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Abstract. During the construction of service-oriented architectures, service 
modelers concern themselves with the characteristics of good services and how 
such services can be designed. For instance, they look for advice regarding 
interface granularity and criteria to assess whether existing software assets are 
fit for reuse in service-oriented environments. There are no straightforward an-
swers to such questions – service identification, specification and realization 
techniques are required. Service identification and specification are well cove-
red by existing methodologies; for service realization, architectural decision 
models can be leveraged. At present, the construction of architectural decision 
models is an education- and labor-intensive undertaking; if such models exist at 
all, they often are isolated from other artifacts. In this paper, we propose a new 
engineering approach to service modeling that leverages reusable architectural 
decision models as its central service realization concept. We outline a mul-
ti-level decision tree and position it as a prescriptive service realization 
methodology for three engagement types observed in practice. The benefits of 
service engineering with reusable architectural decision models are semi-
automatic decision identification in analysis models, improved decision making 
quality, and better decision enforcement and risk mitigation capabilities. 
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1 Introduction 

During the early stages of the evolution of Service-Oriented Architecture (SOA) as an 
architectural style, Grady Booch stated that “the fundamentals of engineering like 
good abstractions, good separation of concerns never go out of style”, but he also 
pointed out that “there are real opportunities to raise the level of abstraction again” 
[6]. When designing large-scale enterprise applications, this raise of abstraction level 
concerns the business domains a company deals with, as well as already existing 
Information Technology (IT) assets. Business-aligned software services organized 
into an enterprise-scale SOA reside on this increased level of abstraction. However, 
implemented software services still have to meet domain-specific Non-Functional 



Requirements (NFRs) and standard software quality criteria [11]; old and new design 
challenges arise, e.g., designing services for multiple invocation contexts. 

Therefore, there is more to constructing service abstractions of quality and style 
than identifying abstract software services, specifying them with technical interface 
contracts such as Web Service Description Language (WSDL) port types, and then 
applying WSDL-to-code transformation wizards. No single SOA fits all purposes; 
many architecture design issues and tradeoffs arise. There are no straightforward 
answers to the service modeling questions that arise – service identification, 
specification, and realization techniques are required.  

For service identification and specification, several techniques such as Service-
Oriented Modeling and Architecture (SOMA) [2] and others [9][24] exist; for service 
realization, architectural decisions [26] are a promising complementary abstraction. 
In [34], we defined architectural decisions as “conscious design decisions concerning 
a software system as a whole, or one or more of its core components. These decisions 
determine the non-functional characteristics and quality factors of the system”. 
Architectural decision modeling is an emerging field in software architecture research 
[18]. Unlike other approaches to document software, architectural decision models fo-
cus on the expert knowledge motivating certain designs rather than the resulting de-
signs themselves. Model elements present architecture alternatives with pros and 
cons, as well as known uses, and they also capture the rationale behind and the 
justification for many different types of decisions. 

In SOA construction, service realization decisions include strategic concerns such 
as technology and product selections (e.g., composition technology, workflow 
engine). Finer-grained modeling tasks such as finding the right service interface gra-
nularity (operation-to-service grouping, message signature shaping) form a second 
decision category. Numerous decisions deal with non-functional aspects such as 
operation transactionality (business-level compensation, system transactions). For 
instance, imagine a scenario in which a situational data warehouse application on a 
Personal Computer, an e-commerce software package on a Linux workstation and a 
custom developed inventory management solution on a central mainframe computer 
have to be integrated. Such systems typically differ in the way they manage human 
user access, balance load, synchronize concurrent requests, persist data, protect 
themselves against security threats, and so forth – their software architectures are 
different. When being integrated in an SOA, these systems provide services to each 
other. Even if the service interfaces can be specified in an abstract, business-driven 
and technology-independent way, the mapping of the abstract interfaces to 
implementation components during service realization differs substantially in the 
three outlined environments. As a consequence, the service realization decisions for 
the three systems differ. For example, using a workflow engine might not be possible 
for the situational application, the software package might impose interface 
granularity constraints, and the mainframe might realize its own transaction monitor. 

