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Preface

One big challenge of service coordination in the Semantic Web is concerned
with how to best connect the ultimate service requester with the ultimate ser-
vice provider. Like intermediaries in the physical economy, a special kind of
software agents, so called middle-agents, is supposed to solve this problem based
on the declarative characterization of capabilities for both service requester and
provider agents. In fact, the standard Web service interaction life cycle corre-
sponds to a classical service matchmaking process. More generally, resource re-
trieval extends the notion of service matchmaking to the process of discovering
any kind of resource (services, data, information, knowledge) for given settings,
participating entities, and purposes. Such process is at the core of several sce-
narios in the Semantic Web area, going from Web-services, grid computing, and
Peer-to-Peer computing, to applications such as e-commerce, human resource
management, or social networks applications such as mating and dating services.

The papers accepted for the first edition of SMR2 workshop try to cover sev-
eral aspects related to semantic Web service (SWS) and resource retrieval. From
SWS discovery to SWS composition – as done by Seiji Koide and Hideaki Takeda
in Formulation of Hierarchical Task Network Service (De)composition
– up to retrieval based on Natural Language queries (Serge Linckels et al., Op-
timizing the Retrieval of Pertinent Answers for NL Questions with
the E-Librarian Service).

Many of the approaches presented, propose and analyze solutions and tech-
niques mainly related to semantic Web service (SWS) discovery. Among various
open issues related to the discovery phase of a SWS, a particular emphasis is
given to: approximate retrieval – how to go over pure classification-based
techniques to find SWS satisfying, to some extent, user requests?; ranking cri-
teria – given a pull of retrieved SWS, how to evaluate the best ones?; efficiency
– how to speed up the discovery phase?

Jacek Kpecký et al., in their Semantic Web Service Offer Discovery,
describe a two phase discovery to find a Web service fulfilling user request and
preferences. The first static phase uses coarse-grained semantic Web service de-
scriptions to find services that approximatively match the users goal; the second
dynamic one uses the Web service semantic description of the interface to find
appropriate offers. Efficiency is the main concern of in Efficient Discovery of
Services Specified in Description Logics Languages by Claudia d’Amato
et al. Here a concept clustering approach – tailored for Description Logics based
functional representation of a SWS – is proposed to speed up the retrieval pro-
cess.

Alberto Fernandez et al. (Towards Fine-grained Service Matchmaking
by Using Concept Similarity) analyze existing approaches for both concept
similarity and Web service matching, based on the formal semantics behind on-
tology languages, and sketch some ideas on how to combine these techniques in
a unified framework. Going beyond pure semantic-based approaches to match-
making, in Hybrid OWL-S Service Retrieval with OWLS-MX: Bene-
fits and Pitfalls, Matthias Klusch and Benedikt Fries mix logic- and IR-based



matchmaking and present a thorough evaluation of their implemented system
based on OWL-S SWS descriptions. A preliminary analysis of the performance
for the hybrid retrieval system WSMO-MX is presented in Performance of
Hybrid WSML Service Matching with WSMO-MX: Preliminary Re-
sults by Frank Kaufer and Matthias Klusch. Beside functional parts of a SWS
description we do not have to forget non-functional ones such as Quality of Ser-
vice (QoS). Kyriakos Kritikos and Dimitris Plexousakis (OWL-Q fir Semantic
QoS-based Web Service Description and Discovery) focus on these prop-
erties by developing OWL-Q, an ontological specification for semantic QoS-based
Web Service descriptions.

After all, we would like to see semantic Web services in action. In the direc-
tion of “real” semantic Web services Gennady Agre et al. (Towards Semantic
Web Service Engineering) present a framework for semantic Web service en-
gineering that covers the whole SWS life-cycle from creation to execution and
monitoring. Results of an analysis on the current status of semantic Web services
in the Web are in Semantic Web Service in the Web: A Preliminary Re-
ality Check (by Matthias Klusch and Zhinguo Xing). In this paper the authors
give an answer to the basic question: where are all the semantic Web services
today?

As a last word, we are grateful to all authors for their valuable submissions,
the members of the Program Committee and the external reviewers for their
time and efforts, who all helped making this workshop a success. We are confi-
dent readers will find, through the papers, useful information on current state
of the art on service matchmaking and resource retrieval in the semantic Web
and useful hints to future research directions.

Abraham Bernstein, Tommaso Di Noia, Takahiro Kawamura, Matthias Klusch,
Ruben Lara, Alain Leger, David Martin, Massimo Paolucci, Axel Polleres and
Ioan Toma

SMR2 PC chairs and organizers
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Semantic Web Service Offer Discovery

Jacek Kopecký, Elena Simperl, and Dieter Fensel

Digital Enterprise Research Institute (DERI)
Innsbruck, Austria

firstname.lastname@deri.at

Abstract. Semantic Web Services are a research effort to automate the usage of
Web services, a necessary component for the Semantic Web. Traditionally, Web
service discovery depends on detailed formal semantic descriptions of available
services. Since a complete detailed service description is not always feasible, the
client software cannot select the best service offer for a given user goal only
by using the static service descriptions. Therefore the client needs to interact
automatically with the discovered Web services to find information about the
available concrete offers, after which it can select the best offer that will fulfill
the user’s goal. This paper shows when and why complete semantic description
is unfeasible, it defines the role and position of offer discovery, and it suggests
how it can be implemented and evaluated.

1 Introduction

The Semantic Web is not only an extension of the current Web with more semantic
descriptions of data; it also needs to integrate services that can be used automatically
by the computer on behalf of its user. A major technology for publishing services on
the Web is the so-called Web services. Based on WWW standards HTTP and XML,
Web services are gaining significant adoption in areas of application integration, wide-
scale distributed computing, and business-to-business cooperation. Still, many tasks
commonly performed in service-oriented systems remain manual (performed by a hu-
man operator).

In order to make Web services part of the Semantic Web, the research area of Se-
mantic Web Services (SWS) aims to increase the level of automation of some of these
tasks, e.g. discovering the available services and composing them to provide more com-
plex functionalities. SWS automation is supported by machine-processible semantic
Web service descriptions. Current state of the art in non-semantic service description
is WSDL1, which can describe the messages accepted and produced by a Web service,
and the simple message exchanges (called operations) and all the necessary networking
details. In effect, WSDL specifies a limited syntactical contract that the service adheres
to. Semantic descriptions capture the important aspects of the meaning of operations
and messages, generally in a formal language based on logics.

SWS descriptions are processed by a semantic execution environment (SEE, for
instance WSMX [5]). A user can submit a concrete goal to the SEE, which then finds

1 Web Service Description Language, http://w3.org/TR/wsdl20
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and uses the appropriate Web services to accomplish the goal. SWS research focuses
mainly on how the SEE “finds the appropriate Web service(s)”, as illustrated in Figure 1
with the first three SEE tasks.

In the figure, meant to be illustrative of the situation, rather than a real-world sce-
nario, the user decides to lead a healthier life and wants to buy 2kg of fruit. The SEE
will first discover any services that sell fruit (discarding the service that sells potatoes),
then it will filter depending on the user’s constraints and requirements (the user doesn’t
like peeling oranges), ranks the resulting services according to the user’s preferences
(the user is a student and so prefers the cheaper options) and selects the one service that
is invoked in the end. At any stage in the process, the user can be allowed to confirm
the results.

Discovery Filtering
buy fruit don’t want oranges

Ranking, selection
prefer the cheapest

Invocation
buy 2kg of apples

oranges
apples, peaches,

peaches
apples,

apples
User goal
"buy 2kg of fruit"

2kg apples, pleaselis
t s

er
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s
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descriptions
published
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pl

espe
ac

he
s

or
an

ge
s

po
ta

to
es

Web Services − concrete offers

Fig. 1. Semantic Web Services automation tasks

We’ve chosen the simple fruit-shops example here to illustrate the situation in easily
accessible terms, however, the general situation applies to any kinds of service: the
existing services will publish their descriptions in a registry; then the SEE will discover
the services applicable to the goal, filter and rank them according to any constraints and
preferences specified by the user, and invoke the selected service to achieve the user’s
goal.

The steps described above rely solely on the published Web service descriptions to
find the best service that matches the user’s goal. Alas, in many cases it is not feasible
to put all the relevant information in the service description, due to reasons detailed
later in this paper. For instance, a grocery shop service would not list all the kinds of
fruit they currently sell along with their up-to-date prices; instead, such a service would
be described as “selling groceries”. This limits the scope of discovery based on static
descriptions and introduces the need for an additional step, where the SEE will contact
the discovered Web services (or their providers) to find out more about the service’s
concrete offerings.

This additional step is called offer discovery (as opposed to Web service discovery).
The objective of this step is to establish whether the discovered Web service can fulfill
the user’s concrete goal and under what conditions. In our fruit shopping example, the
SEE checks whether a grocery shop service carries any fruits, what sorts of fruits are
available and at what prices, as shown in Figure 2. In this paper, we detail when and why
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static Web service discovery is not sufficient, we describe in detail what offer discovery
needs to accomplish and how offer discovery approaches should be evaluated. We do
not present a complete offer discovery solution in this paper, as our work is in an early
stage.

lis
t s

er
vi

ce
s

Registry

Filtering
don’t want oranges

Ranking, selection
prefer the cheapest

Invocation
buy 2kg of apples

G: apples $0.75S: peaches $0.99
G: apples $0.75

2kg apples, please

what fruits do you have?

Web Services

ha
rd

w
ar

e

su
pe

rm
kt

gr
oc

er
ie

s

buy fruit

Offer discovery

Supermarket (S)
Groceries (G)

S: peaches $0.99
S: oranges $0.69
G: apples $0.75

Service discovery

User goal
"buy 2kg of fruit"

buy fruit

published
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Fig. 2. Semantic Web Service offer discovery in SEE tasks

This paper is structured as follows: in Section 2 we detail the scenarios where offer
discovery is necessary. Section 3 defines SWS offer discovery and relates it to other
SEE tasks. Section 4 presents related work, both within Web services and in earlier
research areas. In Section 5, we sketch the envisioned solution. Section 6 describes our
expected evaluation methodology, and Section 7 contains concluding remarks.

2 Limitations of static Web service discovery

The best way to define service offer discovery is by describing the problems that it
aims to solve. First, let us review the distinguishable functions of a semantic execution
environment (SEE). The following steps are traditionally executed after a user submits
their goal “buy 2kg of fruit”, as shown in Figure 1.

1. Web service discovery2 — using published descriptions, find all the available Web
services that may sell fruits (the services may be more generic, like a supermarket
with all kinds of products, or more specific, like an owner of a cherry-tree orchard,
who naturally only offers cherries).

2. Filtering — filter out services that do not fit the user’s constraints (for instance a
service that sells oranges, because the user does not like them).

3. Ranking, selection — rank the remaining offers based on the user’s preferences,
for instance by price. The best-ranked service may be automatically selected, or the
ranking may be presented to the user.

4. Invocation — use the selected service to achieve the goal (in our case, purchase
the fruit).

2 Sometimes, the term discovery is used to mean all the steps leading from a user’s goal to a
service that can fulfill it, i.e. everything but invocation. We choose a narrower definition of
discovery which only does matchmaking on the available service descriptons.
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There are also the additional steps of mediation and service composition, but they
are not particularly relevant to offer discovery, even though they may interact with it.

The task sequence above is fully adequate when the service descriptions carry all the
data relevant for the goal of the user. In a grid environment, a user might need processing
services and storage services, and the descriptions will contain such classifications.
In our fruit-buying scenario, the services need to advertise in their descriptions the
particular kinds of fruit they sell and at their prices (for ranking).

A vast majority of currently available public Web services3 provides only a limited
and fixed number of offers (products, services): a fax service from oneoutbox.com has
a single operation SendFax; the Amazon S3 service at amazonaws.com provides data
storage and retrieval (two offers); or the typical stock quote services provide one offer,
the current (delayed) price of any given stock. As they are described, the fax service
works globally for any fax number, the S3 service works with any size and kind of
data, and many stock quote services purport to know all stocks, therefore there are no
discoverable limitations. The offers of these services are simple and generic.

On the other hand, there are services whose discoverable offers are of a finer gran-
ularity. The Amazon E-Commerce Service, for instance, gives access to all products
sold on Amazon.com. Since Amazon cannot claim to sell all book and DVD titles, for
instance, each book and DVD title and any other product becomes a separate offer.
The service has operations for checking the availability or price of any given book title
etc. On a similar note, a broadband internet provider only serves certain areas, and it
provides operations to check availability at any given address.

Figure 3 illustrates how different kinds of services have widely different numbers
of offers4. From the left side, a temperature conversion service has two operations for
converting either way; a telephony service can have calling, voice mail, sms and a few
other operations; a currency exchange service can recognize tens or hundreds of cur-
rencies; and on the higher end a hotel reservation service can offer tens of rooms a year
ahead (each room on each day is an offer, making thousands of offers); and finally an
online store easily offers upwards of a million products.

110

210

410

510

610

103

010

Fahrenheit
to Celsius

telephony
service

currency
exchange

hotel
reservation

Amazon
ecommerce

number of offers

number of services

(estimate)

(approximate)

with similar complexity

complete description feasible
only roughly up to this point

Fig. 3. Numbers of offers of various types of Web services

3 Found through Web service registries http://seekda.com and http://xmethods.net
4 The figure is only illustrative, it is not based on any concrete quantitative analysis.
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The figure also shows an estimated potential number of distinct services with the
indicated complexity (in terms of the number of offers). We can expect tens of online
stores with millions of products, but already for the complexity of thousands of offers
we can expect many more services — hotels and travel reservation services being prime
examples. The large projected numbers of services with lower complexity can be justi-
fied by the vast variety and complexity of the Web and its diverse domains of discourse;
nevertheless our uncertainty is higher on the left side of the curve of the potential num-
ber of services.

For simpler services, it is not a problem to publish all the relevant information in
the semantic descriptions. Complete description becomes unwieldy for services on the
right side of the graph: some currency exchange services do not bother to publish the
list of supported currencies, hotels only publish up-to-date room availability to their
close partners, and Amazon does not provide a “browse-all” functionality at all since it
would be highly impractical. The dashed vertical line is a rough threshold above which
complete description becomes infeasible.

The reasons against complete semantic description of all offers can be categorized
as follows:

Processing performance: for a larger online store, the full product catalogue would
make a Web service description impractical or impossible to process, considering
current reasoning performance.

Description updates: updating the description in a service registry upon every inven-
tory, availability or pricing change would lead to heavy resource utilization in the
registries.

Trade secrets: a full description of service offers could even reveal sensitive stategy
information or trade secrets.

While reasoning performance may improve, and registry updates can be optimized,
sensitive information and trade secrets will not go away. For instance, a bank service
description would have to detail all loan approval procedures in its complete offer de-
scription. For banks, the loan approval process with all its considerations is part of
what makes some banks successful and others bankrupt. And sensitive information is
not limited to such clear cases as banks. Even online retailers such as Amazon do not
want to publish all offers, including bundle discounts (e.g., get Harry Potter 7 cheaper
with other books in the series). Publishing all the prices and discounted offers in a sin-
gle, easily accessible place, would provide the competition with insights into Amazon’s
strategy, and lower Amazon’s competitive advantage.

In our experience, the complexity of complete service descriptions is a practical
barrier to adoption of SWS technologies within the Web services industry. The need
to maintain the complete descriptions, and to include possibly sensitive data, raises the
barrier even higher. In other words, service discovery based solely on complete static se-
mantic descriptions is of limited usefulness. On the other hand, less detailed “semantic-
light” descriptions (for instance, Amazon would be described as selling books, movie
DVDs, music CDs etc.) limit the SWS automation to simple but imprecise matchmak-
ing and ranking.

These limitations of static semantic Web service discovery affect adversely the
adoption of semantic technologies, and the lack of automation without semantics in turn
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lowers the adoption of Web service technologies themselves. While it may seem from
Figure 3 that only a relative minority of Web services cannot be described completely,
these complex services represent a significant economical value among the (potentially)
available Web services.

3 Semantic Web Service offer discovery

As we have shown, static service discovery based on complete descriptions is, in many
important cases, not feasible. Therefore, we split the task of finding the most appropriate
offer from all the available Web services into static Web service discovery followed by
dynamic offer discovery. The static Web service discovery uses coarse-grained semantic
Web service descriptions to find services that potentially match the user’s goal, and the
dynamic offer discovery uses the semantic description of the Web service interface to
automatically find any appropriate offers. With offer discovery, the set of steps can be
rephrased as follows:

1. Web service discovery — find all the available Web services that may be able to
fulfill the user’s goal (i.e. discard those which, based on their description, cannot
fulfill the user’s goal).

2. Offer discovery — by interacting with the discovered services, find all their offers
relevant for the goal.

3. Filtering — filter out offers that do not fit the user’s constraints.
4. Ranking, selection — rank the remaining offers based on the user’s preferences,

and select one to be invoked.
5. Invocation — use the selected service.

Offer discovery can be seen as information retrieval (search) or as negotiation, as
discussed in Section 4. Semantic offer discovery should be able to communicate with
any Web service and find information about offers relevant to the user’s goal. For com-
municating with the Web services, the offer discovery engine needs a description of the
service interface (what operations it contains that can be used to gather offer informa-
tion) and a description of the exchanged data, to understand the offers and be able to
compare it with the goal. In other words, offer discovery needs different semantic de-
scription than Web service discovery; the latter needs to know what the service offers,
whereas offer discovery needs to know how to talk to the service to get the information.

Seen as a black box, an offer discovery engine has as its inputs the user goal and the
set of discovered Web services, and the output is the set of offers which should be of the
same granularity as the user goal, even though the semantic description of the service
is on a higher level of abstraction (more coarse-grained). For instance, the semantic
description for the Amazon e-commerce service could say “this service sells books”.
For a concrete user goal “buy the last Harry Potter book”, the offers could be “Harry
Potter 7, Hardback, $12.99” and “Harry Potter 7, Paperback, $8.99”.

Offer discovery complements Web service discovery in situations where the latter
alone is not feasible. Our main hypothesis is that the semantic description necessary for
automated offer discovery is significantly easier to create and manage (and more ac-
ceptable) than the complete semantic description of all the offers. A further hypothesis

8
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is that the process of offer discovery is more efficient or on par with the processes of
managing the complete descripton and reasoning with it in Web service discovery. The
terms “easy”, “acceptable” and “efficient” are defined more clearly in Section 6, where
we propose evaluation criteria for offer discovery solutions.

We should note that what we call offer discovery is elsewhere in literature (e.g. [6])
called service discovery, making the distinction between a Web service and the ser-
vice it actually provides. We prefer the term “offer” to avoid causing confusion due to
overloading of the common word “service”.

4 Related work

Semantic Web service offer discovery, as defined in the preceding section, is related to
earlier research in automated negotiation, and to the related areas of query processing
and information gathering.

The term negotiation has been used for different purposes in a variety of computer
science fields, e.g. electronic commerce, grid computing, distributed artificial intelli-
gence and multi-agent systems. In electronic commerce, Beam and Segev [2] define
negotiation as “the process by which two or more parties multilaterally bargain re-
sources for mutual intended gain”. There are several different types of negotiations in
e-commerce: auctions (multiple buyers bid for price), double auctions (both buyers and
sellers bid for price, e.g. stock exchanges), one-to-one bargaining, and even catalogue
provision (price fixed by seller). Offer discovery is similar to catalogue provision (offer
discovery accesses and retrieves the relevant parts of the offer catalogue), but it could
be extended in the direction of bargaining as well.

Research in query answering and information retrieval has dealt, among others, with
using multiple information sources to gather the requested (or relevant) information
(cf. [7]), based on a user query. In Semantic Web services, a user goal can be seen as
a form of query, and the discovered Web services (or their individual operations) as
information sources. The particular problem in SWS offer discovery is the description
of the services and their operations so that information retrieval techniques would be
applicable.

We can see that offer discovery is not a problem specific to SWS. However, earlier
efforts on similar automation (e.g. in multi-agent systems) have generally presumed
a controlled environment with a predefined set of interaction protocols for various tasks;
for instance, a marketplace would dictate a bargaining and auctioning protocol. Such an
approach can be applied to Web services, however, a bargaining/auctioning protocol or
a common query language would need to be standardized and adopted by most service
providers. Any SWS offer discovery mechanism, together with any necessary semantic
annotations mechanisms, would be different and novel because SWS offer discovery
aims to be generic, independent of the domain of the service offers. Indeed, the se-
mantic annotations should make the offer discovery algorithm adapt to any available
negotiation or query protocol.

Apart from related work described above, we know of only one published attempt
that involves dynamic offer discovery in Semantic Web Services: Zaremba et al. [10,
11] talk about a so-called “contracting interface” with a described choreography. In
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their case, the SEE client follows the predefined choreography to find out the concrete
price offered by a discovered Web service. The contracting interface can be likened to
a prescribed protocol for offer discovery.

5 Envisioned solution components

While we do not have a working solution at this time, we can describe the major com-
ponents necessary for any solution for semantic Web service offer discovery. Offer dis-
covery takes a number of discovered Web services (or their descriptions, to be more
precise) together with a user goal and returns a set of offers from these Web services.
Any of the discovered Web services can provide any number of relevant offers, or none
at all, and at least initially we can assume that offers from different services are indepen-
dent. Therefore, we describe offer discovery in terms of dealing with a single service;
if multiple services have come from Web service discovery, we can deal with each one
of them separately. Offer discovery can be seen as a three-step process:

1. selecting the “offer-inquiry” operations from among all the operations of the dis-
covered Web service;

2. planning the execution of some or all of these operations, based on what data is
available in the user’s goal and what data the operations return;

3. invocation of the selected operations according to the plan, translating the appro-
priate goal data into the appropriate XML messages.

The first step is necessary because we cannot assume that all the operations of any
Web service can be used in offer discovery. Indeed, Web service interfaces often in-
termix operations for offer inquiry with operations that actually provide the resulting
product or service, for instance a hotel service would mix the availability inquiry oper-
ations with the operations for booking rooms. For purpose of automatic invocation, we
must select operations that are safe in the same sense in which the Web architecture [1]
defines “safe interactions”:

A safe interaction is one where the agent does not incur any obligation beyond
the interaction. An agent may incur an obligation through other means (such
as by signing a contract). If an agent does not have an obligation before a safe
interaction, it does not have that obligation afterwards.5

To recognize the “offer-inquiry” operations, we need semantic annotations about
the nature of operations. In step with the Web architecture, WSDL 2.0 has a mechanism
for annotating Web service operations as safe; it is unclear whether more information
would be necessary for selecting “offer-inquiry” operations; if so, they can be added

5 A canonical example of a safe interaction is information retrieval — the client may query
a service about the availability of a hotel room, yet by issuing the query the client makes no
commitment to book the room. Note that safety is not the same as idempotency: safe operations
are generally idempotent, but idempotent operations need not be safe — for example a delete
operation on a data store is idempotent but not safe.

