

JAWS: A Javascript API for the Efficient Testing and
Integration of Semantic Web Services

David A. Ostrowski

System Analytics and Environmental Science

Research and Advanced Engineering
Ford Motor Company
dostrows@ford.com

Abstract. Semantic Web Services (SWS) hold a lot of potential to the future of the
Semantic Web. In this area, a number of tools have been developed to facilitate their
definition and deployment. Our goal is to support an efficient means of testing and
integration within a browser-based solution. For this purpose we propose JAWS
(Javascript, AJAX, Web Service) : A Javascript API to facilitate the testing and
integration of SWS. This software decouples the process of SWS integration and
development through facilitation of the AJAX/REST paradigm. By leveraging meta-
programming and deep integration techniques we support Web 2.0 inspired
applications in the context of complete browser-based development.

Keywords: Semantic Web Service, Javascript, AJAX, REST

1 Introduction
General applications of web services support enterprise development as a means to
reduce costs and complexity of integration.[1] This is accomplished through machine-
independent protocols and utilization of internet-based technologies for
communication. These advantages and characteristics provide a strong motivation for
integrating this technology with the Semantic Web, most commonly regarded as the
next generation of the Web.[2] This work intends to support this goal by leveraging
existing toolkits through an API to enable the automatic and semi-automatic
utilization of SWS. [3][4][5] Specifically, we are interested in the rapid facilitation of
activities linked to SWS including matchmaking, input/output types comparison and
analysis of effects. [6][7] Through the combination of Javascript, AJAX and Web
Services we intend to satisfy a number of goals:

• Web 2.0 We are interested in providing a higher level of accessibility to
web services – supporting work collaboration and data sharing among
second generation web applications.

• Integration Given the ubiquitous nature of Javascript, developers can
readily incorporate a Javascript API within any web-based frameworks.

• Deployment (Compatibility) All software functionality is developed
without browser-specific capability.

• Protection Methods of access to corporate (secure) data stores are
controlled through the application of complete Javascript APIs. This
approach to controlled data sharing has been popularized by such companies
as Amazon and Google .[8][9]

• Simplicity Applications can be developed solely in Javascript requiring
knowledge of only one language. Complexity of software integration (data
server, external software) can be handled separately from a client side
developer.

In section Two, we present an overview of our SWS environment including an
introduction to the API functionality. Section Three discusses the major constructs of
our API. Chapter Four demonstrates its usage in a short example along with a use-
case scenario. Chapter Five concludes with a summary including several issues
highlighted for future expansion within our API.

2 SWS Environment

The design for our SWS environment relies on two separate knowledge bases.(Figure
1) The first OWL-based KB supports the description of the application domain,
defining concepts and terms used for web services description. The second maintains
semantic based-definition of web services through the employment of OWL-S
[10][11].
Our API supports interaction with these two data sources as well as invocation of the
established web services. The first activity supports development of AJAX-based
requests to support discovery of SWS within an OWL-based taxonomy. This task
ranges from simple keyword matching within a class taxonomy to interaction with
server-side tools to provide advanced query capabilities and reasoning.
[12][13][14][15] Here, the JAWS API relies upon REST-based services providing
efficient support to clients. The second major support step is to utilize AJAX-based
requests to identify and retrieve OWL-S files in order to dynamically generate
Javascript objects for their representation. By referencing the predefined format of the
OWL-S files, users are able to generate applications for the purpose of comparison,
integration and testing. The last step is the utilization of the Javascript constructs to
invoke our REST-based web services. Here, the services will be defined in an array of
Javascript objects referenced by the web services name. Javascript methods as named
in OWL-S representations will be used to reference the REST-defined web services.