In this paper, we propose an engineering approach to service modeling. We treat 
service realization decisions as first-class entities that guide the service modeler 
through the design process. We capture these decisions in machine-readable models. 
This SOA knowledge is organized in a reusable multi-level SOA decision tree, 
including a conceptual, a technology, and an asset level. The tree organization follows 
Model-Driven Architecture (MDA) principles, separating rapidly changing platform-



specific concerns from longer-lasting platform-independent decisions. Architecture 
alternatives in the conceptual level are expressed as SOA patterns. An underlying 
meta model facilitates automation of service realization decision identification, 
making, and enforcement: Meta model instances (models) can be created from re-
quirements models and reference architectures, and shared across project boundaries. 
The meta model also enables decision dependency modeling and tree pruning – 
making one decision has an impact on many other decisions. For example, a 
workflow engine is only required if process-enabled service composition has been de-
cided for. In the resulting process-enabled SOA [15], transaction management settings 
must be defined consistently for various architecture elements such as process invoke 
activities, service operations and database drivers. 

Explicit dependency modeling has another key advantage: the decision tree can 
serve as a micro-methodology during service design, operating on a more detailed le-
vel of abstraction than general purpose methods such as the Rational Unified Process 
(RUP) [16] and the service modeling approaches described in the literature [2][9][24]. 
Our approach is complementary to these assets; e.g., the decisions can be organized 
along the RUP phases such as inception, elaboration and construction. 

The remainder of this paper is organized in the following way: Section 2 derives 
the problem statement motivating our work from state of the art and the practice. Sec-
tion 3 then presents structure and content of our SOA decision tree. Section 4 explains 
how this SOA decision tree can be used as a micro-methodology for SOA. Section 5 
presents related work; Section 6 discusses the benefits of our approach and how we 
applied it in practice. Section 7 concludes and gives an outlook to future work. 

2 The Service Modeling Problem 

Methods like SOMA define the tasks within the service modeling process, SOA 
patterns present proven solution designs. However, the detailed technical design steps 
between business-level service identification and pattern instantiation on implementa-
tion and runtime platforms still are covered rudimentarily only. Detailed modeling 
guidance leading to a prescriptive modeling algorithm is desired that helps answering 
the following question:  

How to design and develop “good”, business-aligned service abstractions from 
analysis-level business process models and technical requirements? 

As a corollary, the question arises how good services can be characterized. For 
example, what does business alignment mean from a technical standpoint, and what is 
the appropriate service granularity in a certain domain context? When trying to 
answer these questions, development projects start from vaguely articulated 
requirements, documented as high-level business process and/or use case models 
created by business analysts. In many cases, these models are defined informally or 
semi-formally only. However, eventually formal service descriptions have to be 
defined so that the realized services can be deployed to some IT infrastructure such as 
an application server or transaction monitor. We jointly refer to these issues as service 
modeling or Service-Oriented Analysis and Design (SOAD) [35]. Currently, these 



issues are among the most frequently discussed topics in the industry and academia; 
we have not participated in a single SOA effort yet in which such service modeling 
aspects have not been a major concern. 

Elements from several existing service modeling methodologies and techniques 
served us well when dealing with these issues. For example, SOMA covers top-down 
service identification in business process models and other business analysis artifacts. 
Service specification typically is also addressed well [13]. However, we noticed a gap 
between these two steps and detailed technical service realization aspects encountered 
on SOA construction projects. Existing patterns and general purpose method exten-
sions are informative and educational, but often too coarse grained and incomplete. 
For example, advice regarding service-enablement of existing legacy systems ty-
pically is weak, and transaction management is not covered in detail. Technology and 
vendor recommendations (often called “best practices”) are not integrated 
sufficiently, often causing quality problems and unnecessary duplication of efforts. 

3 An Architectural Decision Model for SOA Construction 

The actors involved in SOA construction are business analysts, service architects, and 
service developers. When Model-Driven Architecture (MDA) concepts are applied, 
these actors create a Platform-Independent Model (PIM) of the design based on a 
Computing-Independent Model (CIM) of requirements analysis results. They trans-
form the PIM into one or more Platform-Specific Models (PSMs) and eventually into 
code. Therefore, it is natural to organize the architectural decision models according 
to MDA principles as well, applying principles such as layering and separation of 
concerns. Therefore, we propose three levels of decision model refinement, the con-
ceptual, the technology, and the asset level. In addition, we see a need for an over-
arching executive level, comprising of decisions of strategic relevance. Executive de-
cisions impact the project as a whole [18]. They influence all other decisions. 