10

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web



using SAWSDL6 (Semantic Annotations for WSDL and XML Schema), a specification
from the W3C; specifically using modelReference on WSDL operations. It remains to
be seen whether all safe operations can be seen as “offer-inquiry” operations, but due
to their safety, there is no harm in invoking such operations even if they do not actually
help get information about the service offers.

When we have selected the suitable operations, we can use information gathering
and planning techniques in the second step to plan an execution that will return rele-
vant information about the offers pertinent to the user’s goal. We do not have a firm
definition of relevant at the moment, and we expect that this process can even involve
some heuristics for optimizing the interactions with the Web service. Retrieving too
little information will give us an incomplete view of the offers, whereas retrieving too
much information would be overhead and a potential performance problem. This step
requires semantic annotations of the operation inputs and outputs; in other words, what
parameters the operations require and what kind of information they return. Such an-
notations can be added as SAWSDL modelReferences on the XML schema elements
that are the input and output messages of the Web service operations.

The third step actually executes the plan and invokes the operations. Its role is
to ground the goal data (presumably in a Semantic Web language, e.g. RDF or in
WSML [4]) to the XML messages expected by the operations, and interpret the re-
turned XML messages as semantic data about offers. This step can probably be imple-
mented with simple reuse of some automatic Semantic Web service invocation mecha-
nism that implements the grounding (cf. [8]), and it needs annotations that specify the
data grounding transformations.

6 Evaluating SWS offer discovery approaches

The expected end contribution of our work is an efficient approach to automatic offer
discovery that complements Web service discovery based on static descriptions. Even
though we do not yet have a concrete solution, we can sketch the ways in which we
expect to evaluate it. The evaluation criteria listed below are independent of the details
of any proposed solution.

The efficiency of an offer discovery approach is evaluated in two dimensions: vol-
ume and complexity of the necessary semantic description, and the performance and
scalability of the discovery process, as described below. The offer discovery engine will
form a part of a semantic execution environment (SEE). The use cases for a SEE include
the common scenarios of electronic shopping and travel scheduling7, but also existing
real-world applications such as e-Government Emergency Planning, as described in [3],
and any such use cases should be helpful in testing offer discovery.

The major benefit of the presence of offer discovery in a SEE is that the semantic de-
scriptions of Web services need not be complete and detailed (e.g. the whole catalogue
of an online store). This guides the first evaluation criterion: the semantic description
necessary to enable automated offer discovery must be significantly simpler than a com-
plete and detailed static semantic description of the service. The relative simplicity of

6 http://w3.org/TR/sawsdl
7 See http://sws-challenge.org/
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the semantic descriptions can be tested using reasoning performance comparisons, and
user evaluations of the process of creating and managing the full static description vs.
the descriptions necessary for automatic offer discovery. As these evaluations require
experts, instead of a simple survey with many participants who may not be so expert,
we suggest to use the Delphi method [9] which is shown to have good results with fewer
participants, even though the process is more time consuming.

Apart from the complexity of the semantic descriptions, offer discovery requires
interaction with the Web services, whereas static service discovery based on complete
semantic-heavy descriptions requires that the service provider updates the description
on every change. Therefore, the second evaluation criterion is: the reasoning and net-
worked interaction during offer discovery should have better performance and scala-
bility than the combination of reasoning with complete descriptions and network inter-
actions for description updates. Performance can be compared on specific test cases,
and scalability needs to evaluate how the approaches can deal with many services and
many service offers. Further, the comparison combines reasoning tasks with network
interactions; therefore it is crucial to evaluate different settings of reasoning power vs.
networking setup.

In short, the evaluation of SWS offer discovery approaches is in comparison to static
service discovery with complete descriptions (complete enough to get comparable re-
sults), and it involves experiments in controlled environments for comparing the perfor-
mance, and expert surveys for comparing the relative simplicity and maintainability of
the involved semantic descriptions.

7 Conclusions

Since Web service discovery cannot always be based on complete and detailed semantic
description, it needs to be complemented with automatic offer discovery. In this paper,
we have described the problem, sketched the components of a solution and the evalua-
tion methodology. Eventually, we intend to develop an approach to SWS offer discovery
that will significantly simplify the needed semantic descriptions and thus help ease the
adoption of SWS technologies in the industry.

Any offer discovery approach needs to answer the following major questions: how
should the user goal and concrete offers be modeled semantically to enable a generic
algorithm for offer discovery; and how to select Web service operations that can be used
for retrieving information about concrete offers pertaining to the user goal, plus how to
sequence the invocations of these operations. There are two concrete steps ahead of us
now: we intend first to work on a prototype whose function will help us understand and
formalize offers and goals; when these terms are formalized, we can proceed to specify
and evaluate a concrete fully-fledged approach to offer discovery.
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Abstract. Semantic service descriptions are frequently given using expressive
ontology languages based on description languages. The expressiveness of these
languages, however, often implies problems for efficient service discovery, espe-
cially when increasing numbers of services become available in large organiza-
tions and on the Web. To remedy this problem, we propose an efficient service
discovery/retrieval method grounded on a conceptual clustering approach, where
services are specified in Description Logics as class definitions [10] and they are
retrieved by defining a class expression as a query and by computing the individ-
ual subsumption relationship between the query and the available descriptions.
We present a new conceptual clustering method that constructs tree indices for
clustered services, where available descriptions are the leaf nodes, while inner
nodes are intensional descriptions (generalization) of their children nodes. The
matchmaking is performed by following the tree branches whose nodes might sat-
isfy the query. The query answering time may strongly improve, since the number
of retrieval steps may decrease from O(n) to O(log n) for concise queries. We
also show that the proposed method is sound and complete.

1 Motivation

First research efforts in the fields of service discovery and service matchmaking have
been concentrated on setting up methods and formalisms for describing the service
semantics, with the goal of making service retrieval an automatic or, at least semi-
automatic, task. Expressive ontology languages such as OWL-DL3 are increasingly
used to describe the ontology of a domain as well as specific resources available in
such a domain such as Web services [16, 10]. Thereby such resources may be described
as parts of an ABox, i.e. as instances of concept expressions [16]. Frequently, however,
it is also useful to fully exploit Description Logics (DLs) subsumption capabilities us-
ing concept expressions in a TBox, e.g. to describe all the possible concretizations of
a specific Web service resource (as proposed in [10]) using TBox concept expressions
to represent the generic Web service resources (and their instance to represent Web ser-
vice instantiations). Eventually, the services are retrieved by formulating a request as a
concept expression and checking each service description with regard to instantiation or

3 www.w3.org/2004/OWL/
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subsumption of the query. However, these approaches suffer heavily from runtime inef-
ficiency when the number of available services grows, since the number of instantiation
or subsumption checks grows linearly in the number of the available resources.

In spite of such limitations, most of the current researches that concentrate on the
automation of the service discovery and retrieval focus on the improvement of the effec-
tiveness of the matchmaking process rather than on the efficiency of the whole retrieval
process. Specifically, central to the majority of the current service matchmaking ap-
proaches is that the formal semantics of service descriptions is explicitly defined in an
ontology language such as OWL-DL [12] based on some decidable DLs [1]. In this way
service matchmaking can be performed by exploiting standard DL inferences [16, 22,
7, 13] sometimes jointly with the use of syntactic similarity measures [14].

Less attention has been dedicated to the improvement of the efficiency of the ser-
vice discovery task. In this paper we address such a problem, by proposing an original
tree indexing method, DL-tree, for services described as DLs concept expressions and
referring to an ontology acting as common knowledge base. The DL-tree is obtained by
exploiting a novel conceptual clustering algorithm for concept expressions, DL-link,
grounded on the use of a new, truly semantic similarity measure, GCS-based similar-
ity.

In the DL-tree, available service descriptions are found at the leaf nodes, while inner
nodes are generalizations of their children nodes. Germane to the heuristic construction
of DL-tree are non-standard inference procedures for computing the Good Common
Subsumer [3] of ALE(T ) concept expressions (see Sect. 2). Hence, in this paper, we
focus on the description and evaluation of services specified in this ontology language4.
Since the DL-tree is computed on the ground of the GCS-based similarity, it is different
from the subsumption-based taxonomy representing the ontology.

Once that the DL-tree for a set of service description is obtained, its structure may
be used to focus subsumption-based matching to the branches of the tree where nodes
satisfy subsumption (or instantiation) checks. By this way, we achieve a drastic reduc-
tion of the size of the retrieval space. Query answering time may strongly improve,
since the number of retrieval steps may decrease from O(n) to O(log n) for concise
queries and n resources. Because of the way that the DL-tree is constructed it heuristi-
cally achieves a good covering of the retrieval space while maintaining soundness and
completeness of the retrieval method.

In the following, we first summarize some important definitions of the DLs repre-
sentation languages, ALC and ALE , and some established reasoning procedures that
we use subsequently (Sect. 2). We define a semantic similarity measure, GCS-based
similarity, for ALE(T ) in Sect. 3. The measure combines extensional size of concept
expressions to reflect their model semantics and an intensional generalization of two
concepts, their Good Common Subsumer (cf. [3]) to consider also the structure of the
given ontology. The GCS-based similarity is used to cluster service descriptions into
the new indexing structure, DL-tree (instead of the DAG given by the ontology), using
a modified agglomerative clustering mechanism in Sect. 4. The DL-tree is exploited
in the service retrieval procedure defined in Sect. 5. In Sect. 6 a preliminary experi-

4 In the conclusion we will indicate some ways to generalize DL-tree to indexing of OWL-DL
concept expressions and instances.

16

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web



mental evaluation of the DL-tree indexing method is presented. Some related works are
examined in Sect. 7 while conclusions and future extensions of DL-Tree indexing are
presented in Sect. 8.

2 The Reference Representation Language

We recall the basics ofALC andALE [1] logics which adopt constructors supported by
the standard ontology languages (see the DL handbook [1] for a thorough reference).
In DLs, descriptions are inductively defined starting with a set NC of primitive concept
names and a set NR of primitive roles. The semantics of the descriptions is defined by an
interpretation I = (∆I , ·I), where ∆I is a non-empty set representing the domain of
the interpretation, and ·I is the interpretation function that maps each A ∈ NC to a set
AI ⊆ ∆I and each R ∈ NR to RI ⊆ ∆I×∆I . The top concept> is interpreted as the
whole domain ∆I , while the bottom concept ⊥ corresponds to ∅. Complex descriptions
can be built in ALC using primitive concepts and roles and the following constructors
whose semantics is also specified. The language supports full negation, denoted ¬C
(given any description C), it amounts to ∆I \CI . The conjunction of concepts, denoted
C1 u C2, yields an extension CI

1 ∩ CI
2 and, dually, concept disjunction, denoted C1 t

C2, yields the union CI
1 ∪ CI

2 . Finally, the existential restriction, denoted ∃R.C, is
interpreted as the set {x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)} and the value
restriction ∀R.C, has the extension {x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}.

ALE logic is a sub-language of ALC as only a subset of ALC constructors is al-
lowed. Specifically, concept disjunction is not allowed and only the atomic negation
can be used, namely complex concept descriptions cannot be negated.

The main inference in DLs is subsumption between concepts:

Definition 1 (subsumption). Given two descriptions C and D, C subsumes D, de-
noted by C w D, iff for every interpretation I it holds that CI ⊇ DI . When C w D
and D w C then they are equivalent, denoted with C ≡ D.

A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is the set of
definitions C ≡ D, meaning CI = DI , where C is the concept name and D is its
description. A contains assertions on the world state, e.g. C(a) and R(a, b), meaning
that aI ∈ CI and (aI , bI) ∈ RI . Subsumption based axioms (D v C) are also allowed
in the TBoxes as partial definitions. Indeed, C ≡ D amounts to D v C and C v D.

A related inference used in the following is instance checking, that is deciding
whether an individual is an instance of a concept [1]. Concept subsumption and in-
stance checking are examples of standard inference services in DLs. Besides of these,
we also use non-standard inference services.

The most used non-standard inference services are the Most Specific Concept of an
individual and the Least Common Subsumer of a given collection of concepts.

Definition 2 (Most Specific Concept). Given an ABoxA and an individual a, the most
specific concept of a w.r.t.A is the concept C, denoted MSCA(a), such thatA |= C(a)
and ∀D such that A |= D(a), it holds: C v D.
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In the general case of a cyclic ABox expressed in an expressive DL endowed with
existential or numeric restriction, the MSC cannot be expressed as a finite concept
description [1], thus it can only be approximated. Generally an approximation of the
MSC is considered up to a certain depth k. The maximum depth k has been shown to
correspond to the depth of the considered ABox, as defined in [17]. We will indicate
generically an approximation to the maximum depth with MSC∗.

Definition 3 (Least Common Subsumer). Let L be a description logic. A concept
description E of L is the least common subsumer (LCS) of the concept descriptions
C1, · · · , Cn in L (LCS(C1, · · · , Cn) for short) iff it satisfies:

1. Ci v E for all i = 1, · · · , n and
2. E is the least L-concept description satisfying (1), i.e. if E′ is an L-concept de-

scription satisfying Ci v E′ for all i = 1, · · · , n, then E v E′.

Depending on the DL language, the LCS need not always exist. If it exists, it is
unique up to equivalence. In the case of ALC and ALE logic, the LCS always exists [2,
1]. Specifically, in the case of ALC (as in every DL allowing for concept disjunction)
the LCS is given by the disjunction of the considered concepts, thus it is also ”uninter-
esting” as it does not reflect any ontological modeling decisions. In the case of ALE
logic, where disjunction is disallowed, the LCS is computed by taking the common
concept names in the concept descriptions (also in the concepts scope of universal and
existential restrictions w.r.t. the same role), without considering the TBox (see [2] for
more details).

The ALE LCS computed using such an approach often results to be very general.
For this reason the notion of LCS computed w.r.t. the TBox5 to which the concept
definitions refer has been introduced [3].

Definition 4 (LCS w.r.t. a TBox). Let L1 and L2 be DLs such that L1 is a sub-DL
of L2. i.e., L1 allows for less constructors. For a given L2-TBox T , let L1(T )-concept
descriptions be those L1-concept descriptions that may contain concepts defined in T .
Given an L2-TBox T and L1(T )-concept descriptions C1, . . . , Cn, the least common
subsumer (LCS) of C1, . . . , Cn in L1(T ) w.r.t. T is the most specific L1(T )-concept
description that subsumes C1, . . . , Cn w.r.t. T , i.e., it is an L1(T )-concept description
D such that:

1. Ci vT D for i = 1, . . . , n
2. if E is an L1(T )-concept description satisfying Ci vT E for i = 1, . . . , n, then

D vT E

Specifically, in [3], the case of L2 = ALC and L1 = ALE has been focused and it
has been proved that the ALE LCS w.r.t. an acyclic ALC TBox6 always exists, while it
cannot exist in case of cyclic or general7 TBoxes. A brute force algorithm for computing
the LCS w.r.t. a TBox has been also shown. Anyway, such an algorithm cannot be usable

5 The TBox can be described by a DL that is more expressive than ALE .
6 A TBox is called acyclic if it does not contain any concept definition in which the concept

name to define is also used in the concept definition. If this happens, the TBox is called cyclic.
7 A TBox in which inclusion axioms are defined is called general TBox.
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in practice. For this reason, an algorithm for computing an approximation of the ALE
LCS w.r.t. an ALC TBox has been presented. The computed approximation is called
Good Common Subsumer (GCS) w.r.t. a TBox and it can exist also when a general
TBox is considered. The GCS is computed by determining the smallest conjunction
of concept and their negations that is able to subsume the conjunction of the top level
concept names of each considered concept, and the same for the concepts that constitute
the range of existential and universal restrictions w.r.t. the same role. The GCS is more
specific than the LCS computed by ignoring the TBox, though in general it subsumes (or
is equivalent to) the least common subsumer w.r.t. the TBox (see [3] for more details).

3 GCS-based Similarity: A Semantic Similarity Measure for
ALE(T ) Concept Descriptions

In the last few years, several measures for assessing the similarity value between con-
cepts have been proposed in the literature. From them, two main approaches can be
distinguished: 1) measures based on semantic relations (also called path distance mea-
sures); 2) measures based on concept extensions and Information Content.

In the former approach all concepts are in an is-a taxonomy, and the similarity
value between two concepts is computed by counting the (weighted) edges in the paths
from the considered concepts to their most specific ancestor. Concepts with a few links
separating them are similar; concepts with many links between them are less similar
[23, 15, 6, 18].In the latter approach the similarity value is computed by counting the
common instances of the concept extensions [8] or by measuring the variation of the
Information Content between the considered concepts [9, 24, 5].

Since the ontology does not have the simple structure of a taxonomy, but it is rather
an elaborated DAG, similarity measures based on distances in the taxonomy cannot be
used. Furthermore, in the considered application domain, the typical scenario consists
of having a set of concept descriptions (the service descriptions) with no one neces-
sarily overlapping the others. Consequently also measures based on overlap of concept
extensions as well as measures based on Information Content cannot be used, since also
semantically similar concept could result to be totally different.

Hence, we define a new semantic similarity measure, the GCS-based similarity,
able to cope with the presented scenario. Moving from the principles of the measures
based on concept extension and Information Content, we propose a similarity measure
exploiting the notion of concept extension, but instead of counting the common in-
stances between two considered concepts, the similarity value is given by the variation
of the number of instances in the concept extensions w.r.t. the number of instances in
the extension of their common super-concept. The common super-concept is given by
the GCS of the concepts (see Sect. 2). The measure is formally defined in the following.

Definition 5 (GCS-based Similarity Measure). Let T be an ALC TBox. For all C
and D ALE(T )-concept descriptions, the Semantic Similarity Measure s is a function
s : ALE(T )×ALE(T ) → [0, 1] defined as follow:

s(C,D) =
min(|CI |, |DI |)
|(GCS(C,D))I |

· (1− |(GCS(C,D))I |
|∆I |

· (1− min(|CI |, |DI |)
|(GCS(C,D))I |

))
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Fig. 1. Concepts C ≡credit-card-payment,
D ≡debit-card-payment are similar as the ex-
tension of their GCS≡card-payment does not
include many other instances besides of those
of their extensions.

Fig. 2. Concepts C ≡car-transfer, D ≡ debit-
card-payment are different as the extension
of their GCS≡service includes many other in-
stances besides of those of the extension of C
and D.

where (·)I computes the concept extension w.r.t. the interpretation I (canonical inter-
pretation).

The canonical interpretation adopts the set of individuals mentioned in the ABox as
its domain and the identity as its interpretation function [1, 17].

The rationale of the presented measure is that if two concepts are semantically sim-
ilar, such as credit-card-payment and debit-card-payment, then they should have a good
common superconcept, e.g. card-payment, that is so close to the two concepts, namely
the extensions of the superconcept and even the lesser-sized input concept share many
instances, consequently the similarity value will be close to 1. On the contrary, if the
considered concepts are very different, e.g. car-transfer and debit-card-payment, their
GCS, e.g. service, will be high up in the TBox, and this superconcept will have many
instances not contained in the two compared concepts, consequently the similarity value
will be next to 0. In Fig. 1 and Fig. 2 this rationale is illustrated. Opposite to existing
semantic similarity measures, this rationale does not require overlap of compared con-
cepts, and it does not take into account semantic path distance. Moreover, the minimum
extension of the concepts is considered in the measure definition, in order to avoid to
have an incorrect similarity value (high similarity value) in the case in which one of the
concepts is very similar to the super-concept but very different from the considered one.

It is trivial to verify that the function s of Def. 5 is really a similarity measure,
namely that (following the formal definition in [4]) it satisfies the following proper-
ties: 1) s is definite positive; 2) s is symmetric; 3) s satisfies the maximality property
(∀ C,D : s(C,D) ≤ S(C,C)).

4 DL-Link: A Conceptual Hierarchical Agglomerative Algorithm
for Clustering Description Logic Resources

The main goal of Cluster Analysis is to set up methods for the organization of a col-
lection of unlabeled resources into meaningful clusters exploiting a similarity criterion.
Specifically, clusters (classes) are collections of resources whose intra-cluster similarity
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is high and inter-cluster similarity is low. The methods that focus also on techniques for
generating intensional cluster description are called Conceptual Clustering methods.

A prominent conceptual clustering algorithm is the average-link algorithm [26]. It
starts by assigning each resource to a distinct cluster and iteratively merges the two
most similar clusters until only one cluster remains. The output of the algorithm is a
dendrogram, namely a tree structure representing a nested grouping of resources. We
modify average-link in several ways, in particular we substitute the typical Euclidean
distance measure by the GCS-based similarity and we substitute the computation of the
Euclidean average of each cluster in the computation of the GCS of the merged clusters.

Resources are assumed to be described as ALE(T ) concepts, exploiting a common
vocabulary T (mainly a shared ontology) written in ALC logic. They are clustered by
a batch process by the use of the DL-Link algorithm detailed in the following.

Let S = {S1, . . . , Sn} be a set of available resources.

1. Let C = {C1, . . . , Cn} be the set of initial clusters obtained by considering each
resource as a single cluster

2. n := |C|
3. For i := 1 to n− 1 consider cluster Ci

– For j := i + 1 to n consider cluster Cj

• compute the similarity values sij(Ci, Cj)
4. compute maxhk = maxi,j=1,...,n sij where h and k are the clusters with maximum

similarity
5. create the intensional cluster description Cm = GCS(Ch, Ck)
6. set Cm as parent node of Ch and Ck

7. insert Cm in C and remove Ch and Ck from C
8. if |C| 6= 1 go to 2

DL-Link algorithm starts by considering each service description in a single cluster
(list of available clusters), hence the similarity value8 between all couples of clusters is
computed and the couple having the highest similarity is selected. Then a new descrip-
tion, generalizing the chosen clusters, is created by computing the GCS (see Sect. 2).
The new description is first set as parent node of the chosen clusters, then it is inserted
in the list of the available clusters while the selected ones are removed. The generated
description represents a cluster made by a single element while the resources that it
describes are represented as its children in the dendrogram under construction. We call
such a dendrogram DL-Tree. The same steps are iteratively repeated, until a unique
cluster (describing all resources) is obtained.