2.1 Software Layers

The theme of the JAWS architecture is to provide a browser-based environment that
separates the activity of SWS testing and maintenance. With this goal the top layer is
presented as the application layer in which a complete SWS application is developed
either completely in Javascript or in cooperation with another framework. In this layer
the user interface is HTML (also supporting 3D markup via embedded object such as
in our case study) controlled via Javascript. In the second layer, we have the actual
API that exists as a Javascript library. The third layer is considered the mapping layer
in which specific OWL and OWL-S data are mapped to Javascript objects and
methods on-the-fly. This development relies heavily on the leveraging of XHR alone
to reference data stores residing as OWL and OWL-S files as well as integrating with

REST-based web services. OWL-defined data stores are read by adapters as REST
web services enabling the client to perform activities related to SWS discovery. Due
to minimal size, OWL-S documents are completely referenced by XHR requests.
Finally, the web service invocation is presented as Javascript objects and methods
allowing the client programmer to access the data. Web service implementations not
conforming to the REST approach or outside of the current domain are handled by a
process designed to make secondary web service calls to bridge them to our SWS
environment.

CLIENT

Application (generate HTML, JS, embedded object)

HTML / VRML / X3D

JAWS-API

user

OWL-based
Ontology

OWL-APIs/
Reasoners

SERVER
OWL-S
KB

WS-
REST WS-Bridge

External
Editor
(Protégé)

External
WS

Figure 1 SWS Environment

2.2 Advantages of Javascript

Scripting languages (Ruby, Python, PHP) have gained traction in their application to
map RDF-based resources to more programmer-friendly representations. [16][17][18]
While reflection is supported in Java and attributes related to dynamic prototyping
(interfaces) are supported in languages such as C++, they do not allow for the same
level of flexibility in implementation. Maintaining the dynamic run-time capabilities
of scripting languages, Javascript maintains similar advantages to Python or Ruby.
Recently, with the utilization of the XMLHTTPRequest (XHR) object library,
Javascript has demonstrated increased potential by matching capabilities held by
traditional server-side scripting languages.[19][20] In utilization of the XHR request
model, Javascript can supply a unique approach to the development of semantic web

applications due to its support of asynchronous activity. While any web service
implementation can fit into our architecture it is the REST design philosophy that
demonstrates highest efficiency. Through the employment of the basic HTTP
constructs, the REST approach supports a low-level means of web service
implementation. Through avoidance of higher level constructs, REST calls are easily
employed within XHR requests thus avoiding extra software for browser-based
invocation. Both paradigms together support an approach that brings the highest
compromise between efficiency and (browser) compatibility.

2.3 Challenges in Implementation

As noted in earlier software projects mapping RDF based stores, a number of
differences between RDF and Object Orientated design have been noted. [21] Among
the problems identified include differences between class-based representation,
structural inheritance and object conformance. In the first activity, we do not support
a complete mapping but present a strictly controlled OWL-based representation
generated in Protégé that allows for basic taxonomy definition and categorization with
properties of the associate classes pointing to the data stores. Through maintenance of
a data store closely conforming to O-O representation, we reduce potential problems
with data mapping.
A second challenge is concerning the support of large data stores. In the case of
referencing our OWL-based data store, client-heavy implementations can create
scenarios involving very large data stores being constrained by memory limitations of
the browser. To provide necessary error handling a method is provided to obtain the
size of the data store (or subset) imported to the browser.
An additional issue is support of web services residing outside of the domain of the
established server as well as applications that are not yet designed as REST-based
services. These additional services are integrated through application of a CGI-based
process. This implementation has been chosen over higher level security controls
including use of automatic proxy generation which can add to complexities in
implementation.

3 API

Our API is defined within three major categories in order to support the integration
with the OWL data store, direct mapping of the selected OWL-S data stores and
eventual invocation of the REST based web services.

3.1 Applied to the OWL Taxonomy

Javascript objects are allocated to support access to OWL-based data. setRes() allows
the user to establish an OWL defined resource. This function returns an object
providing methods to support the loading and subsequent discovery of SWS
resources. The two main input arguments are the adapter and host. The assignment of
individual objects provide support for multiple data sources.

var currentRes = setRes(adapter, host)

With currentRes assigned to a specified resource type, the data store access is loaded
and enabled for SWS discovery activities including keyword match, query and
reasoning statements.

currentRes.getRes(Resourcename)

The size method defines the memory requirements of the data store to provide a
means of error handing when loading very large data stores.

currentRes.size()

The find method provides keyword or basic expressions to be searched through the
OWL class hierarchy.

currentRes.find(keyword_or_expression)