To harvest already gained knowledge, we synthesized an initial SOA decision tree 
from our own project experience [33][36] and the literature [10][15]. Each decision 
node describes a single, concrete design issue. We describe the decision nodes 
according to the following informal representation of an underlying meta model [26]: 

• Decision name and unique identifier. 
• Problem statement, either in question form or a single paragraph. 
• Scope of the decision, linking the decision model to design model elements. 
• Decision drivers, a list of key NFRs and software quality factors driving the 

design; the pattern community use the term forces synonymously. 
• Architecture alternatives listing the available design options with their pros, 

cons, and known uses. On the conceptual level, these are architectural pat-
terns. On the technology level, they represent technical choices such as pro-
tocol and design pattern selections; the asset level is concerned with open 
source and commercial product selection and configuration. 

• References linking in literature such as short overviews, in depth tutorials. 
• Recommendation, depending on the decision type either a simple “do/do not” 

rule of thumb, a weighted mapping of forces to alternatives, or a pointer to 



more complex analysis process to be performed outside of the decision mo-
del. An example for a simple rule of thumb is a commonly agreed best prac-
tice: for example, WS-I recommends document/literal as SOAP communica-
tion style and bans rpc/encoded [29]. For the design of transaction manage-
ment boundaries on the other hand, no simple recommendation can be given; 
a more sophisticated algorithm capturing decision making heuristics and pro-
ven alternatives as patterns is required. Decision drivers include business 
semantics, fault handling and resource protection needs, and NFRs.  

• Lifecycle management information such as decision owner, project phase, 
validity timestamp, modification log, and decision enforcement. 

• Outcome and justification of made decisions per decision instance. 
We have captured 130 such SOA decisions so far. Table 1 lists selected ones from 

all four levels of abstraction introduced above, including their scope attribute and 
some of the alternatives available. The decision naming indicates dependencies, e.g., 
between the various decisions dealing with transactions. 

Table 1.  Excerpt from initial SOA decision tree 

 Tree level  Decision node (scope)  Alternatives 
Executive  Platform/language/tool preferences (global) e.g. J2EE or LAMP 
Conceptual  Service composition technology (process) Workflow vs. custom code 
(PIM) Transaction management strategy (process) System transaction vs. 

business transaction 
 Transaction management pattern (process) None vs. single transaction 

vs. several transactions  
 Transaction attribute (operation) None vs. new vs. join [31] 
 Message exchange pattern (operation) Request-reply vs. one way 
 In and out message breadth (operation) Single vs. multiple parts 
 In and out message depth (operation) Flat vs. nested payload 
Technology 
(PIM/PSM) 

Workflow language (process) Business Process Execution 
Language (BPEL) vs. other 

 Service container (service) SCA vs. J2EE vs. CORBA 
vs. .NET vs. other 

 Java service provider type (service) EJB vs. plain Java object 
 SCA transaction qualifiers (operation) See SCE specifications [21] 
 EJB transaction attribute (operation) Defined in EJB specification 
 Message exchange style and format (operation) WS-*/SOAP vs. 

REST/JSON vs. other 
 Transport protocol binding (operation) HTTP vs. reliable messaging 
 SOAP communication style (operation) Document/literal vs. 

rpc/literal vs. rpc/encoded 
Asset (PSM) Workflow engine (process) Vendor or open source (IBM 

WebSphere Process Server, 
ActiveBPEL, etc.) 

 SOAP message exchange engine (service) e.g. Apache Axis, Codehaus 
XFire, vendor engines such 
as IBM WebSphere engine 

 Service provider sourcing (service) Buy, build, adapt 



The generic service granularity discussion leads to several decisions dealing with 
in and out message signature design, e.g. single vs. multiple message parts and flat vs. 
deeply nested payload (e.g., XML documents). On the technology level, there is a 
transport protocol binding decision with service operation scope – SOAP/HTTP or 
reliable messaging are the alternatives. About 40 other service operation realization 
decisions exist. One of about 20 process realization decisions is the choice of work-
flow language, e.g. Business Process Execution Language (BPEL) [20]. The service 
container decision is closely related; BPEL can only be used if supported by the 
selected container, for example Service Component Architecture (SCA) [21].  