An example of the DL-Tree returned by the DL-link algorithm is shown in Fig.3.
It is a binary tree and this is because, at every step, only two clusters are merged9.
Anyway, it can happen that two children nodes (or more than two) of the DL-Tree have
the same intentional description as well as it can happen that a parent node has the same
description as a child node. Since such redundant nodes do not add any information, a

8 The GCS-based similarity measure presented in Sect. 3 is used.
9 The clustering process could be speeded up by finding a way for merging more than two

clusters at every step.
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Fig. 3. DL-Tree index (dendrogram) returned by the hierarchical clustering algorithm presented
in Section 4 applied to the four service descriptions respectively labeled by A, B, C, and D. GCS
is the Good Common Subsumer of two ALE(T ) descriptions.

Fig. 4. Z is a new service description occurring after the DL-Tree construction. Once that the
most similar service description B is found, Z is added has sibling node of B and the parent node
of B is recomputed, as well as all parent node in the path, until the root node.

post-processing step is applied to the DL-Tree. If a child node is equal to another child
node then one of them is deleted and their children nodes are assigned to the remaining
node. If a child node is equal to a parent node then the child node is deleted and its
children nodes are added as children of its parent node. The result of this flattening
process is an n-ary DL-Tree.

It is important to note that, in case of a new service description occurs after per-
forming the clustering process, the DL-Tree has not to be entirely re-computed. Indeed,
the similarity value between the new service description and all available service de-
scriptions (leaf nodes of the DL-Tree) can be computed and the most similar available
service is selected. Hence the new service description can be added as sibling node of
the most similar service while the parent node is re-computed as the GCS of the old
child nodes plus the new child. In the same way all the ancestor nodes of the new gen-
erated parent node are computed. In this way a single path of the DL-Tree is updated
rather than the entire tree structure. In Fig. 4 an example of updating of the DL-Tree il-
lustrated in Fig. 3 is reported, in case of a new service description Z occurs. Obviously,
after a certain number of changing of the DL-Tree, the clustering process have to be
recomputed.
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5 Resource Retrieval exploiting DL-Tree

Resource retrieval is performed by matching a given request with available resource
descriptions. In this section we present an algorithm that, by exploiting the DL-Tree
returned by DL-Link algorithm (see Sect. 4), is able to accelerate the resource retrieval
task as well as to outperform the service discovery task. The rationale of the algorithm
is to cut the search space in order to drastically reduce the number of necessary com-
parisons (matches) for finding resources satisfying a given request. The algorithm is
presented in the following.

Let R be a request and let C the root of the DL-Tree C

retrievalProcedure(R,C)

1. returnedResource := null
2. if matchTest(R,C) = false then

– return returnedResource
3. else if C is leaf node then

– returnedResource.add(C)
4. else

(a) if C has left child node Cl then
i. returnedLeftResource = retrievalProcedure(R,Cl)

ii. if returnedLeftResource != null then
– returnedResource.add(returnedLeftResource)

(b) if C has right child node Cr then
i. returnedRightResource = retrievalProcedure(R,Cr)

ii. if returnedRightResource != null then
– returnedResource.add(returnedRightResource)

5. return returnedResource

matchTest(R,C)

1. if (R v C) then
– return true

2. else
– return false

The retrievalProcedure is performed by exploiting the DL-Tree whose leaf nodes are
the available resource descriptions and every inner node (included the root node) is an
intensional description of the child nodes. Given a request R, it is matched with the root
node of the DL-Tree, in order to test if it can be satisfied by the available resources or
not. Indeed, since the root node is the intensional description of all available resources,
then if the match test is not satisfied (false returned value), this means that there are no
available resources able to satisfy the request. On the contrary, if the test is satisfied, the
match test is performed for each child node. If a child node does not satisfy the match
subsumption condition, then the branch rooted in this node is discarded. Otherwise all
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Fig. 5. Retrieval of an available service able to satisfy the request R. Bold boxes represent nodes
satisfying the MatchTest.

the children nodes are recursively explored, until a leaf node is reached or until there
are no child nodes satisfying the match condition.

As MatchTest, the Entailment of Concept Subsumption [16, 22] is used. It checks
for subsumption, either of the requestor’s description by the provider’s or vice versa.
Specifically, we check for the subsumption of description w.r.t. the request since we are
interested in resources able to fully satisfy the request, while considering the vice versa,
resources that only partially satisfy the request could be found.

It is important to note that, at the same level, more than one node could satisfy the
match test. In this case all paths rooted in such nodes will be explored. As an alternative
to such an exhaustive search, an heuristic could be adopted for suggesting the path to
follow. As a possible heuristic, the path rooted in the node that is most similar to the
request can be chosen. Differently from the previous case, in this way only one resource
will be found, but it will be probably the most proper one.

The proposed method drastically reduces the size of the search space, since the
search is restricted only to the branches of the DL-Tree whose nodes satisfy the match
test. A good clustering of n available resources (i.e. a balanced hierarchy) may reduce
the number of necessary matches for finding the right resource from O(n) to O(log n)
(if the request is specific enough), thus strongly outperforming the response time for
a request. An example of application of retrievalProcedure procedure is reported in
Fig. 5.

Here we conclude with the following lemma.

Lemma 1. Resource retrieval using DL-Link algorithm and DL-Tree indexing is sound
and complete.

6 Experimental Evaluation

In this section some preliminary experiments are illustrated in order to show that the
method proposed in Sect. 5 really improves the resource retrieval task w.r.t. to the tra-
ditional approaches based on linear matching.
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6.1 Data sets

For measuring the efficiency of the retrieval method, it has been applied to the SE-
MANTIC WEB SERVICE DISCOVERY DATA SET (SWS DISCOVERY DATA SET for
brevity). It is a set of Semantic Web Services described by means of the DL-based
framework presented in [10]. Since no existing data sets using such a framework were
available, we have created a new one. Moving from the experience of OWLS-TC10

that is a service retrieval test collection consisting of services specified by OWL-S
1.1, the SWS DISCOVERY DATA SET has been built. It consists of an ALC ontology
representing the knowledge base of reference and a set of ALE(T ) services described
using such an ontology. The ontology models broad domains: bank domain, post do-
main, means of communication domain and geographical information. On the ground
of such an ontology, 96 complex concept descriptions acting as service descriptions
have been built. The resulting test set can be downloadable from https://www.uni-
koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/dl-tree

6.2 Evaluation Methodology

The available service descriptions in SWS DISCOVERY DATA SET has been clustered
by means of the DL-Link algorithm (see Sect. 4), obtaining as result a DL-Tree having,
after the flattening post-processing, a depth equal to 7. This represents the maximum
depth, while most of the leaf nodes in the obtained DL-Tree are at level 4. The aver-
age branching factor is equal to 5. In order to measure the efficiency of the retrieval
method, different kinds of queries (requests) have been generated: 1) #96 queries cor-
responding to the leaf nodes of the tree (the actual service descriptions); 2) #20 queries
corresponding to some inner node descriptions of the tree; 3) #116 queries randomly
generated by disjunctions/conjunctions of primitive and/or defined concepts of the ref-
erence ontology and/or available service descriptions.

The efficiency of the method has been measured by counting the number of neces-
sary comparisons (matches) in the tree for finding all available resources able to satisfy
a request. Specifically, the average number of matches for each kind of query has been
considered as well as the minimum and maximum number of matches. These values
have been then compared with the number of checks in the linear retrieval case. More-
over, in both approaches, the average execution time for each kind of query has been
measured, where the experiments have been performed on a laptop PowerBook G4 1.67
GHz 1.5 GB RAM.

6.3 Evaluation Results

Considering the queries generated as explained in the previous section and the DL-
Tree obtained by clustering the SWS SERVICE DISCOVERY DATA SET, the retrieval
procedure presented in Sect. 5 has been applied. The mean number of matches (sub-
sumption checks) and the retrieval execution time have been measured. Specifically, for
each query, the number of nodes visited (namely to which the subsumption check has

10 http://projects.semwebcentral.org/projects/owls-tc/
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Table 1. Number of comparison (average and range) and mean execution time for finding all the
services satisfying a request w.r.t. the different kinds of requests both in the linear matching and
in the DL-Tree based retrieval.

DATA SET Algorithm Metrics Leaf Node Inner Node Random Query

SWS DISCOVERY DATA SET

DL-Tree based avg. 41.4 23.8 40.3
range 13 - 56 19 - 27 19 - 79

avg. exec. time 266.4 ms. 180.2 ms. 483.5 ms.
Linear avg. 96 96 96

avg. exec. time 678.2 ms. 532.5 ms. 1589.3 ms.

been applied) for finding all the services able to satisfy a request has been counted as
well as the execution time has been measured. Hence the mean number w.r.t. all queries
for a given kind (randomly, inner node, leaf node) has been computed.

The outcomes of the experiments are reported in Tab. 1. Looking at the table it is
straightforward to note the our method requires a very low number of matches w.r.t. the
linear approach. Specifically, independently to the kind of considered request, the DL-
Tree based retrieval decreases the number of comparisons more than 50%. Since a lower
number of comparisons means a decreasing of the response time, then our method is
really able to improve the efficiency of the retrieval and discovery process. This is also
evident looking at the average execution time of the two methods. Focussing on the ex-
perimental result and specifically on the mean execution time for the different kinds of
queries, it is possible to note that querying for inner nodes requires the lowest execution
time. This is because most of the resources satisfying the queries are at the highest lev-
els of the DL-Tree, so finding them requires less execution time. Moreover the structure
of such queries is very simple. Since the adopted match test is based on subsumption
test (see Sect. 5), consequently the time necessary for checking for subsumption de-
creases when the query is simple. Conversely, querying for randomly generated queries
requires the highest execution time. This is because the structures of such queries are
more complex then those of leaf node queries and inner node queries (that are the sim-
plest ones). Particularly, the benefits of our approach increase with the increasing of
available services.

From the presented initial experiments it is possible to assert that our method really
improve the efficiency of the resource retrieval task.

7 Related Work

Service discovery is the task of locating service providers that can satisfy the requester’s
needs. Generally, it is performed by matching a request against available service repre-
sentations - implying linear query performance.

Most of the current works concentrating on the automation of the service discovery
task, focus on the improvement of the effectiveness of the service matchmaking, i.e. on
engineering the service description. Central to the majority of the current SWS match-
making approaches is that the formal semantics of service descriptions is explicitly
defined in an ontology language such as OWL-DL [12]. In this way, service matchmak-
ing can be performed by exploiting standard DL inferences [16, 22, 7, 13] sometimes
jointly with the use of syntactic similarity measures [14].
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Less attention has been dedicated to the improvement of the efficiency of the service
discovery task, that, on the contrary, is the focus of our work. In [21], a way for turning
efficient resource retrieval is proposed, by abstracting from a more expressive to a less
expressive language, e.g. from OWL to DL-lite. Even if this approach is semantically
sound, differently from our method, it looses completeness.

Most of the efforts have been employed for the optimization of reasoning and query
answering. In [11], a set of optimization techniques for improving tableaux decision
procedures for DLs are presented. They can be effectively used for performing ser-
vice matchmaking. In [20], an algorithm for optimizing query answering of SHIQ
knowledge bases extended with DL-safe rules is proposed, by exploiting the reduc-
tion to disjunctive programs. A combination of DL-tree retrieval with the optimizations
defined in [20] could be more helpful than either on its own. Möller et al. [19] pro-
pose optimization techniques for improving the scalability of the instance retrieval task.
This is orthogonal to our work as our method could be used also for performing in-
stance retrieval by firstly clustering the MSCs of the considered knowledge base and
then querying for the concept of interest, by checking for nodes of the DL-Tree that are
subsumed by the query concept until leave nodes are found.

Another recent approach aiming at a scalable discovery process is Semantic Dis-
covery Caching (SDC) [25]. It is based on an index structure, the SDC graph, that is a
subsumption hierarchy made up of goal templates and usable Web services. Templates
are organized w.r.t. their semantic similarity. The lower layer is the cache that captures
knowledge on the usability of the available Web services. Based on this structure, the
discovery process uses inference rules between the similarity degree of goal templates
and the usability degree of Web services.

8 Conclusion and Future Work

We have presented a sound and complete method for improving the efficiency of the
resource retrieval task and its validity has been experimentally shown. It is based on
the exploitation of a tree-index (DL-Tree) that is built by applying a new conceptual
clustering algorithm to available resource descriptions. For clustering resources, a new
semantic similarity measure has been presented, while intentional cluster descriptions
are built exploiting the Good Common Subsumer for ALE(T ) concept descriptions.

Further work for improving the effectiveness of the similarity measure has been
planned. Moreover, the validity of the method applied using different matching proce-
dures will be verified. Furthermore, an incremental clustering algorithm will be devel-
oped, in order to cope with new available services avoiding the recomputation of a new
clustering.

Our approach has been restricted to ALE(T ) concept expressions and instances.
However, the DL-Tree indexing procedure actually works with approximations: non-
standard inference procedure like the Good Common Subsumer and the Most-Specific
Concept. By approximating more expressive DLs expressions (i.e. OWL-DL expres-
sions) to weaker languages, such as ALE(T ) and ALC, it is still possible to use the
DL-Tree indexing procedure. Actual empirical evaluations of whether typical OWL-
DL ontologies benefit from DL-tree indexing will however still have to be performed.
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2. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in description
logics with existential restrictions. In T. Dean, editor, Proceedings of the 16th International
Joint Conference on Artificial Intelligence, pages 96–101. Morgan Kaufmann, 1999.

3. F. Baader, R. Sertkaya, and Y. Turhan. Computing least common subsumers w.r.t. a back-
ground terminology. In V. Haarslev and R. Möller, editors, Proceedings of Proceedings of
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Abstract. Several description frameworks to semantically describe and match
services on the one hand and service requests on the other have been presented
in the literature. Many of the current proposals for defining notions of match
between service advertisements and requests are based on subsumption check-
ing in more or less expressive Description Logics, thus providing boolean match
functions, rather than a fine-grained, numerical degree of match. By contrast,
concept similarity measures investigated in the DL literature explicitely include
such a quantitative notion. In this paper we try to take a step forward in this area
by means of an analysis of existing approaches from both semantic web service
matching and concept similarity, and provide preliminary ideas on how to com-
bine these two building blocks in a unified service selection framework.

1 Introduction

In the quest to provide the underpinnings for Service-Oriented Architectures, proper
methods to enable the automatic location and selection of suitable services in order to
solve a given task or user request are an essential ingredient. To this end, several de-
scription frameworks to semantically annotate provided services on the one hand and
express service requests on the other, both based on the same shared, formal ontologies,
have been presented in the literature. Complementarily, numerous proposals for defin-
ing notions of match between such semantic descriptions of service advertisements and
requests have been developed over the last few years.

Many of these are based on subsumption checking in more or less expressive De-
scription Logics, thus providing boolean match functions, but not a fine-grained, numer-
ical degree of match. On the contrary, concept similarity measures investigated in the
DL literature provide precisely this missing piece but their application to the concrete
domain of service matching is very limited. This is not as surprising as it may seem
because, as pointed out in this work, the combination of service matching notions and
concept similarity in a unified framework is not as straightforward as could be expected.

The objective of this paper is to take a step forward in this area by a systematical
analysis of existing approaches from both semantic web service matching and concept
similarity in order to combine these two building blocks into a unified service selection
framework.
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The rest of the paper is organized as follows. In section 2 we provide a review of
notions of concept similarity in ontologies. Then, we survey current approaches found
in literature to semantic service descriptions by means of ontologies and notions of
match between formally defined requests and service advertisements, and discuss how
concept similarity can be used to refine them. We provide also preliminary ideas where
concept similarity could be beneficial to refine the notions of service matchmaking,
aiming at a framework for a numerical notion of service match aimed at refineing the
notions defined in literature. We conclude with an outlook and future work.

2 Preliminaries

In order to enable semantic matchmaking, it is necessary that possible communica-
tion partners, say service providers and requesters, agree on a certain specification of
a conceptualization[13] of the domain, i.e. a shared, formal ontology. In the context
of the Semantic Web and Semantic Web Services, this term which originally sets from
Philosophy, is usually conceived by Computer Scientists as a logical theory defining
and axiomatizing the concepts and properties used to describe the domain. Common to
almost all ontology languages (like DAML+OIL[3] ,OWL [6], KIF [12], WSML [5],
Common Logic [7]) is that in principle they are based on first-order languages, usually
representing concepts as unary predicates and properties (i.e., relations between con-
cepts) as binary predicates. In such a language a subclass-hierarchy (or taxonomy) of
concepts can be expressed simply by a set of implications, where e.g.

∀xOnlineBankingService(x) → FinancialService(x) (1)

expresses that concept OnlineBankingService is a subclass of FinancialService
and simple facts like FinancialService(myDepotService) denote membership of
certain instances in classes. With these basic ingredients, it is already possible to de-
scribe simple taxonomies of concepts.

2.1 Description Logics

In the context of conceptual and ontological reasoning especially the Description Log-
ics (DL) fragments [1] of first order logics have gained momentum, due to their desir-
able features such as decidability of core reasoning tasks such as concept subsumption
and concept membership. Among these, especially SHIQ, SHIF, and SHOIN deserve
attention, being the logical foundations of DAML+OIL, OWL Light, and OWL DL, re-
spectively. As opposed to simple subclass hierarchies expressible with formula like (1),
DLs allow more sophisticated definitions of concept hierarchies by relating concepts by
roles (binary relations) and defining subclass relations via these roles. Roles may also
be viewed as object attributes or predicate-value pairs assigned to objects, respectively,
and are usually modelled via binary predicates, where e.g.

∀x.CreditCardAccountService(x) → (∃y.input(x, y) → CredidCardNumber(y))
(2)
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expresses that the class of CreditCardAccountService is a subclass of the “ser-
vices which have a CreditCardNumber as input”, or, in other words that allCreditCard-
AccountServices have a CreditCardNumber as input. In order to express such
complex subclass relations, DLs provide an easier to read syntax to define complex
class descriptions as follows (we take here the syntactic constracts of SHOIN, the base
language of OWL DL, as a basic example), where C,D are class descriptions and R is a
role name:

DL Syntax First-order Syntax
C C(x)
∃R.C ∃y.R(x, y) ∧ C(y)
∀R.C ∀y.R(x, y) → C(y)
C uD C(x) ∧D(x)
C tD C(x) ∨D(x)
≥ nR ∃y1, y2, . . . yn.

V
1≤i≤n R(x, yn) ∧

V
i6= yi 6= yj

≤ nR ¬∃y1, y2, . . . yn+1.
V

1≤i≤n R(x, yn+1) ∧
V

i6= yi 6= yj

The above subclass statment (2) would then be written CreditCardAccountService
v ∃input.CreditCardNumber in DL notation. Now, if you had for instance addi-
tional information thatCreditCardNumber v PaymentCredential, and that every-
thing which has a payment credential as input, is in the class CommercialService, i.e.
∃input.PaymentCredential v CommercialService we could additionally infer
that CreditCardAccountService is a subclass of CommercialService, i.e. Credit-
CardAccountService v CommercialService Commercial Services are not nec-
essarily only ones dealing with credit card account management, another subclass of
CommercialService is for instance CarRentalService. Figure 1 shows a simple con-
cept hierarchy for the concepts mentioned here showing explicit (arrows) and some
inferred (dashed arrows) subclass relationships.

By complex concept definitions and inferred concepts, terms like least common sub-
sumer (lcs)3, depth or distance in the concept lattice, which are quite intuitive for simple
taxonomies, become a bit blurry. In fact, we can observe that literature which talks about
measures of distance in description logics such as [2] usually only consider very simple
description logics. We will get back to this point later on and leave the reader at the
moment with the question to intuitively try to assess whether CarRentalService is
more “similar” to CommercialService than CreditCardAccountService?

2.2 Concept Similarity

Getting back to our goal to find measures for “matches” we find several similarity mea-
sures having been proposed in the Literature. Some authors define the similarity while
others use distance. Both measures are inversely proportional and usually are taken as
the inverse of each other.

Simple (atomic) concepts In this section we describe some of the approaches proposed
in the literature to measure similarity between two simple concepts.

3 also known as the most specific ancestor (msa)
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Credential
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owl:Thing

commercialService

FinancialService ∪ 
PaymentMethod

CarRentalService

ServiceInput/Output

direct subConcept relationship

inferred subConcept relationship

∃input.PaymentCredential

Fig. 1. A simple concept hierarchy for services

One of the most well known distance measures between concepts is the length of
the shortest path between them in the taxonomy, proposed by Rada et al. [24]. As both
concepts might not be along the same branch of the taxonomy tree, it can be calculated
as the sum of the path length from each concept to their lcs.

dist(c1, c2) = depth(c1) + depth(c2)− 2× depth(lcs(c1, c2)) (3)

where depth(c) is the number of edges from c to the root concept.
Leacock & Chodorow [17] define the similarity between two terms as the related-

ness, which they define as the inverse of the semantic distance.

relatedness(t1, t2) = − log
dist(t1, t2)

2D
(4)

where dist(t1, t2) is the same as (3), and D is the maximum depth of the structure.
In their role-based4 service matchmaking approach Fernández et al. [11] consider

similarity (degree of match) as asymmetric. They consider some degree of similarity
between concepts if there is a subsumption relation between them in the taxonomy.
They define the following function, which is also based on the path length between
them.

sim(c1, c2) =



1 if c1 = c2

1
2 + 1

2·e‖c1,c2‖ if c2 subsumes c1

1
2 · e

‖c1,c2‖ if c1 subsumes c2

0 otherwise

(5)

4 Here we refer to roles of an actor or agent, as opposed to the roles related to ontologies that
we mentioned above.

34

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

Administrator
Rectangle




5

Here, ‖ ·, · ‖ is the distance (depth(c2)− depth(c1)) in the taxonomy tree.
The aforementioned measures (3) and (5) are independent of the absolute location

of concepts in the taxonomy tree. Other proposals further refine these approaches by
taking into account the depth of the concepts in the taxonomy. This makes sense
under the assumption that concepts at upper layers have more general semantics and less
similarity between them, while concepts at lower layers have more concrete semantics
and thus stronger similarity.

In this line, Wu & Palmer [28] use the terminology score to define the similarity
between two terms:

score(t1, t2) =
2N3

N1 +N2 + 2N3
(6)

Where N1 and N2 are the length sof the shortest path from t1 and t2 (respectively)
to the lcs, and N3 is the length of the shortest path from the lcs to the root.

