b 6= c.

We define a sequence of interpretations I0, I1, . . . , and the canonical model for A
and T will then be the limit of this sequence. To facilitate the construction, it is helpful
to use domain elements that have an internal structure. An existential for T is a concept
∃r.A that occurs on the right-hand side of some inclusion in T . A path p for T is a
finite (possibly empty) sequence of existentials for T . We use ex(T ) to denote the set
of all existentials for T , ex(T )∗ to denote the set of all paths for T , and ε to denote the
empty path. All interpretations Ii in the above sequence will satisfy

∆Ii := {〈a, p〉 | a ∈ Ind(A) and p ∈ ex
∗(T )}

For convenience, we use a slightly non-standard representation of interpretations when
defining the sequence I0, I1, . . . and canonical interpretations: the function ·I maps
every element d ∈ ∆I to a set of concept names dI instead of every concept name A to
a set of elements AI . It is obvious how to translate back and force between the standard
representation and this one, and we will switch freely in what follows.

To start to construction of the sequence I0, I1, . . . , define I0 as follows:

∆I0 := {〈a, ε〉 | a ∈ Ind(A)}

rI0 := {(〈a, ε〉, 〈b, ε〉) | r(a, b) ∈ A}

〈a, ε〉I0 := {A ∈ NC | A, T |= A(a)}

aI0 := 〈a, ε〉



Now assume that Ii has already been defined. We want to construct Ii+1. An element
〈a, p〉 ∈ ∆Ii is a leaf in Ii if there is no α ∈ ex(T ) such that 〈a, pα〉 ∈ ∆Ii . If existant,
select a leaf 〈a, p〉 and an α = ∃r.A ∈ ex(T ) such that 〈a, p〉Ii has α-obligation O and
(i) (> v (≤ 1 r)) /∈ T or (ii) there is no 〈b, q〉 ∈ ∆Ii with (〈a, pt〉, 〈b, q〉) ∈ rIi . Then
do the following:

– add 〈a, pα〉 to ∆Ii ;
– if r is a role name, add (〈a, p〉, 〈a, pα〉) to rIi ;
– if r = s−, add (〈a, pα〉, 〈a, p〉) to sIi ;
– set 〈a, pα〉Ii := O.

The resulting interpretation is Ii+1 (and Ii+1 = Ii if there are no 〈a, p〉 and α to be
selected). We assume that the selected leaf 〈a, p〉 is such that the length of p is minimal,
and thus all obligations are eventually satisfied.

Finally, the canonical model I for A and T is defined by setting ∆I :=
⋃

i ∆Ii ,
AI :=

⋃

i AIi , rI :=
⋃

i rIi , and aI := aI0 . A proof of the following result can be
found in the full version [13].

Lemma 1. The canonical model I for T and A is a model of T and of A.

Our aim is to prove that we can verify whether A and T entail a conjunctive query q by
checking whether the canonical model I for A and T matches q. Key to this result is the
observation that the canonical model of A and T can be homomorphically embedded
into any model of A and T . We first define homomorphisms and then state the relevant
lemma.

Let I and J be interpretations. A function h : ∆I → ∆J is a homomorphism from
I to J if the following holds:

1. for all individual names a, h(aI) = aJ ;
2. for all concept names A and all d ∈ ∆I , d ∈ AI implies h(d) ∈ AJ ;
3. for all d, e ∈ ∆I with (d, e) ∈ rI , r a (possibly inverse) role, (h(d), h(e)) ∈ rJ .

Lemma 2. Let I be the canonical model for A and T , and J a model of A and T .
Then there is a homomorphism h from I to J .

Proof. Let I and J be as in the lemma. For each interpretation Ii in the sequence
I0, I1, . . . used to construct I, we define a homomorphism hi from Ii to J . The limit
of the sequence h0, h1, . . . is then the desired homomorphism h from I to J . To start,
define h0 by setting h0(〈a, ε〉) := aJ for all individual names a. Clearly, h0 is a homo-
morphism:

– Condition 1 is satisfied by construction.
– For Condition 2, let 〈a, ε〉 ∈ AI0 . Then A, T |= A(a). Since J is a model of A and
T , h0(〈a, ε〉) = aJ ∈ AJ .

– For Condition 3, let (〈a, ε〉, 〈b, ε〉) ∈ rI0 . Then r(a, b) ∈ A and since J is a model
of A and by definition of h0, we have (h0(〈a, ε〉), h0(〈b, ε〉)) ∈ rJ .