Other decisions not shown in the table deal with security: cryptographic algorithms 
as means of integrity preservation are available on the transport and on the messaging 
layer. Message-level XML and Web services security or transport-level HTTPS/SSL 
are two of the available candidate assets. 

4 The SOA Decision Tree as SOA Micro-Methodology 

Once the various SOA decisions have been captured in the tree, and the decision 
dependencies have been modeled explicitly, the decision model can guide the 
practitioner through the design process. This is a SOA domain-specific method 
engineering approach, which aims to provide finer grained guidance than traditional 
artifact- and activity workflow-centric methodologies. The individual SOA decision is 
the central metaphor. Figure 1 shows selected decision topics and atomic decisions on 
five levels of abstraction, and illustrates the guiding role of the SOA decision tree.1  

Asset Decisions (PSM)

Technology Design Decisions (PIM/PSM)

Conceptual Design Decisions (PIM)

Business Analysis Decisions (CIM)

Executive Decisions

<Service Modeling Method?> <Platform/Language?>

<Architectural Style?>

<Reference Architecture?>

<BPM Notation?> <BPM Tooling?>

<Technical Annotations?><Control Flow Design?>

<BPM Principles?> <Reference Model?>

<Data Flow Design?>

<Design Notation?>

<SOAP Runtime?>

{Process Realization Decisions?} {Service Realization Decisions?}

<CIM-to-PIM Mapping?>

<Buy, Build, Adapt?>

<Provider Type?><Service Container?><Workflow Language?>

<Service Registry?>

<Workflow Engine?>
{Infrastructure Decisions?}

<Go/No Go?>

{Governance Decisions?}

<Atomic Decision?>

{Decision Topic?}

 
Fig. 1. SOA decision tree in guiding role (micro-methodology) 

                                                           
1 In line with the design decision literature, we refer to the SOA knowledge structure as a tree; 

if in the formal sense it actually is a directed, not necessarily acyclic, graph. 



Atomic decisions such as <ReferenceArchitecture?> appear in paired lower/greater-
than signs. Decisions can be grouped into decision topics, which are embedded in 
curly braces. For example, topic area {Process Realization Decisions?} contains the pro-
cess-scoped decisions that Table 1 assigned to the conceptual level. The selection of a 
<ServiceCompositionTechnology?> is an example. 

Section 3 introduced the global executive decisions. In Figure 1, we also added 
business analysis decisions as another level of our micro-methodology. This level 
deals with decisions about the various Business Process Modeling (BPM) notations, 
tools, and techniques. While our main focus is technical service realization, we show 
this layer here to illustrate that our micro-methodology can work with different busi-
ness modeling approaches, accepting the output of them as analysis input to the tech-
nical design. 

The vertical arrow does not imply that our micro-methodology is a strict top-down 
waterfall process; the ability to backtrack and revisit higher-level decisions because of 
feedback from the lower layers is a key concept in our approach. For example, a 
certain asset might not support a pattern selected on the conceptual level. 

A topic area on the asset decisions level is {Infrastructure Decisions?}: Once the logi-
cal design has reached a reasonable level of detail, the physical layout of the solution 
can be designed, including service deployment onto hardware, and network topology 
layout. Naturally, the detailed decisions in this group depend on many decisions on 
higher levels. For example, if stateful services exist, a session handover concept is 
required, at least in clustered environments. 

Navigating through the tree. We provide a single point of entry into our SOA deci-
sion tree, a global project <Go/No Go?> decision. Having passed this entry point, 
executive decisions like selection of <Architectural Style?>, <Service Modeling Method?> 
and <Engagement Type?> are the next decisions that have to be made. The outcome of 
these decisions defines the detailed path through the tree. So far, we have predefined 
the three ways through the tree for three engagement types, which are roughly equiva-
lent to the maturity levels in the Service Integration Maturity Model (SIMM) in [3] 
and the stages in [15].  