Li et al. [19] define the similarity between two concepts as:

sim(c1, c2) =

{
e−αl · e

βh−e−βh

eβh+e−βh si c1 6= c2
1 otherwise

(7)

where α ≥ 0 and β ≥ 0 are parameters scaling the contribution of the shortest path
length (l) between the two concepts and the depth of the lcs (h) in the concept hierarchy,
respectively.

Other authors do not base concept similarity on the distance between the concepts
in the taxonomy.

Tversky [27] proposes an approach in which a concept C is characterized by a set
of features, ftrs(C). He introduces two kind of measures:

1. contrast model

contrast(C, D) = θf(ftrs(C)∩ftrs(D))−αf(ftrs(C)\ftrs(D))−βf(ftrs(D)\ftrs(C))
(8)

where \ is set difference, θ, α and β are non-negative constants, and f(·) is usually
the count of features in the set. That is, the number of common minus the number
of non-common features.

2. ratio model

sim(C, D) =
f(ftrs(C) ∩ ftrs(D))

f(ftrs(C) ∩ ftrs(D)) + αf(ftrs(C)\ftrs(D)) + βf(ftrs(D)\ftrs(C))
(9)

When asymmetry of similarity is not desired, α = β = 0.5 can be chosen, and
under the assumption that f is distributive over disjoint sets (f(V ∪W ) = f(V ) +
f(W )), similarity is commonly taken as:

dist(C,D) =
2× f(ftrs(C) ∩ ftrs(D))
f(ftrs(C)) + f(ftrs(D))

(10)
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Resnik [25] proposes an information-content based model in which there are infor-
mation about the probability of an individual being described by a specific concept C
(pr(C)). He uses the lcs(c1, c2) as the representative of the similarity of c1 and c2, and
proposes the information content as similarity measure:

sim(c1, c2) = IC(lcs(c1, c2)) = − log pr(lcs(c1, c2)) (11)

This approach has the advantage of not being transparent to changes in the hierar-
chy.

Jiang & Conrath [14] refine Resnick’s measure:

sim(c1, c2) = IC(c1) + IC(c2)− 2× IC(lcs(c1, c2)) (12)

Lin [20] proposes:

sim(c1, c2) =
2× IC(lcs(c1, c2))
IC(c1) + IC(c2)

(13)

Borgida et al. [2] apply some of the previous approaches to a very simple DL (A),
involving only conjunctions. Di Noia and colleagues [22] focus on DL and propose a
ranking function for what they call potential match (some requests in demandD are not
specified in supply S). The ranking function rankPotential(S,D) counts:

– the number of concepts names in D not in S,
– the number of number restrictions of D not implied by those of S,
– add recursively rankPotential for each universal role quantification in D,

assuming 0 to be the best ranking.
Fanizzi & d’Amato [9] define a similarity measure between concepts in ALN DL.

They decompose the normal form of the concept descriptions and measure the similarity
of the subconcepts:

– Primitive concepts: ratio of the number of common individuals with respect to the
number of individuals belonging to either conjunct.

– Value restrictions: computed recursively, the average value is taken.
– Numeric restrictions: ratio of overlap between the two intervals and the larger in-

terval (whose extremes are minimum and maximum), the average value is taken.

In the OWLS-MX [15] semantic Web service matching approach, logic-based rea-
soning is complemented by IR (Information Retrieval) based similarity computation.
In particular, they allow four different token-based string metrics: the cosine, the loss
of information, the extended Jacquard and the Jensen-Shannon information divergence
similarity metrics. This metrics are applied to unfolded concepts, e.g. the unfolded ex-
pression (and C (and B (and A))) corresponds to the concept C (C v B v A).

Table 1 summarizes the different approaches to concept similarity described in this
section.

The first characteristic determines whether a taxonomy tree based (structural) model,
a feature based model, or a DL based model is applied (including the DL language
used).
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Approach focus symmetry distance depth measure range
Rada et al. structural concept yes yes no distance 0..2H

Leacock-Chodorow structural concept yes yes no similarity 0..∞
Fernndez et al. structural concept no yes no similarity 0..1

Wu-Palmer structural concept yes yes yes similarity 0..1
Li et al. structural concept yes yes yes similarity 0..1

OWLS-MX structural concept yes yes* yes* similarity 0..1
Tversky-contrast feature concept yes no no similarity 0..N

Tversky-ratio feature concept yes/no no no similarity 0..1
Resnick structural instance yes no no similarity 0..∞

Jiang-Conrad structural instance yes no no distance 0..∞
Lin structural instance yes no no similarity 0..1

Borgida et al.-feature DL A concept yes no no similarity 0..1(N)
Borgida at al.-struct. DL A concept yes yes no distance 0..2H

Borgida et al.-IC DL A instance yes no no distance/sim 0..∞(1)
Di Noia et al. DL concept no no no distance ≥ 0

Fanizzi-d’Amato DL ALN concept yes no no similarity 0..1
Table 1. Summary of concept similarity approaches

Most approaches described here make use of concept definitions but others base
their similarity measures on the number of instances of concepts, which are less affected
by changes in the taxonomy.

Although symmetry has been defined by several authors as a desirable property of
similarity functions, not all approaches readily comply with it. Consider, for instance,
a semantic service matching scenario where it is important whether an input concept
in the query subsumes or is subsumed by an input concept of an advertised service
(this determines if the service can, at least, be invoked). Note that the Tversky-ratio
approach allows both, symmetric and asymmetric options, depending on the values of
some parameters in its similarity function.

Distance between concepts in the taxonomy is the main parameter used by structural
approaches (including the Borgida et al. DL based on Rada’s function). This measure
makes sense under the assumption of equally distributed instances over concepts; other-
wise pairs of concepts in a fine grained part of the taxonomy would be ranked with lower
similarity than concepts at the same distance in another part. In the case of DL, dis-
tance is difficult to be used unless some kind of “canonical representation” is adopted.
However, as we illustrated by the example of Figure 1, such a canonical representa-
tion is hard to find for expressive DLs. Common DL reasoners allow to “pre-classify”
the TBox of an ontology, thus computing all subclass relations of named concepts. One
could take the spanning tree of such a pre-classification, removing all transitive edges as
a starting point for distance measures, but would miss the difference then for concepts
defined by restrictions. Another possible way to circumvent this and maybe arriving at
a more precise canonical representation would be to recursively introduce new atomic
concept names for all atomic restrictions ∃R.C, ∀R.C, such that R is a role and C is
an atomic concept occurring in the TBox and use these as well in the pre-classification.
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DLs allowing disjunction (t) are hard to grasp by such approaches, we will mention
more on complex compound concepts below.

As for assumptions, we mentioned above that often one assumes that in a taxon-
omy tree, higher nodes represent more general concepts (less similar semantically),
while lower levels contain more specific concepts. For this reason, some approaches
also take into account the depth of the concepts in the taxonomy. However, we note that
this assumption only makes sense if we additionally assume equal distribution among
instances among subclasses in the ontology in the general case.

Note that, the way OWLS-MX applies IR techniques by unfolding concept names,
indirectly uses the distance and depth of concepts, but could also be viewed as kind of
feature-based similarity measure mentioned above.

We also detail whether they define a similarity function or a distance function. Al-
though both measures can be easily obtained from each other (e.g. sim = 1

dist ) we
prefer keeping their original definition, as they vary on the range of the returned value
(last column). A unified range of values is convenient in order to make it easier to
combine/aggregate similarity values in case of complex expressions involving several
concepts.

Complex (compound) concepts Rada et al. also extend the definition of distance to
handle compound concepts represented by a set of concepts. Concepts in those sets can
be interpreted as conjunctions or disjunctions. In the case of a disjunction of concepts
the distance is defined as:

dist(C1 t . . . t Ck, C) = minidist(Ci, C) (14)

where Ci and C represent concepts (elementary or compound). When C itself is a
disjunctive concept, the same function (dist(Ci, C)) is in turn applied.

The distance between conjunctive concepts is defined as:

dist(V1, V2) =


0 if V1 = V2

1
|V1||V2|

∑
u∈V1

∑
v∈V2

dist(u, v) otherwise
(15)

where V1 and V2 are sets representing compound concepts consisting of a conjunc-
tion (u) of its elements, | · | is set cardinality, and dist(u, v) is the shortest path length
between nodes u and v.

Ehrig et al. [8] analyze three layers on which similarity between concepts can be
measured: data, ontology and context layer. We are interested on the ontology level.
They use the function proposed by Li et al. in case of similarity between concepts.
They also propose the following formula (cosine) to calculate the similarity between
two sets of concepts:

sim(E,F ) =

∑
e∈E

e ·
∑
f∈F

f∣∣∣∣ ∑
e∈E

e

∣∣∣∣ ·
∣∣∣∣∣ ∑
f∈F

f

∣∣∣∣∣
(16)
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withE = {e1, e2, . . .}, e = (sim(e, e1), sim(e, e2), . . . , sim(e, f1), sim(e, f2), . . .),
and the analogously for F and f , respectively.

Sierra & Debenham [26] define the semantic similarity between two logical for-
mulas as the maxmin similarity between the sets of concepts (O(·)) that appear in the
formulas:

sim(ϕ,ψ) = max
ci∈O(ϕ)

min
cj∈O(ψ)

{sim(ci, cj)} (17)

In total, it seems that combinations of these approaches could be beneficial. Espe-
cially feature-set approaches seem to be worthwhile to be combined with approaches
handling compound, complex DL expressions in order to get to more precise overall
measures.

3 Matching Semantic Web Services

When having a closer look at current proposals to effectively annotating Web Services
with Semantic descriptions, we can identify the following “hooks” for adding such
annotations referring to ontologies as discussed so far. We focus here on components
of semantic Web Service descriptions for which concepts in a taxonomy or complex
ontology can be used for annotating them.

Service Taxonomies The entirety of the functionality offered by a Web Service can be
described by a taxonomy, grouping service instances hierarchically, such as for instance
the CarRentalService or CreditCardAccountService mentioned in Figure 1.

Operations When searching for a certain functionality, one often searches for a particu-
lar operation to execute, rather than the entirety of service functionality. Thus, most de-
scription frameworks support assigning offered operations to a taxonomy of operations
in a service. Such an Operation could for instance be RequestCreditCardBalance,
BookRentalCar, or all operations having a payment credential as input – which could
be modeled by something like WSDLOperation u ∃input.PaymentCredential –
etc., all of which again may be grouped in a taxonomy/ontological hierarchy.

Inputs/Outputs Input values or output values of web services or certain service oper-
ations might be bound to a certain concept in an ontology. The problem of relating a
concrete input or output message format (as for instance described in a WSDL file) is
often referred to as lifting/lowering [16] problem and solved slightly different in the
various Semantic Web service description approaches.

Preconditions/Postconditions Frameworks like OWL-S and WSMO offer functionality
to annotate services and/or operations with pre- and postconditions, i.e. logical formulae
expressing conditions over the state of the world. Since these conditions can usually not
be expressed in a taxonomy or ontological hierarchy, rather more complex formalisms
than Description Logics or OWL are proposed to describe these, like WSML logical ex-
pression in WSMO or SWRL rule bodies, expressing conjunctive queries on the “state
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space” in OWL-S. Our focus in the current paper is on applying concept similarity to
service matching and we are not aware of service matching approaches which practi-
cally exploit pre-/postcondition matching at the moment. In summary, it seems to be
not entirely clear, how pre-/postcondition matching can be done at all in open service
environments, which might also be a reason why they have not been considered e.g. in
SAWSDL.

Summarizing, we will try to take into account those parts of the service descrip-
tion which allow for a conceptualication in a formal ontology, namely inputs/outputs,
overall service functionality, and operations. Moreover, we deem useful to assume the
following attributes/roles:

– hasInput: domain: Service tOperation, range: Input
– hasOutput: domain: Service tOperation, range: Output
– hasOperation: domain: Service, range: Operation

Services or Operations might have additional attributes assigned, e.g. describing non-
functional properties which likewise might be useful for precise matchmaking, but
which we consider out of scope for the current paper being focused on matchmaking
by concept similarity.

SWS frameworks In the following table, let us briefly analyse if and how the afore-
mentioned components are supported by three of the most common Semantic Web Ser-
vice Description Frameworks5, namely, OWL-S [21], WSMO [4] and SAWSDL [10],
which has just reached the status of a proposed recommendation within W3C. We note

Service Operation Input/Output Pre/Postcondition
OWL-S yes OWL-S service models OWL-S service models OWL-S service models
WSMO yes WSMO capabilities WSMO choreography model WSMO capabilities

SAWSDL modelReference in
wsdl:interface

modelReference in
wsdl:operation

modelReference in
xsd:element

no

Table 2. Where SWS approaches allow annotations by concepts from given ontologies

that while SAWSDL is in general to be viewed a simpler framework than the other two,
it offers useful features in comparison to its predecessors, e.g. having sophisticated sup-
port to annotate inputs and output messages; SAWSDL allows to add annotations on the
level of single XML Schema elements directly within XML Schema, describing parts
of the allowed input/output messages, whereas OWL-S and WSDL concepts can be
assigned only per input and tying to a particular XML Schema describing the concrete
message format has to be defined in the so-called grounding, typically via an XSL trans-
formation. We mention this, because at the time being, the main development effort and
activity, as well as chance of making it through to becoming a standard is on SAWSDL.

5 (in order of “appearance”)
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3.1 Notions of match

In the following, we will try to analyze how existing approaches for service matching
cater for ranking and make suggestions where concept similarity measured could be
plugged to refine the proposed notions of match.

Paolucci [23] Many of the current approaches to semantic web services matching,
particularly those based on OWL-S, started from the work of Paolucci et al. [23]. This
approach proposes a matching algorithm that takes into account inputs and outputs of
advertised and requested services. An output matches iff for each output of the request
there is a matching output in the service description. The authors differentiate four
(ranked) degrees of match (OUTS and OUTR correspond to outputs of the advertised
and requested services, respectively)6:

– exact: if OUTR
.= OUTS ; or OUTR is a direct subclass of OUTS under the assumption

that by advertising OUTS the provider commits to provide outputs consistent with
every immediate subtype of OUTS .

– plug-in: if OUTS � OUTR, that is, OUTS could be plugged in place of OUTR.
– subsumes: if OUTR � OUTS .
– fail: no subsumption relation between OUTS and OUTR exists.

If there are several outputs with different degree of match, the minimum degree is
used. The same algorithm is used to compute the matching between inputs, but with the
order of request and advertisement reversed. Finally, the set of service advertisements
is sorted by comparing output matches first, if equally scored, considering the input
matches.

Applying concept similarity In Paolucci’s approach services are sorted according to
their degree of match, being exact > plug − in > subsumes > fail. However,
services falling into the same category (e.g. plugin) have the same priority. A concept
similarity approach can be used to refine the ranking of services inside each degree of
match category. In particular, only plug-in and subsumes should be refined. As they base
their classification on the subsumption relation between concepts in a taxonomy tree,
one of the structural (path length based) similarity approaches might be adequate. In
case of several inputs (or outputs), they consider the minimum among their degrees of
match. In the same line, the minimum value can also be used to compare their similarity
measures.

OWLS-MX The OWLS-MX matchmaker [15] performs hybrid semantic matching
that complements logic based reasoning with syntactic IR based similarity metrics. The
first three degrees of match are logic based only and, although using the same naming
as Paolucci, they are defined differently (e.g. in OWLS-MX inputs of the advertisement
always must at least subsume the ones in the request, so the service can be invoked).7

6 .
= and � terminological concept equivalence and subsumption, respectively.

7 LSC(C) (set of least specific concepts (direct children) of C), LGC(C) (set of least generic
concepts (direct parents) of C), SimIR(A, B) ∈ [0, 1] the numeric degree of syntactic simi-
larity between strings A and B according to chosen IR metric IR
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– exact: iff ∀ INS ∃ INR: INS
.= INR ∧ ∀ OUTR ∃ OUTS : OUTR

.= OUTS .
– plug-in: ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : OUTS ∈ LSC(OUTR). S is

expected to return more specific output data whose logically defined semantics is
exactly the same or very close to the requested by the user.

– subsumes ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : OUTR � OUTS . This relaxes
the constraint of immediate output concept subsumption.

– subsumed-by ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : (OUTS
.= OUTR ∨ OUTS

∈ LGC(OUTR)) ∧ SIMIR(S, R) ≥ α. Output data is more general than requested.
It is focused on direct parent output concepts to avoid selecting services returning
data too general. It is combined with the syntactic similarity.

– logic-based fail: matching fails according to the above logic-based semantic crite-
ria.

– nearest-neighbor ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : OUTR � OUTS ∨
SIMIR(S, R) ≥ α.

– fail: service advertisement and request do not match according to the above criteria.

Applying concept similarity As occurred in the previous approach, concept similarity
could be applied when the subsumption relation is checked (�). Now the aggregation of
similarity values is a little more complicated since, besides the set of inputs and outputs,
it has also to be combined with the IR similarity value (in the case of subsumed-by
and nearest-neighbor). This combination is not straightforward, maybe a parametrized
function which allows scaling the contribution of each measure might be appropriate.

Li Horrocks[18] A DL concept is used to describe the inputs and another for the out-
puts of a service advertisement or request. They extend the degrees of match proposed
by Paolucci et al. by adding an intersection match. Formally,

– exact: if A ≡ R.
– plug-in: if R v A.
– subsume: if A v R.
– intersection: ¬(A uR v ⊥)
– disjoint: A uR v ⊥.

Applying concept similarity Since this approach is focused on DL, in this case distance
is difficult to be used, unless some canonical representation is found. Although some
approaches to concept similarity for DL were reviewed in section 2.2, they resulted to
be applied on very simple DL, thus more investigation in this line is needed.

3.2 Towards a combined notion of similarity-based Service matchmaking

In this section we provide preliminary ideas on how concept similarity might be com-
bined with notions of match. Our aim is to provide a unified matching function which
returns a numeric value that can be used for ranking services. We consider such a func-
tion with range [0..1] although, of course, any other range would be acceptable as well.

In section 3 we identified three components of semantic service descriptions: in-
puts, outputs and operations. For each component, a function should return its degree
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of match, IM , OM , and OpM , respectively. Following current approaches, relations be-
tween components are usually classified according to several categories or notions of
match(e.g. exact, plug-in, intersection,...). As analyzed in section 3.1 this classification
is coarse grained and might be refined with concept similarity approaches. The rank-
ing function must compare the notion of match first, and then the (numerical) similarity
value. A way to facilitate the use of such a function is by dividing the range [0..1] in non
overlapping intervals and scaling the similarity value to the interval corresponding to
its category. Any division is acceptable under the condition that it keeps the order as is
done for their categories. We define the following functions (being c1 and c2 concepts):

– nom(c1, c2): returns the notion of match category ∈ {cat1, cat2, ..., catN}, where
cat1 > cat2 > catN . Note that usually cat1 = exact and catN = fail.

– inf(cat): returns the lower limit of the interval corresponding to category cat.
– sup(cat): returns the upper limit of the interval corresponding to category cat.
– sim(c1, c2): returns the concept similarity, which is a value ∈ [0..1].
– nosm(c1, c2): returns the notion of similarity match between c1 and c2, which is

a value resulting of scaling the sim(c1, c2) into the interval corresponding to the
category nom(c1, c2). This can be defined as

nosm(c1, c2) = inf(nom(c1, c2))+sim(c1, c2)·(sup(nom(c1, c2))−inf(nom(c1, c2)))

IM , OM and OpM should be defined based on nosm applied to its individual el-
ements (e.g. each of its inputs for IM ). Such a functions, for instance IM might use
aggregation functions, like the ones described for similarity of compound concepts in
section 2.2 or others.

Finally, the three values need to be combined, for instance by taking a weighted
sum:

match(S,R) = α · IM + β ·OM + θ ·OpM (18)

where α, β and θ ∈ [0..1], and α+ β + θ = 1.

4 Conclusions

In this paper we have provided a survey of current approaches to semantic service de-
scriptions by means of ontologies and notions of matching between requests and ser-
vice advertisements. These proposals rank service advertisements following a (coarse-
grained) notion of match classification. We have also reviewed concept similarity frame-
works in ontologies and discussed how these could be incorporated into the existing
service description and matchmaking methodologies, so as to provide a fine-grained
ranking of services. Finally, we have provided preliminary ideas aiming at a numerical
notion of service match which combines notions of match with concept similarity.

This paper has reported on our work in progress. Some of the identified open issues
include:

– What service description framework should we focus on? Should we select an ex-
isting one such as OWL-S, WSMO, etc, or a new one to which these approaches
could be mapped?
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– Which concept similarity measure better fits our framework? Is there a single “best”
measure? What are the conditions that it must fulfill?

– How should values corresponding to different elements be combined?
– do different applications require the same framework or should it be configured for

each of them?

Some of these questions are being tackled presently, while the in-depth coverage of
others is subject to our future work.
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Abstract. The OWLS-MX matchmaker selects OWL-S 1.1 services that
are relevant to a given service request by means of combined logic based
and approximative matching filters [5]. In this paper, we build upon this
work and analyse its retrieval performance in terms of false positive and
false negatives to reveal the benefits and pitfalls of both logic based
and hybrid matching with OWLS-MX. The analysis results have been
exploited in an improved version OWLS-MX+.

1 Introduction

Agent based service discovery aims at coordinating the ultimate service requester
with the ultimate service provider agent. This coordination problem can be
solved by means of either assisted mediation through middle agents such as
matchmakers, brokers and mediators, or in a decentralized peer to peer fashion
[4]. In particular, the majority of semantic Web service matchmakers today ex-
ploit semantics that are implicit, for example, in patterns or relative frequencies
of terms in service descriptions as computed by techniques from data mining,
linguistics, or content-based information retrieval.

In line with the recently started shift in semantic Web research towards
scalable approximative rather than strict logic based reasoning [2], we proclaim
that building semantic service matchmakers purely on DL inferencing, as realized
by the majority of existing approaches, might be insufficient in practice. The
quality of semantic service discovery can be significantly improved by appropriate
exploitation of both crisp logic based and approximate matching where each of
them alone would fail.

One example of such a hybrid semantic service matchmaker for OWL-S is
OWLS-MX. It takes any desired OWL-S service as a query, and returns an
ordered set of relevant services that match the query in terms of both crisp logic
based and syntactic similarity. For this purpose, it applies five different hybrid
matching filters with one selected token based IR similarity metric each. Logical
subsumption failures produced by the integrated OWL-DL reasoner Pellet are
tolerated, if the computed syntactic similarity value is sufficient. Experimental
evaluation of the performance of hybrid over logic based only matching provided
strong evidence in favor of the above claim in terms of both recall and precision
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of service retrieval [5]. This evidence is further supported by experimental results
reported in [1].