The query method allows for a data point format to be defined (such as SPARQL)
and a query string to be applied.

currentRes.query(format, queryString)

Reasoning statements are performed by defining the format followed by a reasoning
expression.

currentRes.reasoning(format, expression)

3.2 OWL-S Data Stores

Complete mapping of all four OWL-S based class definitions are performed. The
function setOWLS accepts a URI for the services description class file and returns a
Javascript object representing the data. The object , referenced by hashing in one of
the class names (service, profile, process, grounding) allows for access to the defined
data types.

var s = setOWLS(“uri")

3.3 Web Service Invocation

Using appropriate information from the OWL-S based definitions, web services are
accessed from the WS object array by using the service name provided by an OWL-S
description as a hash reference.

WS(“SWS_name”).refMethods()

Asynchronous callback functionality is provided in the context of the Javascript
implementation through the means of the required naming conventions assumed by
the wrapper. The naming convention requires that every callback method is defined as
the method name followed directly by "_CB" as in example code below. In situations
where HTML and 3D markup is shared via embedded object on the browser widows,
asynchronous activity can be implemented without callbacks. In this case, efficiencies
are provided by the use of return values from the REST WS calls thus eliminating
unnecessary overhead.

WS(“SWS_name”).refMethods_CB()

3.4 Case Study

We demonstrate use of some of the functionality of the JAWS API through the
development of an application to support numerical matchmaking of mathematical
based services. This application involves the discovery, dynamic testing and
invocation of mathematically based web services. [22][23] For this application we
utilize a proprietary algorithm for the find method in which keyword searches are
performed against an OWL-defined taxonomy of algorithms. In the first sequence of
code we instantiate our object defining an OWL-based algorithm taxonomy.

var r =
setres(“adapter”,http://srl1xpm9q7h41.srl.ford.com)
r.getRes(“mathOnto.owl”)
r.size()
var arr = r.find(“optimization”)

The next segment of code presents the results of the find allowing for variables to be
referenced from the OWL-S data stores to invoke a possible web service

for(I = 0;I = arr.length();i++){

document.write(arr[i].className ,arr[i].childName,
arr[i].URIproperty)

}

When a class is identified of interest, then its properties can be located via a method
call (note the usage of 0 as subscript is arbitrary).

var s = setOWLs(arr[0].URIproperty)

Now call the web service by means of referencing the Javascript object with WS as
the established naming convention for the data structure to contain references to the
OWL-S defined web services. In our specific example there are two structures passed
to the services.

WS[“className”].optimization(obj_function, var_string)

Callback functionality is implemented by a user defining the callback function
according to the set naming standard so it can be referenced by the JAWS API.

WS["className"].optimization_CB()

3.5 Use Case Scenario

A use case scenario demonstrating a subset of the functionality is illustrated in figure
2. In this case we utilize our API in a manufacturing simulation application.[24] This
software allows for the design of workstation layouts in a manufacturing (assembly
line) setting. The operator paths are dynamically generated via the definition of
vehicle and operator velocities along with estimated task times, container location,
zone location and associated synchronization activities. In this application we are
interested in the incorporation of a web service based means of optimization to
generate a suggested optimal design.
In this simulation software we incorporated our API to support a semi-automatic
process of SWS discovery and integration. The controls of this portion of our
integrated application are implemented via a pop-up window as shown in the lower
right portion of figure 2. The first step in this application is to enter a keyword to be
applied to the ontology search. This activity will in turn allow for a drop down menu
to be populated with possible web service alternatives to be explored. Once a web
service is selected, a user can display the input/output definition. Test data scenarios
can also be executed to allow the user to examine the input/output requirements in
order to trouble-shoot any integration issues.

Figure 2 Manufacturing Simulation / Optimization incorporating JAWS API.

4 Conclusion

To support leveraging existing WS technologies, we have presented JAWS, a
Javascript API for the purpose of SWS application development. This project breaks
down the task of SWS development by creating a means to integrate existing open
source implementations, mapping resultant data to Javascript objects thus decoupling
integration from the rest of the processes in SWS. A prototype has been implemented
allowing for keyword matching and application of SPARQL queries against an OWL
ontology, mapping against OWL-S data stores and invocation of REST-based web
services. A use-case scenario is presented in which a user is allowed to perform a
semi-automatic process of switching in and out web services as necessary. Future
work includes addition of the API to support multiple query languages and reasoners
thus allowing server functionality to be further configured from a browser-based
application.