Web services enablement of a single component to achieve cross-platform inter-
operability is a simple engagement type with many known uses, but limited strategic 
importance. Therefore, many executive decisions, e.g. regarding governance and ser-
vice lifecycle management, are not required and can be removed from the tree. About 
40 technical decisions remain to be taken per service. 

A second, emerging engagement type is the introduction of a service choreography 
layer implementing an end-to-end business process. Such engagements address 
increased pressure from business in the areas of operational efficiency. For example,  
a process might have to complete within 24 hours. Enforcing such a business rule re-
quires active process instance tracking, which can be achieved by workflow technolo-
gy. This engagement type is a superset of the Web service enablement; decisions 
about BPEL usage also have to be made in this engagement type. The scenario from 
Section 1 is an example; traversing all process and service realization decisions inclu-
ding those in Table 1 comprises a single iteration through our micro-methodology. 



Enterprise-wide SOA enablement requires a full traversal of all tree levels. All de-
cision nodes are applicable, and extensions are likely to be required. For example, an 
enterprise-wide <Service Registry?> must be selected; many governance decisions and 
more executive decisions have to be made. 

MDA positioning. If MDA principles are followed, architectural decisions drive 
model transformations between the levels. Our conceptual level is a PIM, the techno-
logy level has both PIM and PSM characteristics (depending on the viewpoint), and 
the asset level is a PSM. In a MDA transformation chain for SOA, decision models 
can be created and transformed just like design models. Figure 2 shows the resulting 
three-step MDA transformation chain:  

To-Be Business
Analysis Decision Model 

(CIM)

As-Is Design Model 
(PSM)

To-Be Decision Model 
(Assets, PSM)

Use Case (UC) 1-2: 
Service Architect

Use Case (UC) 1a: CIM->PIM
(Top Down)

UC 1b: PSM->PIM
(Bottom Up)

To-Be Decision Model 
(Conceptual, PIM)

As-Is Decision Model
(Conceptual, Technology, Assets)

To-Be Decision Model 
(Technology, PIM/PSM)

UC 2: 
PIMxPIM->PIM/PSM

UC 3: 
PIM/PSM->PSM

UC 3: 
Service Developer

CIM – Computing Independent Model
PIM – Platform Independent Model
PSM – Platform Specific Model
(OMG MDA Terminology)

Reference Architecture
(incl. Reusable Decision Templates)

To-Be Design Model, Code 
(PIM, PIM/PSM, PSM)

 
Fig. 2. Architectural decision models in three-step model transformation chain for SOA 

Step 1 consists of two transformations: Step 1a transforms to-be requirements 
business analysis decision models into an initial conceptual design decision model; 
Step 1b is a reverse transformation from as-is design models describing existing 
assets to a full instance of the SOA decision tree. Steps 2 and 3 correspond to the 
conceptual to technology and technology to asset level transitions in Figure 1. One 
pass through these steps comprises a single iteration in the micro-methodology. 

Dependency management and tree pruning. Dependency propagation relationships 
exist between and within the levels. For instance, the decision to introduce a work-
flow engine leads to the need for a user management subsystem, because the engine 
has to manage the status and progress of the process instance execution. This includes 
assigning activities to users. Users can be systems, if parts of the business process are 
automated and Web services technology is used to connect an automated client to a 
process instance. Transaction management is a second example. It can be discussed as 



an abstract pattern, which has to be mapped to technology-specific attributes, e.g., 
SCA qualifiers [21] and Enterprise JavaBean (EJB) deployment descriptor elements.  

The number of decision nodes is a major challenge for a broad applicability of our 
approach; usability and scalability are key concerns. Regarding volume metrics, 
consider a mid-size SOA construction project automating five business processes with 
20 atomic activities each. Let us assume realistic figures: 20 global executive 
decisions, 25 decisions per process and 40 per activity might have to be taken. If this 
is the case, already close to 1000 decisions have to be made. 