In this paper, we build upon this work and provide an analysis of the re-
trieval performance of OWLS-MX in terms of false positive and false negatives
to reveal the benefits and pitfalls of both its logic based and hybrid matching.
The analysis results have been exploited in an improved version of OWLS-MX,
called OWLS-MX+, but can be of inherent interest to any developer of hybrid
service matchmakers for the semantic Web in general.

The remainder of this paper is structured as follows. Assuming the reader to
be familiar with OWL-S, we first summarize the basic idea and hybrid matching
filter definitions of OWLS-MX in section 2, followed by a detailed analysis of
their false positives and false negatives in section 3. Section 4 briefly presents
OWLS-MX+ that has been developed based on the results of this analysis.
Finally, section 5 concludes with a summary and open problems.

2 OWLS-MX

The core idea of the OWLS-MX matchmaker is to complement crisp logic based
with approximate IR based matching where appropriate to improve the retrieval
performance. It takes any OWL-S service as a query, and returns an ordered set of
relevant services that semantically match the query each of which annotated with
its individual degree of logical matching, and the syntactic similarity value. The
user can specify the desired degree, and individual syntactic similarity threshold.

2.1 Matching algorithm overview

OWLS-MX performs signature based service matching only, that is, it compares
the input and output parameter values of given OWL-S 1.1 service (query) with
those of a given service. More concrete, it first classifies the service query I/O
concepts in OWL-DL into its local ontology that contains all I/O concept def-
initions of advertised services. We assume that the type of computed termino-
logical subsumption relation determines the degree of semantic relation between
any pair of I/O concepts.

Second, OWLS-MX then pairwisely determines the degree of logical (con-
cept subsumption) match according to its filter definitions, and the syntactic
similarity between the conjunctive service and query I/O concept expressions.
These expressions are built by recursively unfolding each query and service in-
put (output) concept in the local matchmaker ontology. The unfolded concept
expressions are including primitive components of a basic shared vocabulary
only.

Any failure of logical concept subsumption produced by the integrated de-
scription logic reasoner of OWLS-MX will be tolerated, if and only if the degree
of syntactic similarity between the respective unfolded service and query con-
cept expressions exceeds a given similarity threshold. The detailed matching
algorithm with a brief example are given in [5].
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2.2 Matching filters

Let T be the terminology of the OWLS-MX matchmaker ontology specified in
OWL-DL; CTT the concept subsumption hierarchy of T ; LSC(C) the set of least
specific concepts (direct children) C′ of C, i.e. C′ is immediate sub-concept of C
in CTT ; LGC(C) the set of least generic concepts (direct parents) C′ of C, i.e.,
C′ is immediate super-concept of C in CTT ; SimIR(A, B) ∈ [0, 1] the numeric
degree of syntactic similarity between strings A and B according to chosen IR
metric IR with used term weighting scheme and document collection, and α ∈
[0, 1] given syntactic similarity threshold; .= and ≥̇ denote terminological concept
equivalence and subsumption, respectively. The matching filters of OWLS-MX
are as follows.

Exact match. Service S exactly matches request R ⇔ ∀ inS ∃ inR: inS
.=

inR ∧ ∀ outR ∃ outS : outR
.= outS.

Plug-in match. Service S plugs into request R ⇔ ∀ inS ∃ inR: inS ≥̇ inR

∧ ∀ outR ∃ outS : outS ∈ LSC(outR). Relaxing the exact matching con-
straint, service S may require less input than it has been specified in the
request R. This guarantees at a minimum that S will be executable with
the provided input iff the involved OWL input concepts can be equivalently
mapped to WSDL input messages and corresponding service signature data
types. We assume this a necessary constraint of each of the subsequent fil-
ters. In addition, S is expected to return more specific output data whose
logically defined semantics is exactly the same or very close to what has been
requested by the user.

Subsumes match. Request R subsumes service S ⇔ ∀ inS ∃ inR: inS ≥̇ inR ∧
∀ outR ∃ outS : outR ≥̇ outS. Compared to the plug-in filter the constraint
of immediate output concept subsumption is relaxed. As a consequence, the
returned set of relevant services is extended in principle.

Subsumed-by match. Request R is subsumed by service S ⇔ ∀ inS ∃ inR:
inS ≥̇ inR ∧ ∀ outR ∃ outS : (outS

.= outR ∨ outS ∈ LGC(outR))
∧ SimIR(S, R) ≥ α. This filter selects services whose output data is more
general than requested, hence, in this sense, subsumes the request. We focus
on direct parent output concepts to avoid selecting services returning data
which we think may be too general.

Logic-based fail. Service S fails to match with request R according to the
above logic-based semantic filter criteria.

Nearest-neighbor match. Service S is nearest neighbor of request R ⇔
∀ inS ∃ inR: inS ≥̇ inR ∧ ∀ outR ∃ outS : outR ≥̇ outS ∨ SimIR(S, R)
≥ α.

Fail. Service S does not match with request R according to any of the above
filters.

The above filters are in the following total order according to the size of
results they would return, i.e. according to how relaxed the semantic matching:

Exact < Plug-In < Subsumes < Subsumed-By <
Logic-based Fail < Nearest-neighbor < Fail.
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2.3 OWLS-MX variants

We implemented the following variants of OWLS-MX, called OWLS-M1 to
OWLS-M4, each of which uses the same logic-based semantic filters but different
(token based) IR similarity metric SIMIR(R, S) for content-based service I/O
matching. The variant OWLS-MO performs logic based only semantic service
I/O matching.

OWLS-M0. The logic-based semantic filters Exact, Plug-in, and Subsumes

are applied as defined in 2.2, whereas the hybrid filter Subsumed-By is
utilized without checking the syntactic similarity constraint.

OWLS-M1 to OWLS-M4. The hybrid semantic matchmaker variants OWLS-
M1, OWLS-M2, OWLS-M3, and OWLS-M4 compute the syntactic similarity
value SimIR (outS , outR) by use of the loss-of-information measure (M1),
extended Jaccuard similarity coefficient (M2), the cosine similarity value
(M3), and the Jensen-Shannon information divergence based similarity value
(M4), respectively.

2.4 Implementation

The OWLS-MX matchmaker has been implemented in Java using the OWL-
S API 1.1 beta with the tableaux OWL-DL reasoner Pellet developed at the
university of Maryland (cf. http://pellet.owldl.com/). As the OWL-S API
is tightly coupled with the Jena Semanic Web Framework, developed by the HP
Labs Semantic Web research group (cf. http://jena.sourceforge.net/), the
latter is also used to modify the OWLS-MX matchmaker ontology.

The OWLS-MX matchmaker in its current version 1.1c is accessible via a
convenient graphical user interface. It also provides a module (OWLS-MXP)
for service I/O compatibility checking on the WSDL grounding level based on
respective XMLS data type checking. OWLS-MX is available as open source
from the portal semwebcentral.org 1.

3 R/P Performance Analysis

In this section, we first provide an overview of the R/P performance of the
OWLS-MX variants followed by an analysis of false positives and false negatives
returned by OWLS-M0 and the hybrid variants. That is, we are interested in
typical cases where logic based (OWLS-M0) matching benefits from complemen-
tary approximative reasoning (OWLS-M1 to OWLS-M4) on the description of
service semantics, where it fails, and vice versa.

1 http://projects.semwebcentral.org/projects/owls-mx/
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3.1 Overall R/P performance of OWLS-MX

For measuring the service retrieval performance of each OWLS-MX variant we
used the OWL-S service retrieval test collection Owls-TC v2

2, and adopted
the evaluation strategy of micro-averaging the individual recall/precision (R/P)
curves. The micro-averaged R/P curves of the top and worse performing IR
similarity metric together with those for the OWLS-MX variants are shown in
figure 3.1.
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Fig. 1. R/P performance of OWLS-MX variants

This preliminary result reported in [5] provides strong evidence in favor of
the proposition that building semantic Web service matchmakers purely on crisp
logic based reasoning may be insufficient.

Quantitative analysis A preliminary quantitative analysis of these results
in [5] showed that even the best IR similarity metric (Cosine/TFIDF) alone
performed close to the pure logic based OWLS-M0 which can be significantly
outperformed by hybrid semantic matching with OWLS-M1 to OWLS-M4 in
terms of both recall and precision. Second, the hybrid matchmakers OWLS-MX,
in turn, can be outperformed by each of the selected syntactic IR similarity
metrics to the extent additional parameters with natural language text content
are considered.

At this point, we add that the cosine IR similarity metric and OWLS-M4
using the Jensen-Shannon similarity metric performed best for syntactic and
hybrid service profile I/O matching, respectively. Though, all hybrid OWLS-
MX variants showed almost equal performance in average. These experimental
results, of course, largely depend on the service retrieval test collection used.
2 Available at http://projects.semwebcentral.org/projects/owls-tc/.
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Building upon this preliminary quantitative analysis of the overall R/P per-
formance, we continued our evaluation experiments to determine the main rea-
sons of the false positives and false negatives of the logic based OWLS-M0 in
more detail. In the following sections, we summarize the results of the respective
qualitative analysis.

3.2 Logic based false positives

The qualitative analysis of irrelevant services returned by OWLS-M0 (false pos-
itives lower precision) in the experiments revealed the following characteristic
reasons of their occurence in its answer sets.

1. The subsumption based distance between concepts in the matchmaker ontol-
ogy insufficiently captures their real-world semantics (RWS) to be detected
by logic based OWL-M0 filters. In contrast, a hybrid matching filter can
mitigate this problem by determining the syntactic similarity between the
respective concept expressions.

2. The surjective mapping of I/O concepts by M0 filters tolerates missing of
concepts that are key for description of service semantics.

3. Same I/O concepts are used with inherently different semantics which cannot
be detected by OWLS-M0.

These types of logic based false positives of OWLS-M0 are illustrated by
example in the following.

Granularity of matchmaker ontology Of course, if the concept subsump-
tion (or parent-child) relations in the ontology insufficiently capture the corre-
sponding real-world semantics (RWS) any logic based filter risks to produce false
positives.

For example, in figure 3.2, the service at best plug-in matches with the query,
since their equally named output concepts ”price” are equivalent, and the query
input ”HybridRotaryEnginePoweredCar” is far more specific than that of the
considered service, that is ”Automobile”. In fact, the semantic distance between
both input concepts in the ontology is probably too large for being of any interest
to the user in practice. The reason why all logic based matching filters of OWLS-
M0 fail in such a case is that they accept an unlimited input concept distance.

On the other hand, the subsumed-by filter of the hybrid variants like OWLS-
M2 showed a better performance in these cases as the low syntactic similarity
between the unfolded concept expressions treated as strings indicates a high de-
gree of irrelevance. The relevant parts of the logical filter definitions are marked
in red: first one is Plug-in(S,Q) ”service S plugs into query Q”, second is sub-
sumes(Q,S) ”query Q subsumes service S”, third is subsumed-by(Q,S) ”query
Q is subsumed by the service S” with LSC and LGC denoting the set of least
specific (direct child) and generic (direct parent) concepts.

The second example shown in figure 3.2 refers to the case of service and query
output concepts with close distance in a coarse-grained matchmaker ontology but
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Fig. 2. Example: Unlimited input concept distance accepted by OWLS-M0

high RWS distance. In this example, even a least generic concept match of the
logic based Subsumed-By(Q,S) filter of OWLS-M0 does not help.

Surjective mapping of concepts Another reason of false positives produced
by the logic based OWLS-M0 is due to the surjective mapping of service and
query concepts. In fact, the service and query input concepts might not be
correlated by logical filters though they are carrying inherent semantics.

In figure 3.2, for example, the input ”SFNovel” of the query ”SFNovelPrice”
does not match with any input of the service ”EntranceFee” but ”Author”
with ”Person”. As a result, OWLS-M0 determines a plug-in(S,Q) or Subsumed-
By(Q,S) match, hence the service relevant to the query though it definitely is
not. The reason of this type of false positive is that the surjective mapping of
service input concepts by OWLS-M0 filters tolerates the missing of concepts that
are key for the description of query semantics.

Incomplete coverage of service semantics Another type of logic based
false positives is caused by the insufficient coverage of service semantics by the
definitions of I/O concepts used.

For example, the real world semantics of service ”BookCopyCheck” and query
”BookReview” in figure 3.2 are not related at all but both are determined by
OWLS-M0 as semantically equivalent. The concept ”Book” is used twice in the
service input but with different semantics than in the query. In these cases, even
our syntactic similarity measurements returned high relevance but at least not
identity.
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Fig. 3. Example: Close output concepts with high RWS distance

3.3 Mitigating logic based FP problems

All FP problems described above call for the complementary use of text retrieval
similarity metrics with fine-grained syntactic overlap measurement. In fact, our
experimental results show that the number of false positives can be drastically
reduced by using hybrid filters - which leads to a significant improvement in
precision as shown in figure 3.3 for the case of applying OWLS-M0 vs OWLS-
M2 to the respective test collection.

However, the same experiments also revealed that even hybrid OWLS-MX
variants return false positives which we briefly illustrate next.

3.4 False positives of hybrid matching

Main reasons for hybrid OWLS-MX variants to return false positives are that
all filters (a) do not require a total mapping of I/O concepts between service
and query, and (b) used syntactic similarity measurements ignore the semantics
of logical operators in concept expressions. In fact, our experiments showed that
adding services of the above types of FP to the OWLS-TC2 causes a significant
decrease in the precision of all OWLS-MX variants.

Surjective mapping of concepts According to their definition, no filter of
OWLS-MX requires a total (bijective) mapping of service and query I/O con-
cepts which can lead to false positives in situations where no concepts are pro-
vided .

For example, in figure 3.4, the query ”BuyBook” and service ”DatingService”
are returned as equivalent since there is no query output concept to be matched.
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Fig. 4. Example: Tolerated missing of key concepts for service or query semantics

Logical operator semantics Another reason of false positives returned by
hybrid variants is that the used syntactic similarity means ignore the logical
language operators in concept definitions. In fact, connectives like ”and”, ”or”
are eliminated as stop words in the preprocessing step of IR similarity measure-
ment. For example, in figure 3.4, the query ”B/W-Print” is asking for print outs
in black or white, while the service ”BW-Print” is offering print outs in black
and white. The service is logically irrelevant but identical for syntactic similarity
metrics.

3.5 Logic based false negatives

The experimental analysis of relevant services missed by the logic based match-
maker OWLS-M0 (false negatives lower recall) revealed the following main char-
acteristic reasons of failure.

1. In fine-grained matchmaker ontology, service concepts can logically differ
from those of a given query but have similar real-world semantics (e.g. se-
mantically close siblings in the ontology).

2. Opposed to the all-quantified matching filter constraints of OWLS-M0, the
pairwise comparison of service and query I/O concepts does not always yield
the same type of subsumption relationship.

3. In OWLS-M0, all service input concepts have to be equal or more generic
than provided as it would, in case of a linear mapping of concepts to WSDL
grounding data types, guarantee service invocation but may be too restrictive
in certain cases.

Concept siblings Logic based false negatives can be caused by logically disjoint
definitions of sibling concepts with similar real-world semantics. For example, in
figure 3.5, the real world semantics of query output ”Hopital-Physician” and the
service output ”Emergency-Physician” are quite similar.
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Fig. 5. Example: False positive due to incomplete coverage of semantics

In the extreme, only one pair of conjunctive logical constraints or primitive
components of siblings in the concept hierarchy remains unmatched during sub-
sumption computation, hence causes a logical failure by OWLS-M0. Since both
unfolded concept expressions are syntactically identical otherwise, any hybrid
OWLS-MX would return both concepts as similar with respect to their implicit
semantics exploited by selected IR similarity metric

Different subsumption relations Another major class of logic based false neg-
atives is caused by the all-quantified matching filter constraints of OWLS-M0
that requires each pair of service and query I/O concepts to have the same type
of subsumption relation.

For example, in figure 3.5, the types of subsumption relations between the
output concepts of query ”CarPlusBike” and service ”4WheeledCarPackage” are
different. As a result, the logic based OWLS-M0 fails while the hybrid variants
determin the service as relevant, if the degree of the syntactic similarity between
the considered pairs of concepts is sufficient.

Enforcement of more generic service input Finally, in OWLS-M0, all service
input concepts have to be equal or more generic than provided which might not
be the case though the service is relevant to the given query as shown in figure
3.5

3.6 Mitigating logic based FN problems

As mentioned above, both kinds of identified FN problems call for the com-
plementary use of text retrieval similarity metrics with fine-grained syntactic
overlap measurement.
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Fig. 6. Mitigating logic based false positives with hybrid matching filters that exploit
syntactic similarity measurement.

The experimental results depicted in figure 3.6 show that the recall of all
hybrid variants is significantly better than the one of OWLS-M0 applied to a
test collection with sets of services that cause logic based false negatives. Main
reason for this is, that the additional IR based similarity check of the nearest-
neighbor filter allows OWLS-M1 to -M4 to find relevant services that the logic
based OWLS-M0 would fail to retrieve.

4 Advancing OWLS-MX retrieval performance

Regarding the results of the FP/FN analysis of the retrieval performance of
OWLS-MX in the previous section, we are interested in how most of the iden-
tified reasons of failure could be overcome. Basic idea is to improve the R/P
performance by allowing for an integrated rather than just complementary hy-
brid matching on the deeper level of service I/O concepts.

That is, the respectively updated matchmaker version OWLS-MX+ deter-
mines whether

– a total (bijective) mapping of service/query I/O concepts exists, and
– further relaxes the match by tolerating also individual pairs of service/query

concepts (instead of considering their input and output as a whole) with
their logical relation deviating from that required by the all-quantification
filtering constraints, if their syntactic similarity is sufficient.

The experimental results show that the R/P performance of OWLS-MX+ is
significantly improved over that of OWLS-MX (cf. figure 4). Please note that
OWLS-MX+ is not available in the latest version 1.1c of OWLS-MX; we are cur-
rently working on the next release (OWLS-MX 2.0) where it will be integrated.
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Fig. 7. Example: False positives of hybrid matching

5 Conclusions

Since its first release in May 2005, the OWLS-MX matchmaker is the only hybrid
matchmaker for OWL-S services that applies both logic based and approximative
matching filters. For an accessible account of other approaches to semantic Web
service discovery, we refer to, for example, [3].

The results of our experimental analysis of hybrid semantic matching filters
of OWLS-MX showed that the main characteristic problems of logic based only
false positive/negatives can be largely mitigated by (a) syntactic overlap mea-
surements of IR metrics, and (b) integrated hybrid matching on deeper concept
level improves precision (OWLS-MX+).

However, one open problem of OWLS-MX+, as for any other logic based
SWS matchmaker, is that the importance of individual concepts used to define
the real world semantics of the considered service is highly subjective thus may
vary for different users. This is hard to deal with in general. The problem of
syntactic similarity metrics ignoring the semantics of logical operators ”and”,
”or” in the expanded concept definitions as classical stop words will be solved
in an updated version of OWLS-MX 2.0.

Finally, the query relevance sets of the used collection OWLS-TC2 are, of
course, highly subjective. The construction of a large scale service retrieval col-
lection has to be a joint effort of many people within and outside the SWS com-
munity. We encourage the reader to contribute to the evolution and enlargement
of the OWLS-TC online at the sws-tc wiki http://www-ags.dfki.uni-sb.de/swstc-
wiki
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Fig. 8. Example: False negative for concept siblings in the ontology
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Fig. 9. Example: False negative due to different concept subsumption relations

Fig. 10. Example: False negative due to required more generic service input
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Fig. 11. Mitigating false negative problems of logic based OWLS-M0 with hybrid
matching filters

Fig. 12. Improved R/P performance with OWLS-MX+
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Abstract. The WSMO-MX matchmaker applies different matching fil-
ters to retrieve WSMO-oriented service descriptions that are semanti-
cally relevant to a given query with respect to seven degrees of hybrid
matching. These degrees are recursively computed by aggregated valu-
ations of ontology based type matching, logical constraint and relation
matching, and syntactic similarity as well. In this paper, we provide
preliminary results of our experimental evaluation of the performance of
WSMO-MX. In summary, it turned out that hybrid matching of WSML-
MX services performs reasonably well.

1 Introduction

The problem of efficiently retrieving relevant services in the envisioned semantic
web has been solved so far by only a few approaches for services described in
OWL-S such as [1, 2], and WSML such as [3, 4, 13]. Though, existing propos-
als for rule based service mediation in WSMO do not provide a general purpose
matchmaking scheme for services in WSML. Recently, this gap has been filled by
a hybrid semantic matchmaker, called WSMO-MX, that applies different match-
ing filters to retrieve extended WSML services that are semantically relevant to
a given query including the goal to be satisfied [5].

For this purpose, both services and goals are described in a Logic Program-
ming (LP) variant of WSML, called WSML-MX, which is based on WSML-Rule.
The hybrid matching scheme of WSMO-MX combines and extends the ideas of
hybrid semantic matching realized by OWLS-MX [2], the object-oriented struc-
ture based matching proposed by Klein & König-Ries [6], and the concept of
intentional matching introduced by Keller et. al [7]. WSMO-MX v0.4 is avail-
able at http://projects.semwebcentral.org/projects/wsmomx/.

In this paper, we build upon this work and show the results of our experi-
mental evaluation of the performance of WSMO-MX based on a first, admittedly
small service retrieval test collection for WSML services derived from the DIANE
test collection.
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The remainder of this paper is structured as follows. Section 2 provides an
overview on how WSMO-MX works, while the testing environment and the pre-
liminary results of the evaluation of its retrieval performance is given in section
3. Related work is strived in section 4, and section 5 concludes this paper.

2 WSMO-MX Overview

In this section, we briefly summarize the functionality of the WSMO-MX match-
maker and provide a brief example. For further details on the functionality and
implementation of WSMO-MX, we refer to [5].

2.1 Service description in WSML-MX

WSMO-MX pairwisely matches services in a formally grounded variant of
WSML called WSML-MX directly in F-Logic [8, 9]. It adopts the main and
clearly motivated elements required for service matching from WSML, that are
goal, service, capabilities, preconditions, and postconditions but not effect
and assumption. Central to describing services in WSML-MX is the notion of
derivative which is an extended version of the object set introduced by Klein
and König-Ries [6].