Now assume that hi has already been defined. If Ii+1 = Ii, then hi+1 = hi. Otherwise,
there is a unique 〈a, p〉 ∈ ∆Ii+1 \ ∆Ii . Let p = qα. Then 〈a, q〉 ∈ ∆Ii , and there
is an α = ∃r.B-obligation O of 〈a, q〉Ii such that 〈a, p〉Ii+1 = subT (O). Let A ∈
〈a, q〉Ii such that A v ∃r.B ∈ T . By Condition 2 of homomorphisms, we have d =
hi(〈a, q〉) ∈ AJ . Since A v ∃r.B ∈ T , there is an e ∈ BJ with (d, e) ∈ rJ . Define
hi+1 as the extension of hi with hi+1(〈a, p〉) := e. We prove that the three conditions
of homomorphisms are preserved:

– Condition 1 is untouched by the extension.
– For Condition 2, let 〈a, p〉 ∈ A′Ii+1 . By definition of obligations, we have that
∃r−.uB′∈〈a,q〉I0 B′ vT subT (O). Since hi(〈a, q〉) = d and by Condition 2 of
homomorphisms, d ∈ (uB′∈〈a,q〉I0 B′)J . Since (d, e) ∈ rJ , we thus have e ∈

(uB′∈subT (O)B
′)J and it remains to remind that A′ ∈ 〈a, p〉Ii+1 = subT (O).

– Condition 3 was satisfied by Ii and is preserved by the extension to Ii+1. o

Lemma 3. Let I be the canonical model for A and T , and q a conjunctive query. Then
A, T |= q iff I |= q.

Proof. Let I and q be as in the lemma. If I 6|= q, then A, T 6|= q since, by Lemma 1,
I is a model of A and T . Now assume I |=π q, and let J be a model of A and T .
By Lemma 2, there is a homomorphism h from I to J . Define π′ : Var(q) → ∆J by
setting pi′(v) := h(π(v)). It is easily seen that J |=π′

q. o

Thus, we can decide query entailment by looking only at the canonical model. At this
point, we are faced with the problem that we cannot simply construct the canonical
model I and check whether I |= q since I is infinite. However, we can show that if
I |= q, then I |=π q for some match π that maps all variables to elements that can be
reached by travelling only a bounded number of role edges from some ABox individual.
Thus, it suffices to construct a sufficiently large “initial part” of I and check whether it
matches q.

To make this formal, let n be the size of A, m the size of T , and k the size of q. In
the following, we use |p| to denote the length of a path p. The initial canonical model
I ′ for A and T is obtained from the canonical model I for A and T by setting

∆I′

:= {〈a, p〉 | |p| ≤ 2m + k}

AI′

:= AI ∩ ∆I′

rI
′

:= rI ∩ (∆I′

× ∆I′

)

aI′

:= aI

Lemma 4. Let I be the canonical model for A and T , I ′ the initial canonical model,
and q a conjunctive query. Then I |= q iff I ′ |= q.

Proof. Let I, I’, and q be as in the lemma. It is obvious that I ′ |= q implies I |= q.
For the converse direction, let I |=π q. If π(v) = 〈a, p〉 with |p| ≤ 2m + k for all
v ∈ Var(q), then I ′ |=π q. Otherwise, since queries are connected, there is a v ∈ Var(q)
with π(q) = 〈a, p0〉, |p0| > 2m, and such that for all u ∈ Var(q) with π(u) = 〈b, q〉,
we have a = b and p0 is a prefix of q.



Since |p0| > 2m, we can split p0 into p1p2p3 such that 〈a, p1〉
I = 〈a, p1p2〉

I , and
p2 6= ε. Now, let π′ : Var(q) → ∆I be obtained by setting π′(v) := 〈a, p1p3q〉 if
π(v) = 〈a, p1p2p3q〉. We show the following: for all v ∈ Var(q),

1. π(v)I = π′(v)I ;
2. I |=π′

q.

For Point 1, let π(v) = 〈a, p1p2p3q〉. Then π(v′) = 〈a, p1p3q〉. We prove by in-
duction on the length of p that for all prefixes p of p3q, 〈a, p1p〉

I = 〈a, p1p2p〉
I .

For p = ε, this is true by choice of p1 and p2. Now assume that the claim has al-
ready been shown for p, and let α ∈ ex(T ) such that pα is a prefix of p3q. Since
〈ap1p〉

I = 〈a, p1p2p〉
I , 〈ap1pα〉I is the α-obligation of 〈ap1p〉

I , and 〈ap1p2pα〉I is
the α-obligation of 〈ap1p2p〉

I , it is readily checked that 〈ap1pα〉I = 〈a, p1p2pα〉I .
This finishes the proof of Point 1

For Point 2, let A(v) ∈ q. By Point 1, I |=π A(v) implies I |=π′

A(v). Now let
r(u, v) ∈ q. Then (π(u), π(v)) ∈ rI . By construction of I, this implies that one of the
following holds:

1. π(u) = 〈a, p1p2p3q〉 and π(v) = 〈a, p1p2p3qα〉 for some α = ∃r.B ∈ ex(T );
2. π(u) = 〈a, p1p2p3qα〉 and π(v) = 〈a, p1p2p3q〉 for some α = ∃r−.B ∈ ex(T ).