Decisions support systems can provide solutions to such problems. We can leve-
rage the explicit dependency management to actively remove unnecessary nodes as 
soon as possible. Several opportunities for doing so exist; one of them is to disable 
decisions and alternatives based on previous decisions. For instance, .NET details are 
no longer relevant if Java is the language of choice. If SOAP/HTTP has been chosen 
for the first ten activity services in a process, the next 15 probably will probably use it 
as well. Developing a more general tree pruning strategy is ongoing and future 
research work – in the now completed first project phase, our main focus was on 
structuring and populating the tree. 

5 Related Work 

In this section, we position our work relative to service modeling, patterns and pattern 
languages, Object-Oriented Analysis and Design (OOAD), software engineering 
methodologies, and design decision rationale research. 

Service modeling. Service modeling methodologies are subject to current research 
[2][9][24]. These methodologies cover all phases of service-oriented analysis and 
design; they are particularly strong in early such as business modeling and service 
identification. Typically, they reside on higher levels of abstraction than our SOA 
decision tree; therefore they provide less detailed technical advice than we do. The 
relationship between these methodologies and our approach is complementary and 
synergetic; e.g., a candidate service model created with SOMA can service as a 
starting point for the detailed technical decision making based on our approach. 

Patterns and pattern languages. The patterns movement has been highly successful 
in the past decade [14]. Architecture and design patterns go a long way in supporting 
practitioners during design and development of enterprise applications. SOA as an 
architectural style refines many abstract patterns such as Proxy and Broker [8]. In 
enterprise application architecture literature, we find service layer patterns and gene-
ral coverage of transaction management issues, but no specific coverage of SOA. The 
“Putting it all together” chapter in [10] has inspired parts of our overall SOA design 
space structure. SOA patterns have emerged over recent years. For example, Zdun 
[32] defines a pattern language for process-driven SOA. 

Practitioners often report difficulties in seeing the big picture when looking at indi-
vidual patterns and pattern catalogs. Pattern catalogs do not discuss how the various 
patterns are connected. Pattern languages address this concern, describing an entire 



domain as a consistent and comprehensive set of related patterns, and providing 
orientation within the solution space via intent, context, and forces discussions. How-
ever, most pattern languages have a technology-centric nature; the transition from 
business-level requirement and NFR analysis to pattern application is described infor-
mally if at all. Cross-domain relationships between patterns are discussed rarely. 

Patterns have educational character. By definition, patterns reside on a conceptual 
and/or technical level; none of the existing SOA pattern languages map the patterns to 
an asset level. For example, transactional workflow patterns [5] do not provide BPEL 
or SCA mappings, even if these technologies appear as known uses. We believe that 
such mappings are required. In practice, many architectural decisions have to be taken 
on the asset level because vendor-specific extensions and limitations exist. 

In summary, patterns and pattern languages do not cover service modeling issues 
such as service granularity or transactionality design aspects with enough detail. 
Advice from the referenced sources still provides valuable background information in 
our approach; patterns appear as architectural alternatives on the conceptual level. 

OOAD. During our early adoption SOA projects, we employed many OOAD tech-
niques, which inspired the design of our SOAD framework [35]. For example, we 
often used a combination of system context, use case, and collaboration diagrams 
during early project scoping workshops. Design-by-contract [23] and responsibility-
driven design [30] are two principles that apply to services just as well as to objects. 
The Classes, Responsibilities and Collaborations (CRC) cards technique [4] is not 
limited to specifying classes; services and service components can be conceptualized 
similarly. However, it is key to take service design specific principles into account. 
For instance, services are invoked via messages, should not have any identity, and 
preserve as little conversational state as possible. We further discuss the OOAD usage 
for SOA construction in [37]. 

Software engineering methodologies. RUP [16] provides a business modeling 
discipline, which uses UML activity diagrams for process modeling both on analysis 
and design level. There is a RUP SOA plugin [13], which defines a Service Model 
artifact. SOA-specific design advice is given informally in technique papers and 
method extensions.  The given advice is helpful, but in our opinion also not detailed 
and prescriptive enough. For instance, process guidance in RUP workflows stops at 
Design Software Architecture and Design Service Model level of granularity. There is 
some integration of design patterns via recipes; however, detailed architectural 
decisions to be made are not captured and modeled systematically. Service interface 
design, communication protocol selection, and transactional runtime configuration 
issues are examples for such decisions that are typically not covered detailed enough. 