A derivative DT in WSML-MX encapsulates an ordinary concept T (in this
context called type) defined in a given ontology by attaching meta-information
mainly about the way how T can be matched with any other type. Such in-
formation is defined in terms of different meta-relations of the derivative DT .
The type T is defined to be either atomic or a complex type with relations,
the derivative DT can also have a set of relations different from T , though this
set is empty by default. A state is a set of state parts, which are derivatives
each defined as atomic, or as complex by means of relations with derivatives as
range. Hence, any service in WSML-MX can be represented as a directed object-
oriented graph with derivatives considered as nodes and relations between them
as edges, as shown in figure 1.

This variant of WSML allows for constraints on both relations and derivatives
formulated in the full Horn fragment of F-logic. Hence, WSML-MX constraints
are as expressive and, in general, only semi-decidable as are WSML-Rule ax-
ioms. However, the WSMO-MX matchmaker approximates query containment
through means of relative query containment for constraint matching. Moreover,
the matching of parts of WSML-MX expressions represented as acyclic object-
oriented graphs without constraints is decidable in polynomial time.

The emphasis of WSML-MX on these parts of service modelling is motivated
not only by clear separation of computationally tractable elements but the fact
that it allows the matchmaker for a more detailed explanatory feedback to the
user and more differentiated matching valuations. This is a lesson learned from
matchmaking approaches relying on pure query containment which requires high
ontological homogeneity and results in single match predicates based on overall
and undifferentiated logical implication between goal and service descriptions.
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Webservice_D...
type: Webservice
...

capability

Capability_D...
type: Capability
... postconditionprecondition

...

... ... ... ...

... ...

...

... ... ... ...

... ...

State

StatePart

Fig. 1. Service derivative in WSML-MX

An example for a service in WSML-MX is shown in figure 2; the service offers
tickets for any trip between any two German towns, but if the user departs from
Berlin, her destination must be Hamburg.

State
Webservice_D2

capability

Capability_D4
postcondition Ticket_D5

param->>out
constraint->>c2

GermanTown_D1

param->>in

GermanTown_D2

param->>in

Date_D4

param->>in

departure arrival date

FORALL X. satCons(X,c2) <- (X[departure->>berlin] -> X[arrival->>hamburg]). 

Client_D1

param->>in

purchaser

Town_D8
param->>in

livesAt

Fig. 2. Example service in WSML-MX

2.2 Hybrid matching degrees

The result of matching a derivative DG from a goal description with a derivative
DW from a service description is a vector v ∈ R7 of aggregated valuations of
(a) ontology based type matching, (b) logical constraint matching, (c) recursive
relation matching, and (d) syntactic matching. In this respect, the matching of
WSMO-MX is hybrid.
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Each real-valued entry in the so called (matching) valuation vector v =
(π≡, πv, πw, πu, π∼, π◦, π⊥) with πi ∈ [0, 1] (i ∈ {≡,v,w,∼,u, ◦,⊥}) and∑

πi = 1, denotes the extent (similarity score) to which both derivatives DG and
DW match with respect to the hybrid semantic matching degrees πi of WSMO-
MX. These degrees are the logical relations equivalence, plug − in known from
software component retrieval [10] or the similar rule of consequences from Hoare
logic [11], inverse − plugin, intersection and disjunction (fail) as degrees of
logic based semantic match.

The degree of fuzzy similarity refers to a non-logic based semantic match
such as syntactic similarity or non-subconcept relations with respect to the type
graph, while the degree neutral stands for neither match nor fail, hence de-
clares the tolerance of matching failure. The set-theoretic semantics of the hy-
brid matching degrees are given in Table 1 based on the relations between the
maximum possible instance sets of the derivatives DG and DW , denoted by G
and W. Since we use the heuristic relative query containment for the constraint
matching, these sets are restricted to instances in the matchmaker knowledge
base which satisfy the constraints. We acknowledge that it can not be taken
for granted that the matchmaker is in possession of instances for every deriv-
ative with assigned constraints. However, these precedence instances could be
retrieved by tracking service executions, sampling services/descriptions (services
without real world effects) or - regarding goal derivative instances - by conducting
systematic questionnaires. Furthermore, constraint matching could be ignored
(configuration option in WSMO-MX) for coarse service discovery and applied for
verification purposes in the service composition, when instances are available.

order symbol degree of match pre post

1 ≡ equivalence G = W
2 v plugin G ⊆ W W ⊆ G
3 w inverse-plugin G ⊇ W W ⊇ G
4 u intersection G ∩W 6= ∅
5 ∼ fuzzy similarity G ∼ W
6 ◦ neutral by derivative specific definition

7 ⊥ disjunction (fail) G ∩W = ∅

Table 1. Degrees of hybrid semantic matching of WSML service and goal derivatives

2.3 Hybrid matching process

In order to compute the degrees of hybrid semantic matching of given goal and
service derivatives in WSML-MX, WSMO-MX recursively applies different IOPE
matching filters to their preconditions and postconditions (inherently including
service inputs and outputs as in WSML, but with an explicit parameter flag
similar to the variables in [6]), and returns not only the aggregated matching
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valuation vector but also annotations of the matching process results as a kind
of explanatory feedback to the user. That facilitates a more easy iterative goal
refinement by the user in case of insufficient matching results. The annotations
have a generic format and can be employ for several purposes. In the current
version, WSMO-MX uses them to generate natural language explanations of
the respective matching deviations. In the future they could also be used for
graph-based visualizations of the matching result.

More concrete, the state of the goal is matched with that of the service
by matching their state part derivatives and then recursively by the pairwise
matching of relation range derivatives of equally named relations. Subsequently,
WSMO-MX computes the maximum weighted bipartite graph match, where
nodes of the graph correspond to the goal and service state parts. The re-
spectively computed valuation vectors act as weights of edges existing between
matched state parts.

At each step in the recursion, the parameter matching filter is applied first,
since its result, an annotation record, is not valuated for any of the hybrid
matching degrees. Then each of the logic based semantic matching filters (type,
constraint, and relation matching) is applied. While type matching, in essence,
bases on the subconcept relations and path distance between types (classes) in
the matchmaker ontology, F-logic constraint matching is computed by means of
relative query containment, and relation matching recursively matches the ranges
of equally named relations with each other. Syntactic matching is performed in
case one of these filters fails (compensative), or complementary in any case, if not
specified differently. The user can also ask for just a first coarse-grained filtering
by means of exclusively syntactic matching without any semantic matching.

Finally, all valuation vectors computed during recursive matching of goal and
service derivatives are aggregated into one single valuation vector. For aggrega-
tion, each individual valuation vector is weighted for the respective matching
filter as specified by the user for the given goal; the weighting is assumed to be
equal by default. This aggregated valuation of hybrid matching degrees is then
recomputed with respect to the intentions of the considered derivatives.

The overall result of the matching process is a ranked list of services with
their hybrid matching valuation vector and annotations. Services are ranked with
respect to the maximum value of hybrid semantic matching degrees in descending
order (cf. table 1), starting with π≡.

2.4 Example

Goal, service, ontology. Suppose the user defines a goal derivative Ticket D4
as shown in figure 3. That is, she is looking for any ticket for a trip between
two arbitrary towns, but if it starts in Berlin, then it must not end in Bremen.
Please note, that the user may specify matching relaxations for any object of
the goal as exemplified, but also different weights for the matching filters to be
applied. In this example, we assume the filters to be equally weighted.
The part of the type hierarchy in the matchmaker ontology and all instances
used in this example are shown in figure 4.
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StateGoal_D2

capability

Capability_D3
postcondition

Ticket_D4

Town_D3

typeSimRel->>sub
param->>in

Town_D4

typeSimRel->>sub

Date_D3

param->>in

departure arrival date

typeSimRel->>sub
param->>out
missingStrat@(via)->>assumeEquivalent
constraint->>c1

Town_D5

typeSimRel->>sub
existensialIntension->>true

via

FORALL X. satCons(X,c1) <-  (X[departure->>berlin] -> not X[arrival->>bremen]). 

Customer_D1

purchaser

Town_D7

param->>in

residence

param->>in
synSimUsage->>compensative
synSimScope->>scpType
synSimMetric->>loi
synSimMinDegree->0.7

Fig. 3. Example goal in WSML-MX

In this example, the service derivative Ticket D5 given in section 2 will be
matched against the goal derivative Ticket D4 as follows.

Matching. Since the capabilities of both goal and service derivatives do not
include any precondition, the hybrid semantic matching of them is restricted to
the matching of their postcondition states.

1. match types: the types of Ticket D4 and Ticket D5 are equal. Hence the
valuation is v1 = (1, 0, 0, 0, 0, 0, 0).

2. match parameters: both are output parameters, no annotation necessary
3. match relations

(a) departure: the types of Town D3 and GermanTown D1 are not equiva-
lent, but Town D3 allows subtypes. Since GermanTown is a subconcept
of Town, the valuation is v2 = (0, 1, 0, 0, 0, 0, 0, 0).

(b) via: this relation is not defined for Ticket D3, but the missingStrat-
egy for this relation is assumeEquivalent yielding a valuation v3 =
(1, 0, 0, 0, 0, 0, 0, 0).

(c) arrival: analogous to departure types of the ranges of arrival are subtypes
and yield the valuation v4 = (0, 1, 0, 0, 0, 0, 0, 0).

(d) date: is equal in goal and service, hence valuated as v5 =
(1, 0, 0, 0, 0, 0, 0, 0)

(e) purchaser: type matching fails for Customer D1 and Client D1, but
compensative syntactic matching is allowed using loss of information
(LOI) metric. For the unfolding only the types of the derivatives should
be used (scpType), yielding the term vectors (Customer : 1, T own :
1, P erson : 1, Location : 1, T own : 1) and (Client : 1, T own :
1, P erson : 1, Location : 1, T own : 1) for Customer D1 and Client D1,
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Town

Location

Station

Date

Thing

Ticket

Trainticket

GermanTown

Person

Customer Client

t1:Ticket_D4[departure->>berlin;
arrival->>leipzig; ...].

t2:Ticket_D4[departure->>berlin;
arrival->>kiel; ...].

t3:Ticket_D5[departure->>hamburg;
arrival->>bremen; ...].

t4:Ticket_D5[departure->>hamburg;
arrival->>hannover; ...].

t5:Ticket_D5[departure->>berlin;
arrival->>hamburg; ...].

t6:Ticket_D6[departure->>berlin;
arrival->>bremen; ...].

Fig. 4. Example ontology (type hierarchy and instances)

respectively. The similarity degree is 0.75, and therefore greater than
the declared minimum of 0.7. The resulting valuation vector is v6 =
(0, 0, 0, 0, 0, 0, 1, 0).

The aggregated relation valuation is v7 = v2+...+v6
5 = (0.4, 0.4, 0, 0, 0, 0.2, 0)

4. match constraints: Ticket D4 has the constraint c1. This is satisfied by
the instances t1, . . . , t5. The constraint c2, which is imposed on Ticket D5 is
satisfied by the instances t3, . . . , t5. That means the instances for Ticket D5
are a subset of those of Ticket D4 and hence the valuation is v8 =
(0, 1, 0, 0, 0, 0, 0, 0)

Finally, the aggregated valuation for the derivative matching of Ticket D4 and
Ticket D5 is

v9 = v1+v7+v8
3 = ( 7

15 , 7
15 , 0, 0, 0, 1

15 , 0).

This means that the advertised service is hybrid semantically matching with the
request. In particular, they are exactly and plug in matching to the same extent
(0.46).

3 Evaluation of performance

The preliminary experimental evaluation of the retrieval performance of WSMO-
MX focuses on measuring its recall, precision, and F1 based on an initial test
collection.
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3.1 Testing environment

At the time of writing, there is no service retrieval test collection for WSML
available. As a consequence, for testing the performance of WSMO-MX, we had
to develop an inital test collection.

Service Retrieval Test Collection WSML-TC1. For this purpose, we borrowed
domain ontologies, service offers and requests from the DIANE project3, and
transformed parts of them from their F-DSD format into WSML-MX F-Logic.
The resulting test collection WSML-TC1 contains approximately 300 concepts
and over 800 instances in the domain ontology and 27 web services (offers) and
21 goals (requests) with over 1000 derivatives.

The goals belong to 5 different domains: book buy (10), cinema ticket booking
(4), tv set buy (5), printing request (3), train ticket service (5). They are chosen
such that they have large modeling overlaps making it more challenging for
syntactical and hybrid matching approaches which rely on syntactic similarity.
As usual, the relevance sets of WSML-TC1 were subjectively determined, that is
whether a service is relevant for a request depends on a categorical point of view.
That is motivated in part by the fact that semantic service matching shall be
employed in a wide range of use case scenarios, from crisp composition planning
to human oriented service discovery making it impossible for a general purpose
matchmaker like WSMO-MX to take every possible prerequisite (e.g. available
inputs/mediators, intended usage, etc) into account.

For the formal declaration of relevance in test environments, we de-
fine two further derivative meta relations: declaredRelevanceTo and
numberDeclaredRelevant . The first one is used to assign a goal derivative
with a service derivative, the latter counts all relevant web service derivatives
by means of the following rule:
FORALL D,C D[numberDeclaredRelevant->>C] <-

EXISTS R D[declaredRelevanceTo->>R] AND count(D,R,C) .

Hardware. For the performance tests, WSMO-MX v0.5 and OntoBroker v4.3
were deployed on a machine with Win XP, Apache Tomcat 6 (also tested with
5.5), Java 6 (also tested with Java 5), 2.39 GHz, and 2 GB RAM.

3.2 Experiments

On the basis of the very first and admittedly small test collection WSML-TC1,
we initially conducted six experiments to investigate the matchmakers behav-
ior with respect to different configurations for semantic, syntactic, and hybrid
matchings. We measured the retrieval performance of WSMO-MX in terms of
its recall, precision, and F1-measure as known from information retrieval [12].
The unfolding of derivatives for the syntactic matching is done online, results
are indexed only for one matching request, such that overall time needs are

3 http://hnsp.inf-bb.uni-jena.de/wiki/index.php/DSD
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comparable between syntactic and non-syntactic matchings. For non-testing en-
vironments at least all offers could be indexed in advance of the user request
which reduces the effective matching time to some milliseconds.

Experiment 1: Pure logic based semantic matching At first we exam-
ined how well pure semantic matching performs, relaxing only derivative type
deviations in three steps of increasing degree of fuzzyness as follows.

– default : Only type deviations explicitly granted in the goal descriptions are
allowed

– subSuper : All service derivatives without explicitly defined type deviation
are considered sufficient similar to each other if their types have a logical
subconcept relationship

– relation-3 : Types are only required to have a maximum distance of 3 in the
taxonomy graph spanned by logical subconcept relation.

The strict configurations default and subSuper deliver solely relevant results.
While the default configuration only achieves a recall of below 0.7 (Fig. 5),
subSuper already delivers a full recall which is due to the fact that the test
collection relies on one homogenous domain ontology. Only the fuzzier relative-3
configuration attains 100% recall, but at the expense of a final 70% fallout and
a time consumption of almost 1 sec per query which is similar to 0,89 sec per
query for subSuper, but more than three times as much as needed for default
matching (0,3 sec).

Experiment 2: Syntactic similarity metrics This experiment is about com-
paring the four provided metrics for syntactic matching: Jaccard, Extended-
Jaccard, Multiset-Jaccard, and Cosine. Therefore the configuration was fixed to
alternative syntactic matching with a minimum matching degree of 0.6. For the
unfolding relations and types were considered up to a maximum depth of 2.

It could be observed that for the chosen threshold all metrics except Cosine
deliver 100% or almost 100% correct results. But only Jaccard and Multiset-
Jaccard also achieve a high recall of over 90%. Extended-Jaccard’s recall is below
0.6, but additional variations showed that this metric is the least vulnerable with
respect to precision. In total, figure 6 shows that Jaccard provides the best overall
results. In this configuration, Multiset-Jaccard is only slightly worse.

It is remarkable that the syntactic matching achieves full precision and almost
the same recall level as the pure semantic matching while consuming only a
sixth of the overall computation time. Furthermore the most computation is
needed for unfolding and index generation which could be done in advance of the
matching. But please note that the computation time of the semantic matching is
largely determined by the client-/server communication of the matchmaker and
the reasoner. With the new reasoner API of OntoBroker 5 this can be reduced
significantly and will be investigated in detail in future evaluations.
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Fig. 5. Type matching

Experiment 3: Syntactic similarity threshold The minimal matching de-
gree is crucial for WSMO-MX because syntactic matching is applied to single
derivatives instead of whole service descriptions (like in OWLS-MX [2]). To find
a suitable threshold, we used the best configuration from the last experiment
(metric: Jaccard) and increased the threshold successively from 0.4 to 0.7 in
steps of 0.05. Beginning with 0.6 the syntactic matching delivers only relevant
documents, whereas 0.4 and 0.45 entail a final fallout of about 60% (50%) for
their final but late full recall. A threshold of 0.6 achieved still a recall of 0.9
(0.65 - 80%, 0.70 - 70%). The results for the thresholds 0.5 and 0.55 are closer
to those of 0.6-0.7 with a fallout of 10-20% and almost full recall. For this test
collection 0.6 can be considered as most suitable threshold. For ontologies of
more heterogeneous origin probably a lower threshold should be chosen.

Experiment 4: Unfolding service derivative scope In this experiment the
scope of a derivative used for syntactic matching is varied. For the last experi-
ments, both, types and relation were used. Now, this configuration is compared
to only using types or relations. As can be seen from the F1-measure graph in
figure 7, only combination of both leads to the best result. Separate consider-
ation of recall and precision shows that types determine the recall (100% but
final fallout of 40%) and the relations the precision (almost 100%, but recall only
50%). Syntactic matching with an unfolding of relations and types needs twice
as much time as with only one of both scopes.
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Fig. 6. Metrics experiment: Jaccard, Cosine, Extended Jaccard, Multiset Jaccard

Experiment 5: Unfolding depth Beside the scope the unfolding result of a
derivative is dependent from the maximum unfolding depth. In this experiment
we increased the depth starting with 0 which means that only the derivative
itself is unfolded. From unfolding depth 3 on, no significant changes could be
observed. Figure 8 clearly shows that only the unfolding depths 2 and 3 yield
good results. Although the depths 0 and 1 achieve a final full recall, the high
fallout of 80% (55%) is not acceptable. Unfolding (and matching) for depth 2
takes twice as much time as for 1 which in turn takes twice as much as for depth
0.

Experiment 6: Hybrid vs logic based matching Finally, we compared the
performance of hybrid matching based on integrated and compensative syntactic
matching with best syntactic only matching as well as default and subSuper
matching from the first experiment. All four matchings have no fallout and
only differ with respect to recall (figure 9) and computation time. Though not
significant, the hybrid matching performed best, but only slightly better than
subSuper and the pure syntactic matching. However, on average, the syntactic
matching takes only 0,15 sec per query, whereas hybrid matching takes 0,61 and
subSuper 0,89. Overall, this indicates the usefulness of syntactic matching in
combination with, or instead of logical reasoning.
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Fig. 7. Syntactic matching with different scopes: types (t), relations (r), both (tr)

4 Related work

WSMO-MX has been the first implemented full-fledged matchmaker for WSMO-
oriented services. The mediator based discovery approaches and discovery models
for WSML presented, for example, in [3, 4, 13] do not allow for general goal-
service matching, but require problem specific mapping, or construction rules.

In general, semantic service matching determines whether the abstract se-
mantic description of a requested service (or goal) conforms to that of an adver-
tised service based on their functional and non-functional semantics. This is at
the very core of any semantic service discovery framework. Current approaches
to semantic service matching can be classified according to

– what kinds and parts of service semantics are considered for matching, and
– how matching is actually performed in terms of syntactic similarity measure-

ments, logic based reasoning within or partly outside the service description
framework, or a hybrid combination of both

Most matchmakers for the semantic Web today perform service profile match-
ing while only very few perform process model matching or even a combined
functional service matching. Since all semantic Web service description frame-
works, except SAWSDL, provide a strict logic based profile semantics (IOPE),
it comes at no surprise that most matchmakers rely on crisp logic based rather
than hybrid semantic matching of semantic Web services of which only a few
approaches exist. Process matching approaches or even combined approaches are
more than rare leaving a lot of space for further research.
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Fig. 8. Influence of unfolding depth

For WSMO-MX, we did improve on the idea of hybrid matching that has
been applied to OWL-S service matching by OWLS-MX [2] and in general by
LARKS [14] through allowing for a more fine-grained parametrisation, and inte-
grated interleaving of syntactic and semantic matching. In any case, the lack of a
sufficiently large and commonly agreed test collection for evaluating the perfor-
mance of semantic Web service matchmakers for any of the current description
frameworks is a general problem which can only be tackled by the community
as a whole. In this respect, the presented results of the performance evaluation
of WSMO-MX can only be considered preliminary.

5 Conclusions

WSMO-MX performs hybrid semantic web service matching based on both
logic programming, and syntactic similarity measurement. It applies differ-
ent matching filters to retrieve WSMO-oriented service descriptions that are
semantically relevant to a given query with respect to seven degrees of hy-
brid matching. These degrees are recursively computed by aggregated val-
uations of ontology based type matching, logical constraint and relation
matching, and syntactic similarity as well. WSMO-MX v0.4 is available at
http://projects.semwebcentral.org/projects/wsmomx/. In this paper, we pro-
vided preliminary results of our experimental evaluation of the performance of
WSMO-MX. In summary, it turned out that hybrid matching of WSML-MX
services performs reasonably well, and can outperform crisp logic based match-
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Fig. 9. Hybrid (with syntactic similarity) vs. pure logic based (default, subsumption)
matching

ing. Furthermore, the experiments indicated that pure syntactic matching - if
parametrized appropriately - can keep up with logic matching regarding recall/
precision and significantly outperforms it with respect to computation time. We
are currently working on extending the test collection WSML-TC1, and the up-
dating of WSMO-MX for an upcoming release.
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Abstract. Where are all the semantic Web services today? In this pa-
per, we briefly provide the preliminary results of searching the surface
Web and the prominent citeseer archive as one element of the deep Web
for publicly available semantic Web service descriptions written in OWL-
S, WSML, WSDL-S or SAWSDL by means of the specialized meta-search
engine Sousuo 1.4.

1 Introduction

The commun user of the Web might ask: Where are all the semantic Web services
in the Web today? According to a focussed search conducted from January 1,
2007 to July 25, 2007 with a specialized meta-search engine Sousuo 1.4, the
number of publicly acessible semantic Web service descriptions appears tiny
compared to both the number of Web services and even the small fraction of the
semantic Web indexed by Swoogle.