In Case 1, we have π′(u) = 〈a, p1p3q〉 and π(v) = 〈a, p1p3qα〉. Again by construction
of I, this means (π′(u), π′(v)) ∈ rI . Case 2 is analogous.

When applying this construction exhaustively, we eventually obtain a π∗ such that
π∗(v) = 〈a, p〉 with |p| ≤ 2m + k for all v ∈ Var(q) o

The initial canonical model I ′ for A and T can be constructed in time polynomial
in the size of A. In particular, (i) I0 can be constructed in polytime since, due to the
results of [11, 12], instance checking in ELIf is tractable regarding data complexity;
(ii) obligations can be computed in polytime since subsumption in ELIf w.r.t. general
TBoxes is decidable and the required checks are independent of the size of A; (iii) the
number of elements in the initial canonical model is bounded by ` := n ·m2m+k and is
thus independent of the size of A.

Our algorithm for deciding entailment of a conjunctive query q by a TBox T and
ABox A in normal form is as follows. If the UNA is made, we first check consistency of
A w.r.t. T using one of the polytime algorithms from [11, 12]. If A is inconsistent w.r.t.
T , we answer “yes”. If the UNA is not made, then we convert A into an ABox A′ that
is admissible w.r.t. T , and continue working with A′. Obviously, the conversion can be
done in time polynomial in the size of A simply by identifying ABox individuals. Both
with and without UNA, at this point we have an ABox that is admissible w.r.t. T . The
next step is to construct the initial canonical structure I ′ for T and A, and then check
matches of q against this structure. The latter can be done in time polynomial in the size
of A: there are at most `k (and thus polynomially many) mappings τ : Var(q) → ∆I′

,
and each of them can be checked for being a match in polynomial time.

Theorem 4. In ELIf , conjunctive query w.r.t. general TBoxes is in P regarding data
complexity.

A matching lower bound can be taken from [7] (which relies on the presence of general
TBoxes and already applies to the instance problem), and thus we obtain P-completeness.



Extensions of EL w.r.t. acyclic TBoxes w.r.t. general TBoxes

EL¬A coNP-complete [17] coNP-complete [17]

ELCtD coNP-complete coNP-complete

EL∀r.⊥, EL∀r.C coNP-complete coNP-complete

EL(≤kr), r ≥ 0 coNP-complete coNP-complete

ELkf , k ≥ 2 w/o UNA coNP-complete coNP-complete
(even w/o TBox)

ELkf , k ≥ 2 with UNA coNP-complete coNP-complete
(in P w/o TBox)

EL(≥kr), k ≥ 2 w/o UNA coNP-complete coNP-complete

EL(≥kr), k ≥ 2 with UNA in coNP coNP-complete

EL∃¬r.C coNP-hard coNP-hard

EL∃r∪s.C coNP-hard coNP-hard

EL∃r+.C coNP-hard coNP-hard

ELIf in P P-complete

Table 1. Complexity of instance checking and conjunctive query entailment

5 Summary

The results of our investigation are summarized in Table 1, and in all cases they apply
both to instance checking and conjunctive query entailment. The coNP upper bounds
are a consequence of the results in [9]. When the UNA is not explicitly mentioned,
the results hold both with and without UNA. We point out two interesting issues. First,
for all of the considered extensions we were able to show tractability regarding data
complexity if and only if the logic is convex regarding instances, i.e., A, T |= C(a)
with C = D0 t · · · t Dn−1 implies A, T |= Di(a) for some i < n. It would be
interesting to capture this phenomenon in a general result. And second, it is interesting
to point out that subtle differences such as the UNA or local versus global functionality
(for the latter, see EL(≤1r) vs. ELIf ) can have an impact on tractability.

As future work, it would be interesting extend our upper bound by including more
operators from the tractable description logic EL++ as proposed in [1]. For a start, it
is not hard to show that conjunctive query entailment in full EL++ is undecidable due
to the presence of role inclusions r1 ◦ r2 v s. In the following, we briefly sketch the
proof, which is by reduction of the problem of deciding whether the intersection of two
languages defined by given context-free grammars Gi = (Ni, T, Pi, Si), i ∈ {1, 2}, is
empty. We assume w.l.o.g. that the set of non-terminals N1 and N2 are disjoint. Then
define a TBox

T := {> v ∃ra.> | a ∈ T} ∪ {rA1
◦ · · · ◦ rAn

v rA | A → A1 · · ·An ∈ P1 ∪ P2}.

It is not too difficult to see that L(G1)∩L(G2) 6= ∅ iff the conjunctive query S1(u, v)∧
S2(u, v) is matched by the ABox {>(a)} and TBox T .
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