Design decision rationale, architectural decision research. Architectural decision 
capturing [18] is an emerging field in software architecture research, which emerged 
from work in design decision rationale research [19]. We use several techniques from 
both fields as part of our SOAD micro-methodology, filling gaps where needed. One 
popular form of knowledge capturing are Questions, Options, Criteria (QOC) 
diagrams [22]. QOC Diagrams raise a design question which points to the available 



options for it; decision criteria are associated with the options. Option selection can 
lead to follow-on questions. QOC triples are similar to our decisions, alternatives, and 
decision drivers. Existing work typically focuses on documenting already made deci-
sions, an additional, time consuming obligation even with tool support.2 With such an 
approach, the decision viewpoint remains isolated and disconnected from the 4+1 
logical, process, development, physical and scenario views on software architecture 
defined in [17]. In the industry, templates for architectural decision capturing exist 
[7]. There are cases where predefined decision documents are part of reference 
architectures, for example in the IBM e-business reference architecture [26]. These 
assets mainly have documentation character; they do not provide active guidance as 
our micro-methodology does. Copy-and-paste of static documents is the only way to 
customize and reuse the assets on SOA construction projects. 

6 Discussion 

As the examples in this paper have shown, successful service modeling is as not as 
easy as it might appear at first glance. Much more than simple drill-down from 
business-level process flow to IT realization is required; many SOA-specific architec-
tural decisions have to be made. Almost all but the most trivial cases require a meet-
in-the-middle modeling approach as opposed to a top-down process; existing system 
reality and software packages constrain the modeling choices. With our multi-level 
SOA decision modeling approach, we capture the corresponding design advice.  

We use the architectural decision metaphor in a more dynamic fashion than exi-
sting work. In our approach, architectural decisions do no not just have passive 
reference character, but serve as a micro-methodology. Decisions are identified from 
business requirement models, legacy system descriptions and earlier decisions. Be-
cause SOA is specified and standardized openly, it is possible to leverage domain-
specific knowledge captured in SOA reference architectures, principles, and patterns. 
Standardization and openness have another welcome side effect: service modelers 
speak the same language – it becomes possible to share architectural knowledge 
between projects, thus helping to develop economies of scale. 

Unlike any other modeling approach or methodology we are aware of, we push a 
detailed initial technical to-do list including available alternatives, pros and cons, 
known uses, and literature references to the responsible service modeler, bringing in 
experience from previous projects. This is a significant advantage of our approach; 
state-of-the-art so far has been that the service modeler had to pull the required 
decision points and possible designs from the literature, personal experience, and per-
sonal networks. Some of the required information is available in method browsers 
nowadays; however, practitioners still have to perform a pull operation. 

Our SOA decision tree also serves as a communication vehicle between the actors; 
feedback regarding practicability and enforcement of decisions can be exchanged this 
way. Another benefit of this approach is that it facilitates the knowledge exchange 
across project boundaries. The SOA decision tree also can serve as an analysis tool 

                                                           
2 Tool support for capturing design decision rationale has been a research topic in the 1990s, 

but has failed to accomplish industry adoption so far. There is no SOA specific support yet. 



during bottom-up service modeling if it captures the architectural decisions once 
made for a legacy asset that is currently being service enabled. By helping to assess 
whether an available service operation is suited to implement a certain process 
activity, a decision model provides buy vs. build decision support. The decision 
catalog can also serve as governance and risk mitigation instrument; compliance with 
industry and company guidelines can be ensured. Additional usage scenarios for the 
decision tree are quality assurance reviews and best practices benchmarks. 

While the presented approach is generic enough to be applicable to many architec-
tural styles, it is particularly useful, or even required, in SOA. Decision modeling and 
SOA share many design goals such as applicability in heterogeneous, complex 
domains. NFRs of shared services usually are more challenging than those of 
standalone applications. Services have to handle multiple usage contexts, and clients 
compete for shared resources. A software service is not just a reusable code fragment, 
but an enterprise asset, much like a product; service lifecycle management is required 
on enterprise-wide SOA initiatives, which is simplified by capturing and preserving 
the rationale behind the original service design in a SOA decision tree.  