Of course, one can argue that this comes at no real surprise for two reasons.
First, semantic Web service technology with a standard announced just recently,
that is SAWSDL, is immature which provides insufficient common ground sup-
porting its exploitation by end users. Independent from this, one could have
expected the massive research and development of the field around the globe
in the past half dozen years to have produced a considerable amount of even
publicly visible semantic Web service descriptions beyond internal repositories.

Second, one might argue that it is not clear whether the surface Web and
academic publications are the right place to look for semantic Web services, as
many of them would be intended for internal or inter-enterprise use but not
visible for the public. Though this is one possible reason of the low numbers
reported above, there was no experimental evidence in favor of, or against this
claim.

This motivated us to conduct our initial search experiment: How many se-
mantic Web service descriptions are actually accessible to everyone searching the
Web for them? How many of them are written in the standard SAWSDL, and the
non-standard OWL-S or WSML? What is the distribution of their geographic
locations and application domains? How many of these service descriptions are
valid, and are grounded in standard Web service technology for their principled
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execution in practice? Finally, how many links to semantic Web service descrip-
tions can only be found in academic publications such as those in the prominent
scientific archive citeseer as one element of the deep Web?

In this paper, we provide preliminary answers to these questions based on
our limited search experiments. In particular, we restricted our first search ex-
periments on semantic Web service descriptions independent from whether they
are grounded in actually deployed WSDL services, or not. This is part of future
work but should not distract from the original questions above.

The meta-search engine Sousuo with which the search has been performed
together with its testing environment are described in section 2. In section 3,
we provide the performance of both the search engine and its topic crawler
followed by the preliminary results of our experiment in section 4, while section
5 concludes this paper.

2 Meta-search engine Sousuo

The purpose of the specialized meta-search engine Sousuo for semantic Web ser-
vices is to search the surface Web and the scientific archive citeseer for semantic
Web service descriptions in OWL-S, WSML, WSDL-S and SAWSDL.

2.1 Architecture

The general architecture of Sousuo is shown in figure 1.

Overview. Users may select any combination of the following search methods of
Sousuo to search for semantic Web services.

– Meta-search (MS) through most prominent search engines Google with A9,
– Sousuo’s own focussed topic crawler (TC) based on the WebSphinx crawler,
– Inverse ontology based search (IOS) via Swoogle, and
– Full text scientific archive search (FTAS).

Fig. 1. General architecture of Sousuo.

Sousuo considers returned links to syntactically valid service descriptions
relevant. For validation, Sousuo uses the validators of publicly available OWL-S
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API, WSMO4J API, and SAWSDL4J API. Depending on the validation result,
it determines the relevance ranking score of each link, that is a score of 1.0
if the service description is syntactically valid, 0.5 if validation failed due to
minor syntax errors, and 0 else. Validation is complemented by checking whether
the link has been already stored in the local database (Open Berkeley XML
database[4]).

This database can be queried and evaluated by the user according to the
distribution of geographic locations, description formats, domains and categories
of semantic Web services, as well as the coverage of the total result returned for
any combination of the different search methods. Sousuo 1.4 also informs about
the actual performance of both its topic crawler and the whole meta-search
engine. Sousuo has been implemented in Java and is publicly available through
the software portal semwebcentral.org dedicated to semantic Web software.

Meta-search and topic crawler. The meta-search of Sousuo is restricted to query-
ing Google, Swoogle, and A9 through their API with predefined and user given
search keys. Predefined search keys focus on links to files of type, for example,
filetype:{wsdl sawsdl, wsml wsml, owls service, owls profile, owl jp, owl kr, owl
tw, owl cn, owl service Profile, owl profile, wsdl annotation }. This is comple-
mented by a simple focussed topic crawler which performs a recursive depth-first
search taking the continuously growing set of (initially given) links in the local
database as root and base set, and terminates with a time-out or given maximum
of search depth reached. Validation, ranking, and redundancy checking of found
links are as described above.

Inverse ontology based search. This search method is looking for services that
reuse ontologies imported by services that have been already located by Sousuo.
For this purpose, Sousuo first checks for each link to a service stored in the
database the assigned set of individual ontologies required to understand its
semantics. It then searches for service descriptions that contain one or multiple
of these selected ontology links through respective queries to Swoogle, A9 and
Google. The intuition behind this inverse ontology based search is that semantic
Web services share ontologies but may not be fully indexed.

Full text archive search. Sousuo queries the scientific archive citeseer via its
API for references to papers on semantic Web services, retrieves the respective
documents in the answer set formatted in pdf, and scans each of them for embed-
ded relevant links to SWS descriptions. These links then get validated, ranked,
checked for redundancy, and stored in the local database by Sousuo as mentioned
above.

2.2 Testing environment

Search period and hardware. We ran our search experiment from January 1,
2007, to July 25, 2007, by executing Sousuo once every two weeks over 24 hours
on a notebook with CPU Intel Core 2 Duo 2.0GHZ, 2GB RAM, and LAN 10
Mbit/s access to the Internet.
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Search space and index. Sousuo does not search any surface Web directory such
as yahoo. In fact, respective experiments showed that their answer sets were
covered by the one of Sousuo. However, we are currently working to enlarge
the search space of Sousuo by incorporating search engines claiming to provide
access to parts of the deep Web such as clusty, intute, and infomine with an
open, non-commercial API for inquiries.

Hence, the search space of Sousuo is the union of the indices of queried
search engines, the discovered realm of the focussed topic crawler plus the index
of the scientific archive citeseer. This size is, in general, impossible to determine
accurately due to the privacy of information on size, redundancy, and overlapping
(coverage). However, the size of the index of Google is estimated with 11.3 billion
links 1, while the size of the Swoogle index and citeseer archive is estimated with
1.7 million 2, and 767,558 links, respectively. Besides, our focussed topic crawler
explored 11.2 million links in total during the experiment. With an admittedly
speculative 90% of an overlap of the latter indices with the Google index, the
search space of Sousuo might be estimated with 13 billion pages. The current
size of Sousuo’s index equals that of its total answer set for the whole search
experiment which amounts to 1439 non-redundant, validated links stored in the
local database.

3 Performance

As the real relevance set of semantic Web services in the Web is unknown,
and impossible to deduce from neither the set of crawled pages nor the answer
sets of particular sources queried, we approximate the performance measures of
precision and recall for the topic crawler by means of target recall and target
precision as defined in figure 2 according to [5].

3.1 Performance of focussed topic crawler

Figure 3 shows the average target precision and recall of the focussed topic
crawler of Sousuo. It explored around 11.2 million links in total with fairly
reasonable throughput of 46 links per minute during the experiment. Regarding
its focussed search the target precision is comparably fair enough as well [5].

3.2 Performance of Sousuo

For measuring the precision of the search enginge Sousuo, we determine the
classical ratio between the size of the intersection of its answer set AS with the
relevance set RS and the size of AS. The answer set of Sousuo equals the set of
valid links taken from those returned by its topic crawler, the search using Google
and A9 API which answer set is limited to 1k, respectively, 10k links per day,

1 at http://www.linksandlaw.de/news234-indexgroesse.htm
2 http://swoogle.umbc.edu/index.php?option=com-swoogle-stats
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Fig. 2. Target precision and recall.

the inverse ontology based search via Swoogle, and the full text search through
citeseer. The relevance set, however, is restricted to the subset of (manually
determined) relevant links of the total union of answer sets produced during the
search period.

Figure 4 displays the fairly high average local precision and recall of Sousuo
while its target precision and recall is shown in figure 5.

4 Experimental results

The total number of semantic Web services in OWL-S, WSML, WSDL-S and
SWASDL including the test collections amounts to 1439 of which only about
four percent (65 services) are available outside these collections in the surface
Web and through citeseer. Figure 6 shows the number of relevant links found by
each of the individual search methods of Sousuo without redundancy checking
and test collections OWLS-TC2 [2] and SWS-TC [3].

Meta-Search Citeseer Topic Crawler Inverse
Meta-Search 35 4 6 10

Citeseer 4 11 4 2
Topic Crawler 6 4 29 8

Inverse 10 2 8 20
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Fig. 3. Average target precision and recall of Sousuo’s focussed topic crawler.

The overlapping of answer sets from individual search methods of Sousuo for
those services not included in the above mentioned test collections is summarized
in table 1. It shows, for example, that the full text archive search returned valid
links to semantic Web services in the archive citeseer that were not returned by
Google and A9, and a few that have not been returned by any other method.
Despite its functional simplicity, the same result holds with our focussed topic
crawler. This is in contrast to the inverse ontology based search which answer
set is completely covered by those of the other search methods.

4.1 Distribution of semantic Web service formats

Figure 7 shows the distribution of semantic Web service descriptions in promi-
nent formats, that are OWL-S, WSML, WSDL-S and SAWSDL.

Given the historic evolution of the field, and its reasonably fair software sup-
port, it comes at no surprise that the quantities of semantic Web service descrip-
tions in OWL-S outnumber the considered alternatives. Remarkably, there are
less public WSML services than for WSDL-S and SAWSDL together. Though
SAWSDL became a proposed recommendation by the W3C just recently, its
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Fig. 4. Average local precision and recall of Sousuo.

Fig. 5. Average target precision and recall of Sousuo.

software support world wide still appears comparatively negligible which might
rapidly change in near term. Apart from two rather medium sized SWS retrieval
test collections for OWL-S, that are the OWLS-TC2 [2] and the SWS-TC[3], we
did not find any other collection in the Web.

4.2 Geographic distribution

Figures 8 and 9 provide an overview of the geographic distribution and locations
of the publicly accessible semantic Web services. Regarding the history of the
semantic Web vision, in particular the early joint start between researchers in
the US and the EU on DAML+OIL, OWL and OWL-S, as well as the massive
funding of WSMO related projects in this field by the European Commission,
it might not come at a surprise that, according to the quantities reported, the
domain appears clearly dominated by the US and Europe while being remarkably
close to each other.
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Fig. 6. Number of relevant links found by individual search methods of Sousuo.

However, what surprised us most is that, though major projects in the area
exist, we could not find any valid semantic Web service description published in
the rest of the world publicly, in particular the Asia and Pacific rim. Additional
personal communication with few selected research groups at universities in these
regions revealed that, if semantic Web service descriptions do exist at their
site, the public retrieval from specific project related repositories is prohibited,
hence invisible to any search engine. In general, we appreciate any reference by
the interested reader to publicly accessible semantic Web services in one of the
considered formats, in particular if published in the above mentioned geographic
regions.

4.3 Internet domains and business categories

Figures 10 and 11 show the distribution of the domain and business category
of found services outside the test collections. Business and travel are the most
common categories, followed by finance and education.

In compliance with the prevalent geographic distribution and location of
semantic Web service links in the US and the EU, the majority of links from
Internet domains devoted to commerce (.com, 8 %), organisational (.org, 28%) and
educational institutions (.edu, 15%) is hosted in these world regions. Remarkably,
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Fig. 7. Distribution of prominent semantic Web service formats.

most of these semantic Web services publicly accessible in the EU are located in
the UK.

The most common business domain for semantic Web services according to
their naming or statement in the profiles are business (16%) and travel (17%),
followed by education (11%), finance (11%), and government (6%). One third of
found semantic Web service links, however, belongs to a variety of other domains
of smaller size such as sports and health.

5 Conclusions

The preliminary results of our experimental searching for semantic Web services
in the surface Web by use of a specialized meta-search engine is rather desillusion-
ing. We found not more than around 1500 indexed semantic service descriptions
in OWL-S, WSML, WSDL-S or SAWSDL in the Web, of which only about four
percent are located outside special test collections like the OWLS-TC2. This
quantity appears tiny compared with the sheer volumes of estimated thirty bil-
lion and one million indexed resources in the Web, respectively, semantic Web
encoded in RDF and OWL.

As mentioned above, the reported preliminary experimental result does not
reflect the strong research efforts carried out in the SWS domain world wide in
the past few years, independent from the status of maturity of SWS technol-
ogy and implied low adoption by end users yet. Nevertheless, the result might
encourage the community as a whole to increase its visibility and awareness to
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Fig. 8. Geographic distribution of semantic Web services.

the common Web user outside the community and savvy project teams also by
publishing a significant number of SWS show cases in the surface Web.

Although one could have expected these results, in particular the majority of
semantic Web services being published in protected internal project repositories
and other sites of the deep Web[6], there was no experimental evidence available
in favor of this claim or against. On the other hand, there still is plenty of space
left to search both the surface and the deep Web: The search space of Sousuo in
its current version is limited to only few selected indices of freely accessible and
prominent search engines with open API, that are Google, A9, Swoogle, and the
scientific archive citeseer.

However, raising awareness by a signifcant number of show cases is senseless if
not complemented by efforts to equip users with easy to use software support for
building, sharing and reusing semantic Web services. Unfortunately, this is miss-
ing either, despite the variety of SWS related software available at relevant open
source software portals such as semwebcentral.org and sourceforge.net. Though,
a first standard for SWS description has been announced just recently such that
many of these tools, though pioneering, became more or less historic now.

Sousuo is available at http://projects.semwebcentral.org/projects/sousuo/
Ongoing work includes the improvement of searching for publicly available se-
mantic Web services by Sousuo (v2) and the comparative analysis of the yet
unknown set of publicly available Web services in WSDL.
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Fig. 9. Geographic locations of semantic Web service providers.
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Abstract. The paper presents the main results of the IST FP6 INFRAWEBS project. The project 
has developed an easy and effective way of constructing and using semantic descriptions for 
existing and new Web services. INFRAWEBS has adopted the WSMO (Web Service Modeling 
Ontology) and WSML (Web Service Modeling Language) specifications and has imposed no 
additional requirements to them. Therefore, the advanced software components developed during 
the project are of interest to the whole WSMO community. INFRAWEBS offers a SOA framework 
– INFRAWEBS Integrated Framework (IIF), based on the ESB integration paradigm, which can be 
easily used by different groups of users (application providers, designers of SWS, etc.). The IIF 
enables integration of components of different technologies. Furthermore, it can be considered as 
one of the first frameworks for semantic service engineering that covers the whole SWS life-cycle 
and allows for creation of complex, semantically-enabled applications. 

Keywords: Semantic Web services, Semantic Web Service engineering, Service discovery, 
Service development, Service composition, WSMO, SOA. 

1. Introduction 

Semantic Web services (SWS) research is related to automating the development of Web service based 
applications through semantic Web technology. By providing formal descriptions with well defined 
semantics, SWS are another step in the direction of solving service engineering problems such as 
service inter-operation, discovery, choreography and orchestration. There are two major initiatives that 
work on developing a world-wide standard for the semantic description of Web services: OWL-S [17] 
and the Web Service Modeling Ontology (WSMO) [20]. WSMO is still under development and has 
been adopted over the past three years in several Integrated IST Projects such as DIP [9], SEKT [24], 
Knowledge Web [11] and ASG [5], by consortia including in total more than 50 academic and 
industrial partners.  

At the moment the practical application of SWS technologies is still rather restricted due to several 
reasons, some of which are identified in [25]: 
• The high complexity of both OWL-S and WSMO,  
• The lack of standard domain ontologies and unavailability of mature tools supporting WSMO or 

OWL-S,  
• The absence of pilot applications focusing on every-day needs of consumers, citizens, industry 

etc., which can demonstrate the benefits of using semantics. 
The IST research project INFRAWEBS1, successfully completed in the beginning of 2007, 

proposes a technology-oriented step for overcoming some of the above-mentioned problems. It focused 
on developing a Semantic Service Engineering Framework enabling creation, maintenance and 
execution of WSMO-based SWS, and on supporting semantic Web service applications within their 
life-cycle. Being strongly conformant to the current specification of various elements of WSMO 
(ontologies, goals and semantic Web services), the INFRAWEBS Framework hides the complexity of 
creation of such elements by: 

• Identifying different types of actors (users) of SWS Engineering Technologies; 
• Clarifying different phases of the Semantic Service Engineering process, and 

                                                           
1 http://www.infrawebs.eu 
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• Developing a specialised software toolset, oriented to the identified user types and intended 
for usage in all phases of the SWS Engineering process. 

In the rest of this paper the main features of the INFRAWEBS Framework are presented in more 
details. Section 2 gives a user-oriented overview of the framework, by identifying the types of 
INFRAWEBS users, describing the Framework architecture and discussing the support provided by the 
Framework for its users. Section 3 presents a SOA implementation of the INFRAWEBS Framework. 
Section 4 presents evaluation results of INFRAWEBS based on the two pilot applications. The last 
section is a conclusion. 

2. INFRAWEBS Framework 

Conceptually, the INFRAWEBS Framework is a Service-Oriented Architecture (SOA) comprised of 
coupled and linked INFRAWEBS semantic Web units (SWU). Each unit provides tools and 
components (realized as Web services) for analyzing, designing and maintaining WSMO based 
semantic Web services and SWS applications within the whole life-cycle. A very important aspect, 
concerning the development and operation of any SOA-based application, is to identify the actors and 
their roles in the scope of the application [8]. The following actors have been identified as potential 
users of the INFRAWEBS SWS Engineering Framework: 
• Semantic Web Service Provider – any provider of already existing Web services, who would like 

to convert them to Semantic Web services and to publish them. 
• Semantic Web Service Broker (Aggregator) – a provider, who would like to create and publish a 

service achieving its desired functionality via composition of several existing Semantic Web 
services. 

• Semantic Web Service Application Provider – an organization, that would like to design its own 
application based on Semantic Web Service Technology.  

• Web Service Application Consumer – an “ordinary” end-user of a Web Service Application, who 
transparently uses the INFRAWEBS Framework (while using the Application) for finding and 
executing a Web service or a composition of Web services able to satisfy his/her request (goal). 
The developed categorization of 

INFRAWEBS Framework users 
allowed us to identify more clearly 
the set of different tasks that the 
Framework is able to accomplish, in 
order to satisfy the objectives of 
these users, as well as the set of 
necessary components. The 
INFRAWEBS Framework is develo-
ped to support all stages of the 
semantic Web service life-cycle (see 
Fig.1.):  
• SWS Creation – combines activities related to the creation of semantic descriptions of the Web 

services, as well as creation of necessary ontologies and goals. Created descriptions are then 
persistently stored and can be published for common usage. 

• SWS Composition – already created semantic services can be combined (by their provider, or an 
external aggregator) to provide new, value-added services. Composed services are also represented 
and stored as semantic descriptions and can be further used just like other services. 

• SWS Discovery – enables already described services to be discovered for usage. Discovery is a 
semantically-enabled process of matching user requests (specified as WSMO goals) to service 
functionality (represented as the WSMO service capability). 

• SWS Selection – allows users (be they humans or other services) to choose in a pro-active manner 
which of the discovered services to be executed. Generally, selection can also be done 
automatically, for example by the discovery agent (tool), but INFRAWEBS supports also 
scenarios requiring user selection or domain-specific automated selection provided by 
semantically-enabled applications, and for this reason a dedicated step in the SWS life-cycle is 
necessary. 

• SWS Execution – deals with the actual Web service delivery, when the user provides some input to 
the service and invokes it to obtain expected results. 

 

Fig. 1. INFRAWEBS SWS life-cycle 
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• SWS Monitoring – an important phase when information about executed services is gathered in 
order to be further used for service selection. 
The INFRAWEBS framework clusters these stages into two phases: design time and runtime (Fig. 

2 and Fig. 3). The components involved in the design time phase are the following:  
 

 
Fig. 2. Design Time Architecture of the INFRAWEBS Framework 

 
• SWS-D (Semantic Web Service Designer) - responsible for the creation of WSMO-based semantic 

descriptions of Web services and goals 
• SWS-C (Semantic Web Service Composer) - responsible for the composition of existing WSMO-

based semantic Web services  
• DSWS-R (Distributed Semantic Web Service Repository) - responsible for the persistent storage 

of WSMO-based descriptions and their publication within the Framework. 
• SIR (Semantic Information Router) – responsible for registration and annotation of Web services 

(their WSDL definitions), which are then used in the process of SWS design. 
• OM (Organizational Memory) – responsible for indexing and case-based retrieval of WSMO-

based descriptions of Web services, goals and ontologies. 
The components involved in the Runtime phase are the following:  

• SAM (Service Access Middleware) - used by semantic service applications as a middleware 
supporting the steps of semantic Web service usage, including service discovery, selection and 
execution.  

• SWS-E (Semantic Web Service Executor) - responsible for executing semantic Web services. 
• QoS-Monitor (Quality of Service Monitor) - collecting monitored data and calculating quality of 

service statistics for the semantic Web services being executed.  
• DSWS-R – providing run-time access to semantic descriptions of Web services, goals and 

ontologies.  
• OM - used in the first step of the discovery process to retrieve an initial set of semantic Web 

services matching the current goal, based on ontological keywords similarity. 
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Fig. 3. Run-Rime Time Architecture of the INFRAWEBS Framework 

 
 The INFRAWEBS architecture reflects a novel approach to solving problems, occurring in the 
process of creation of SWS applications, through tight integration of similarity-based and logic-based 
reasoning. The similarity-based reasoning is used to find fast an approximate solution, which is further 
clarified by the logic-based reasoning. The following sections show how the architecture described 
supports different kinds of INFRAWEBS Framework users.  

2.1 Use of the INFRAWEBS Framework by Web Service Providers 

In INFRAWEBS a semantic Web service can be created in two ways – by converting an existing non-
semantic Web service into a semantic one (this process is called “SWS design”) or by composition of 
several existing SWS. The life-cycle of the SWS design process is defined by both the static WSMO-
based structure of the semantic description, and by certain assumptions on what kind of additional 
semantic information is needed, where it is stored and how it can be found. In general, non-semantic 
Web services are implemented and formally described (as WSDL definitions) outside the 
INFRAWEBS Framework and are deployed in some Web service container (supported by the service 
provider). 

 In order to facilitate finding of such Web services, the service provider can annotate them with 
natural language based metadata (for example, according to the Dublin Core2 schema). The addition of 
such metadata does not convert a Web service into a WSMO-based SWS - it simply enables the 
process of finding the annotated service by users or business partners. In the INFRAWEBS Framework 
this service annotation activity is considered as the first, preliminary step of the SWS design process 
and it is seen as a process of registration of Web services into the Framework. The activity is supported 
by a dedicated component – the Semantic Information Router (SIR), which is a metadata-based content 
management and aggregation platform for storing and annotating Web services [21]. SIR provides a 
Web interface for registration, annotation and categorization of WSDL and BPEL files to the 
INFRAWEBS system.  
 The SIR registration interface can be considered as the entry point to the overall INFRAWEBS 
system, since the phase of SWS creation typically starts by finding the appropriate WSDL file. This 
interface has been developed to support the roles of: 
• Service providers (developers) who can register, annotate and register WSDL and BPEL files 
• Administrators who can manage registered services and metadata schemas used to annotate the 

services by the developers. 
• Semantic service engineers (at the SWS provider organization) who query the SIR in order to find 

appropriate WSDL definitions of the services they want to describe semantically. 
SIR stores metadata about the registered WSDL and BPEL files natively in the Resource 

Description Framework (RDF) format. This metadata is exposed for querying via the Simple Protocol 
And RDF Query Language (SPARQL). 