Acknowledgements

Dr. Anton Eliens, Vrije Univeriteit, Amsterdam, The Netherlands for insight provided
in developing this work.

References

1 Deitel, Harvey M., Deitel, Paul J., DuWaldt B., Trees L.K., Web Services: A Technical
Introduction, Prentice Hall, 2002

2 Geromenko, Vladimir, Chen , Chaomei, Visualizing the Semantic Web: XML-based Internet
and Information Visualization, Springer, 2005

3 J.Scicluna, C.Abela, M.Montebello,Visual Modelling of OWL-S Services, submitted at the
IADIS International Conference WWW/Internet, Madrid Spain, October 2004

4 http://www.daml.org/services/owl-s/1.1B/owl-s.pdf
5 http://protege.stanford.edu
6. Chaiyakul, Sukasom, Limapichat, Kati, Dixit, Avani, Nantajeewarawat, Ekawit, "A

Framework for Semantic Web Service Discovery and Planning, IEEE 2006
7 Srinvasan, Naveen, Paolucci, Massimo, Sycara, Katia, CODE: A Development Environment

for OWL-S Web Services, 3rd International Semantic Web Conference ISWC2004
8 http://aws.amazon.com
9 http://code.google.com
10 http://www.daml.org/services/owl-s/1.1B/owl-s.pdf
11 Chase, Nicholas, "The Ultimate Mashup: Web Services and the Semantic Web",

http://www-128.ibm.com/developerworks/edu/x-dw-x-ultimashup1.html
12. Zhou, Jiehan, Koivisto, Juha-Pekka, Niemela, Eila, A Survey on Semantic Web Services

and a Case Study, IEEE Proceedings of the 10th International Coniference on Computer
Supported Cooperative Work in Design, 2006

13. Dodds Leighh, "Introducing SPARQL: Querying the Semantic
Web",http://www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-

14. Carroll, Jeremy J., Reynolds, Dave, Dickinson, Ian, Seaborne, Andy, Dollin, Chris,
Wilkinson, Keven, Jena:Implemetning the Semantic Web Recommendations, The 13th
International World Wide Web Conference, 2004

15.Evren, Sirin, Bijan,Parsia, Bernardo,Cuenca Grau,Aditya, Kalyanpur and Yarden Katz,
Pellet: A Practical OWL-DL resoner, Journal of Web Semantics, 2006

16..Babik, Marian, Hlucky, Ladislav, Deep Integration of Python with the Web Ontology
Language, Scripting for the Semantic Web 2006

17 Oren, Eyal, Delbru, Renaud, Gerke, Sebastian, Haller, Armin, Decker, Stefan, "ActiveRDF:
Object-Orientated Semantic Web Programming", WWW 2007, May-8-12, Banoff, Alberta
Canada

18 D. Vrandecic, Deep Integration of the Scripting language and Semantic Web Technologies,
Scripting for the Semantic Web 2005

19. Gross, Christian, "Ajax and REST Recipies, Apress 2006
20. Gehtland Justin, Galbraith Ben, Almaer, Dion, "Pragmatic Ajax: A Web 2.0 Primer",

Pragmatic Bookshelf, 2006
21. Oren, Eyal, Delbru, ActiveRDF: object-orientated RDF in Ruby. Scripting for the Semantic

Web, 2006
22. The MONET Consortium. MONET Architecture Overview, Technical Report Deliverable

DO4, The Monet Consortium, March 2003 Available from http://monet.nag.co.uk
23. The MONET Consortium. The MONET Mathematical Query Ontology. Technical Report
 Deliverable D13, The MONET Consortium , March 2003, http://monet.nag.co.uk
24. Ostrowski, David A., A lightweight Framework for Web-Based, 3D, Information
 Visualization, Intnl. Conf. on Enterprise Inf. Systems and Technologies, EIWST 2007