Project results and action plan. This paper presents both results of our work and an 
action plan to further enhance the presented concepts and ensure practical applicabi-
lity. So far, we have validated the presented approach in the following ways: 

• We applied the micro-methodology retrospectively to two of our own pro-
jects [33][36]. The results of that step led to one of several refactoring ite-
rations, in which we added the lifecycle management attributes to the 
meta model, as well as explicit support for capturing decision drivers. 

• We have implemented tool support for the presented concepts in an 
Eclipse-based Architect’s Workbench [1], as well as a Web 2.0 front end 
[25]. At the time of writing, two industry projects work with the tool.  

• The content of the SOA decision tree could be reused successfully on 
these projects. In one case 13 of 15 required decisions could be anticipa-
ted, in the other 45 of 50. 

• We have applied the micro-methodology to areas in which we do not have 
deep subject matter expertise. For example, we coached two information 
integration architects so that they could capture their expertise in decision 
tree form. The study succeeded. 

• We are in the process of studying the design decisions and drivers in 
transactional workflows in SOA in more detail. A draft version of that 
content is currently under evaluation in our target community. 

During these activities and workshops with more than 100 practicing software 
architects and service modelers, several benefits of the outlined micro-methodology 
have already become apparent. The approach serves well as an education and know-
ledge exchange vehicle; subject matter expertise becomes available to less expe-
rienced architects. It also increases productivity during the initial project setup 
activities such as team orientation and candidate asset screening. Numerous SOA case 
studies exist; therefore, the decision tree can be populated from experience. The MDA 
positioning and dependency modeling concepts provide traceability between analysis 



and design, as well as between design and code. The feedback loops between the le-
vels improve team communication.  

For a broader adoption, several challenges have to be overcome. The complexity of 
the enterprise computing domain leads to a rather large decision tree structure. There 
are many business domains to be supported, and on the technology and asset levels, 
thousands of architecture alternatives exist. The change dynamics of the solution 
space are another challenge: new architecture alternatives arise almost daily. At least 
the asset level of our decision tree has to be updated whenever a vendor releases a 
new product version with enhanced features or different non-functional characteri-
stics. Due to these challenges, usability and scalability are key success factors for our 
micro-methodology. Tree organization and tools under development take these chal-
lenges into account. Further validation work is required to assess whether these 
challenges can be addressed in such a way that a broader practitioner community can 
employ our micro-methodology successfully on complex SOA construction projects. 

7 Conclusion and Outlook 

In this paper, we have positioned reusable architectural decision models as a micro-
methodology for model-driven service realization. The enterprise computing domain 
is complex; no SOA fits all purposes. Therefore, service modeling activities always 
have to be customized for particular project environments; combining elements from 
several methodologies is a valid option. Methodologies such as SOMA and SOA 
patterns can and should be leveraged during SOA construction, but must be further 
enhanced to ensure repeatability, and support quality assurance and reuse strategies.  

Architectural decisions provide an additional view on software architecture 
complementary to the traditional 4+1 logical, process, development, physical and 
scenario views defined by Kruchten [17]. Decision models for this sixth view on 
software architecture can be organized according to MDA principles, separating exe-
cutive, business analysis, conceptual, technology and asset design concerns.  

According to our experience, such structured hierarchical decision models can 
serve as a service realization micro-methodology. In such as micro-methodology, 
genuine modeling and meta modeling support for SOA decision identification, 
making, and enforcement are required, as well as dependency and constraint mana-
gement; many SOA decisions influence each other. In this paper, we introduced such 
concepts and pre-configured SOA decision trees for three engagement types, simple 
Web services enablement, process-driven SOA solution, and enterprise-wide SOA. 
We applied the presented micro-methodology retrospectively to our own SOA 
projects, and are in the process of validating our concepts together with solution 
architects and service modelers engaged in industry projects. Web 2.0 and Eclipse-
based tool support is available. 

Future work includes continuing to harden our SOA decision tree, to further extend 
the meta model and to develop a decision model population, dependency management 
and tree pruning tool. We also plan to investigate several advanced usage scenarios 
for our SOA decision tree, for example project management assistance, software 
package evaluation and software configuration. 
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