                                                           
2 http://dublincore.org/ 
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The next step of the SWS design process is the creation of its WSML description conforming to 
the WSMO specification. In order to facilitate this very complex activity it is split into several sub-
steps:  
• Finding a desired non-semantic Web service (described by an annotated WSDL file).  
• Finding a set of appropriate ontologies to be used for semantic re-formulation of the main Web 

service functionality in ontological terms. In the INFRAWEBS Framework ontologies are stored in 
the WSMO element repositories (DSWS-R). 

• Creation of semantic description of the service behavior. According to WSMO, that description 
consists of service grounding, specifying the correspondence between data structures in the 
semantic and non-semantic descriptions of a WSMO service, and the service choreography 
describing how it is possible to communicate with the semantic service in order to execute 
properly the non-semantic Web service grounded to it. 

• Semantically describing service functionality, advertising what the service can do. Created 
semantic service capability descriptions are used for service discovery. 

• Publication of service descriptions. In the INFRAWEBS Framework the description of SWS (as 
well as other WSMO-based semantic objects such as ontologies, goals, etc.) are stored in the local 
(belonging to concrete local SWU) repositories (DSWS-R). The DSWS-R component is then 
responsible for propagating the advertisement of published objects within the INFRAWEBS 
Framework, in accordance with the propagation policy specified as part of the advertisement. 

 

 
Fig. 4. Screenshot of the INFRAWEBS Designer showing a graphical model of a service precondition. 

 
All of the above steps (except the last one) are performed by means of a special tool – the 

INFRAWEBS Designer - a graphical, ontology-based, integrated development environment for 
designing WSMO-based SWS and goals (Fig. 4), [1]. The INFRAWEBS Designer is oriented to Web 
service providers, and Web service application providers, and does not require any preliminary 
knowledge of WSML – the logical language used for describing SWS and goals in WSMO [7]. The 
most important characteristics of the Designer are: 
• User-friendliness: it proposes an intuitive graphical way for constricting and editing service and 

goal descriptions, abstracting away as much as possible from the concrete syntax of the logical 
language used for describing them. The WSML description of the semantic object under 
construction is automatically generated from the graphical models created by the user.  
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• Intensive use of ontologies: the process of constructing logical descriptions of semantic objects is 
ontology-driven - in each step of this process the user may select only these elements of the used 
ontologies that are consistent with the already constructed part of the description.  

• Reusability: creation of semantic descriptions is a complex and time-consuming process, which 
can be facilitated by providing the designer with an opportunity to reuse existing, similar 
descriptions, created by the designer herself or by other users. The INFRAWEBS Designer 
provides the user with such an opportunity by applying the case-based reasoning approach. 
The main novelty of the INFRAWEBS approach is in the combination between the Designer and 

Organizational Memory (OM), which plays the role of a case-based memory in the INFRAWEBS 
Framework, [4]. In order to facilitate the process of creating semantic descriptions, the OM can be 
consulted to find similar semantic descriptions that can serve as templates for the WSMO element 
under construction (Fig. 5). OM considers all semantic objects as special text documents – “knowledge 
objects” having specific structure, while each structured part of a document is written in a specific 
language (natural language and/or WSML). The structure of a document depends on the object type , 
and in the case of semantic descriptions consists of the main parts representing the element according 
to the WSMO specification. By means of a special “filtering” procedure (specific for each object type), 
the OM creates its internal “case” representation of each object - {T, P, S}, where T is the object type 
(service, goal, etc.), P is the compressed representation of the object content as a structural object 
feature vector and S is the object identifier (IRI), along with some natural language annotation briefly 
describing the object. In order to provide an efficient filtering process, the OM is equipped with 
different types of dictionaries – knowledge-domain keywords, generic keywords, abbreviations, stop 
words and synonyms. It also maintains a list of keyword recommendations that are automatically 
extracted from each newly filtered object. The OM applies a fuzzy mapping between ontology-based 
dictionaries and natural language dictionaries, which is used when retrieving similar semantic 
descriptions by natural language queries.  

 
Fig. 5. Scheme for using OM for finding similar WSMO objects 

 
 In order to enable the efficient retrieval of the knowledge objects, all their case representations are 
organized in a hierarchical structure – a multi-layer classification tree, whose internal nodes are 
centroids and the leaves are concrete cases. Each centroid is a “typical” representative of a set of 
similar cases, while splitting cases to different sets is done by means of a fuzzy concept matching 
clustering procedure [16]. Each new case is placed into the classification tree, based on its similarity 
with the tree centroids. The resulting similarity quotient is calculated using a set of similarity functions, 
different for each structural part of the case, see [2]. 

In fact, the use of OM as a knowledge base, containing knowledge about available semantic 
(services, goals, ontologies) and non-semantic (WSDL files) descriptions, makes the otherwise tedious 
process of designing a WSMO element (requiring expert knowledge of the WSMO model and the 
WSML language) a task achievable by ordinary Web service developers. 

The main objective for creating a semantic service or other semantic objects (goal, ontology etc.) is 
to allow this object to be discovered and used by other users. This is achieved by publication of an 
advertisement of the description in remote registries, provided by the DSWS-R component. Each 
DSWS-R component provides both functionalities of a registry and a repository, [14]. While the 
Repository component enables storage and management of WSMO descriptions within the scope of the 
organization (particular SWU), the Registry is responsible for their publication, propagation and access 
within the Framework (the network of SWUs). The Registry provides functionality that can be used 
both to specify which SWS descriptions are publicly available for discovery (and for subsequent 
composition or execution) and to exchange them with the other registries in the p2p network.  
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The p2p network is dynamically built by the registries of the SWUs joining the INFRAWEBS 
framework. Each organization that would like to offer its services (ontologies or goals) and use (or 
reuse) services provided by other organizations has to: 
• Describe its own services as SWS and store them in its local Repository (within the DSWS-R). 
• Set up its own registry (part of the DSWS-R) and deploy it on a Web server (as a Web service) 
• Add all the endpoints of registries of its business partners in its local Registry configuration, this 

list of partner registries can be extended at any time. 
• Publish advertisements of (some of) its own services in the local Registry and set a propagation 

policy for each advertisement. Then the Registry will automatically propagate each advertisement, 
according to its propagation policy, to partner Registries. 

When a request to load a particular semantic description (e.g. a SWS) is received by the DSWS-R 
component it checks whether this description is locally stored or it is advertised in the Registry. Then 
the DSWS-R automatically retrieves the description either from the local Repository or through a direct 
request to the corresponding remote Registry.  

The DSWS-R functionality can be used by Semantic Service Providers who would like to advertise 
their services within the INFRAWEBS Framework of partners, so that these descriptions are available 
for usage and also can be reused by other partners when creating similar descriptions.  

2.2 Use of the INFRAWEBS Framework by Web Service Aggregators 

INFRAWEBS enables Web service aggregators to compose, in design-time, already existing SWS 
descriptions in order to provide new, value-added services. Composed services are also described as 
WSMO services, and can then be discovered and used in the same way as atomic services. The 
INFRAWEBS Design-time Composer tool (SWS-C) enables combining different SWS to obtain a new, 
complex semantic service, [6]. It uses adapted workflow methodology for creating WSMO-based 
service compositions, as well as for the determination and visualization of data and control flows 
within the composed service. 

Services to be included in a composition can be selected either directly, by browsing available 
services, or found through similarity search. In the latter case, a plain-text request is constructed and 
the Organizational Memory is queried to provide similar services. The result of composition - a WSML 
description of the service, can be saved locally or persistently stored in the DSWS-R. The graphical 
schema of the workflow diagram is saved separately as an associated XML file. 

Since the WSMO specification of SWS orchestration language is still under development, design-
time compositions of services, in INFRAWEBS, are described as choreographies combining the 
choreography descriptions of participating services. In the future, when the orchestration specification 
is fully developed, the SWS-C can be extended to create orchestration descriptions on the basis of the 
defined workflow model.  

2.3 Use of the INFRAWEBS Framework by Semantic Service Application Providers 

One of the main objectives of the INFRAWEBS Framework is to support organizations that want to 
create semantically-enriched applications based on semantic Web service technology. In the previous 
sections the support of the creation of SWS descriptions, via service design or composition, has been 
explained. The same service creation tools can be used by Semantic Service Application Providers to 
create the basic functionality of their applications, realised by SWS. However, in order to provide its 
functionality as services, the application should be able to use all possibilities provided by the runtime 
INFRAWEBS Environment. At runtime, discovery of a semantic Web service is done via matching a 
specific user goal description against all service capability descriptions, hence, the first task of the 
application provider is to prepare a set of goals presenting the application functionality from the user 
point of view. 

According to the WSMO specification [20], each goal is represented as a set of WSML logical 
expressions and has a structure similar to that of a WSMO service. We consider absolutely unfeasible 
to assume that either the end-user of a semantic service application will be able to write directly such 
expressions, or that it is possible to devise an algorithm able to translate automatically each possible 
natural language query to a corresponding WSML logical expression (goal). That is why, the 
INFRAWEBS conceptual architecture assumes the presence of a (predefined) set of “general” WSMO-
based goals that may be “re-used” or instantiated by the end-users. These general goals (called “goal 
templates”) should be prepared by the SWS Application provider in design time. 
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Even though both user goals and goal templates are syntactically represented as WSML goals, the 
semantic representation of a goal template is slightly different. In order to implement the mechanism 
for run-time instantiation of goal templates, it is necessary to mark in advance which variables 
(parameters) of the template are allowed for instantiation (i.e. could be replaced by some concrete 
values) when formulating a concrete user goal. Such “input” variables are marked in the goal template 
precondition by means of a special concept with a special attribute (“slots”) identifying the variables 
(as can be seen on Fig. 6).  

The assumption that the functionality of a service application can be fully described by a set of 
goal templates, which, on the one hand, express all general requests the user can send to the 
application, and, on the other hand, provide abstractions of all services that can satisfy user goals in this 
application, is still rather demanding, since it requires the goal templates to be prepared in advance for 
all possible user goals. Being not able to further reduce this demand we, however, are able to facilitate 
the service provider in satisfying it. In order to do this, we assume that: 
• Each goal can be represented either by an atomic goal template (describing basic functionality of 

the application) or by combination (composition) of some atomic goal templates, and  
• The INFRAWEBS Framework provides to the application designer necessary and easy-to-use 

tools both for goal template creation and for goal composition.  
In order to support SWS application providers in creating atomic and composite goal templates, we 

have developed a special tool - the Goal Editor, which is part of the INFRAWEBS Designer. An 
atomic goal can be created in a graphical way, similarly to the way semantic services are designed, as 
well as by re-using the descriptions of already existing goals and services. The process of constructing 
the description of a composite goal is implemented as creation of a new goal, whose capability 
definition is built by copying the corresponding axioms from several “sub-goals” of the composite goal 
under construction. Such “copy-paste” way of constructing the composite goal is extended by an 
additional operation marking “the source” from which the original axiom has been taken (see [3] for 
further details). 

 

 
Fig. 6. Screenshot of the INFRAWEBS Designer showing a graphical model of a goal precondition. 

 
The development of two pilot SWS applications (see Section 4) has shown that the integration of 

the INFRAWEBS Designer with facilities for creating WSMO goals has made it a powerful instrument 
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for creating atomic and composite goal templates and significantly simplifies the work of the service 
application providers. 

2.4 Running Semantic Service Applications 

The functionality of a semantic service application is provided by the semantic Web services used by 
that application. In order to run such applications, the following functionality is provided by the 
INFRAWEBS Run-time Environment: 
• Refinement of goal templates: as mentioned in the previous section, semantic service application 

functionality can be expressed as a set of generic goals (called “goal templates”), describing in terms 
of WSMO all general requests a user can pose to the application. From this point of view, each 
particular user request is seen as a concrete instantiation of the appropriate goal template. Thus, 
creation of a concrete user goal is done by refining a goal template through replacement of its free 
variables with user-supplied data.  

• Service discovery: the concrete user goal is used for discovering a set of existing semantic services 
able to satisfy the goal. INFRAWEBS discovery is implemented as a three step process consisting of 
a pre-filtering step, a step for logical matching and result preparation. The aim of the pre-filtering 
step is to narrow the list of candidates by using traditional text-processing (keyword matching) 
algorithms. This step is implemented by sending a request to the OM component to find the most 
similar semantic services (at the level of ontology keywords representation) to the current goal. It is 
obvious that the result of such keyword-based discovery may contain non-matches from logical 
point of view. Nevertheless, the key constraint is to not filter out any good semantic matches in this 
phase, since logically-incorrect matches will be filtered out by the second step of discovery. During 
the second, logical step of discovery, the postconditions and effects of the goal and the services are 
matched to see whether each service can fulfill the request. In addition, the goal preconditions and 
assumptions are matched against service preconditions and assumptions. To compute semantic 
matching the INFRAWEBS discovery engine applies the unification facility of Prolog engines. 
Instead of matching large logical expressions, they are broken into small pieces using Disjunctive 
Normal Form, where the matching of each piece (clause) can be judged individually. The matching 
algorithm starts by unification of clauses and variables in both sets representing goal and service. 
The algorithm iterates over all clauses and labels them as matched, ignored or failed according to the 
specified unification rules (see [11] for details). The result of discovery is a list of matching services, 
ranked according to the available simple metrics: number of matching expressions, number of 
clauses matched in the goal, etc. In order to assist the user in service selection, additional 
information is provided for each service including service metadata (some of service non-functional 
properties) and available quality of service data (availability, etc.). 

• Service selection: service selection is done from the list of matching services. In principle it can be 
done automatically by the application or by the user, on the basis of the annotation information 
attached to each service in the list. In the INFRAWEBS test bed applications selection is done by the 
service application user. 

• Service execution: the main objective for running a SWS application is to execute the selected 
services and present their results to the application user. Generally, service execution is an 
interactive process carried out between the service requestor and the service provider, based on the 
defined SWS choreography. In our case the service requestor role is taken by the application which 
serves as a proxy to the actual user. Thus, the user has no notion of the service choreography, but 
simply provides (if willing to) data needed for the service to fulfill its task. In the INFRAWEBS 
Framework service execution is considered as an iterative process of: service invocation that initiates 
the execution and gets all input data; execution of the selected SWS choreography and providing 
additional input data if such is requested for the service delivery, see [15].  
• Service invocation is done by SAM (Service Access Middleware) based on the identifier of the 

selected SWS and the description of the user goal, which should be satisfied by the service 
execution. The description of the goal is automatically transformed into an “input ontology”, 
which is used by the SWS as a source of input data. With this approach, the semantic application 
needs no knowledge and no special source code for ontology creation, which significantly 
simplifies the process of application development.  

• Semantic service execution is carried out by the SWS-Executor component of the INFRAWEBS 
Framework, [22], which retrieves the service description and feeds its choreography to the 
Choreography engine. WSMO choreographies are represented as Abstract State Machines 
consisting of states and state transitions, [22]. States are defined by the choreography state 
signature, while transitions are defined through rules. Each transition actually changes the current 
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state by means of adding, deleting or updating certain facts (instances) as specified by the 
corresponding rule. During state transitions, the related Web services are executed as defined in 
the specific SWS grounding. The Choreography engine first initiates the state with the data from 
the input ontology, and then enables transitions between states by firing the corresponding 
transition rules. When the current state contains insufficient data and no state transitions can take 
place, the additional user input may be necessary to continue the execution. Necessary input is 
specified in the output ontology returned to SAM by the Executor. Execution ends when the 
Executor sends the final output ontology and does not expect more user input. In case of errors, 
their types are described in the context object returned to SAM, which transfers it to the 
application,  

• When additional input data is needed from the user, SAM sends to the application the current 
output ontology and the type of the variables that have no value. Instances in the output ontology 
are converted into the corresponding object structures that can be processed as plain Java objects. 
In that way, the application can easily find the empty attributes of the missing concept and fill 
them with relevant values. Such an approach demands considerably less code and expertise of 
semantic technologies from the SWS application provider. 

2. 5 Run-time Service Composition 

The INFRAWEBS user request modeling enables definition of “complex goals” which define 
independent user objectives that are interconnected by certain constraints. A typical example of a 
complex goal in the SFS scenario (see Section 4.1) is a request to book a flight for certain dates and 
reserve a room at a hotel in the flight destination city for the same dates. In this example, the 
independent goals are booking a flight and making hotel room reservation, but they are implicitly 
constrained by the same arrival and check-in dates as well as by same flight destination and hotel 
location. Complex goals are also predefined by application providers at design-time and capture any 
possible combination of “simple” goals that can be useful for the application functionality. 

When the application user works with functionality represented as a complex goal (e.g. creates a 
user package for flight reservation from Munich to Madrid on March, 8th and books a hotel in Madrid 
for the same date), the same mechanisms for goal instantiation and discovery are used. In this case the 
discovery can find either atomic or composed services that match the goal instance, but in some cases 
no single service will match the goal. In such cases the INFRAWEBS run-time composition 
mechanism ([3]) is used to dynamically find an appropriate solution. 

The Run-Time Composer performs its work in two phases. In the first phase (Fig. 7) the user goal 
is recursively decomposed into two sub-goals, one of them is atomic and the other one is either atomic 
or composite. A goal is always decomposed back to the original sub-goals that compose it. This is done 
using the “source” information kept as part of the composite goal description, see [3]. Both sub-goals 
are matched to services. If the composite sub-goal does not match any services, then further attempt at 
its decomposition is made. If no matches for an atomic sub-goal are found at some point, the process of 
run-time composition fails. When matching services are found for a sub-goal the application user is 
asked to select one particular service to be included in the ad-hoc composition set. The rest of the 
matching services are also cached as alternatives that can be used for substitution in case of execution 
failure. 

 

 
Fig. 7. Service Composition Finder Logic 

 
The second phase of run-time composition is composition execution, when services of the 

dynamically composed set are iteratively executed, one by one (Fig. 8). Each service execution may 
result in providing the expected outcome (successful execution), in failure or in user input request, as 
described earlier. Composition context (input and output ontologies) accumulates all outcomes 
(instances) generated by successfully executed services.  
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If a service requests additional input, its execution is stopped and different options for getting this 
input are investigated. If any of the other services in the run-time composition can provide that input as 
a result of its execution, the service is put in a waiting list and execution continues with the next service 
in the composition. If no service can provide this input, the user is asked to enter it through the 
application. When all services of the composition have already been executed, the services in the 
waiting list are executed again based on the continuously updated context. The process is iteratively 
repeated until all services in the dynamically composed set are executed successfully or one of them 
fails. If any of the composed service executions fails, service replacements are presented to the user in 
order to continue the execution with an alternative service. 

 

 
Fig. 8. Composition Execution Engine Logic 

3. Integrated INFRAWEBS Framework 

The INFRAWEBS Framework is implemented as an extensible Enterprise Service Bus (ESB) 
middleware that exposes the public methods of the INFRAWEBS components and can be easily 
extended by external components or services, [12]. The Integrated INFRAWEBS Framework (IIF) can 
be seen as an underlying infrastructure for communication and integration of all the INFRAWEBS 
components, and as a unique selling point for exposing the functionality of such components to the 
external world in the form of services. The IIF is deployed in a peer-to-peer network (Fig.9), with 
possible integration of components with different technologies within the peer. The IIF allows access to 
the methods of the components via Java APIs or Web service wrappers, so any application able to use 
these technologies can interoperate with INFRAWEBS components. IIF provides native support for 
Java-based components and partial support for non-Java based components, using WS technology.  

Every peer can be deployed containing all or part of the set of INFRAWEBS stack of components. 
The IIF hides from the INFRAWEBS users the complexity of dealing with this p2p architecture.  

The IIF provides an IIF Connector instantiated by Java-based components to allow them to 
exchange messages and an IIF Server routing those messages to the appropriate recipient. The IIF 
Server exposes a complete Web service implementation, which collects the full set of operations 
supported by the components plugged within the IIF. The service can be used by non-Java components 
to send messages to other components plugged within the IIF infrastructure or to external applications. 
IIF provides two ways of communication:  
• Specific - by instantiating a concrete IIF delegate for a particular component's interface to which a 

message should be sent. The delegate “knows” the requested component and details on how to 
build and send the message. 

• Generic - IIF provides methods to generically invoke a remote method. In this case the user just 
has to know the name of the component method and its parameters.  

For both ways of communication IIF supports different kinds of message exchange patterns such as 
one way, in/out synchronous, in/out asynchronous, publication-subscription and broadcasting (see [12] 
for details)..  

The INFRAWEBS IIF Connector is a Java client-side API that can be used for sending and 
receiving all types of messages in both specific and general ways of communication. For non-java 
components or applications, the Web service interface of the IIF shall be used instead.  
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The IIF is able to manage automatically the execution and shutdown of its components, as well as 
to check if the components are alive or not. Since the IIF consists of a set of different components and 
tools for creation, maintenance and execution of WSMO-based SWS, it can be considered as a 
Semantic SOA. The use of the underlying ESB middleware provides the IIF with the necessary 
extensibility to be a Semantic ESB. 
 

 
Fig. 9. IIF peer-to-peer architecture 

4. INFRAWEBS Framework Evaluation 

The INFRAWEBS Framework has been evaluated in two test beds – the first is used in a travel agency 
scenario [13] and the second is based on an eGovernment scenario [19]. 

4.1 Test bed 1 - Stream Flows! System  

STREAM Flows! System (SFS) is a first prototype application of the IIF, which aims at overcoming 
such shortcomings of existing Frequent Flyers Programs as impossibility of their users to contract 
services, or combination of services, using asynchronous, real-time, anywhere and anytime system. The 
owner of the SFS is STREAM Airlines. Users can obtain points or miles from purchasing services of 
the STREAM group. These services can be airline tickets, hotel bookings, car rentals and many others. 
The customer purchases services (paying for them in any kind of money transfer) from many 
companies (engaged with the SFS program), which collect the information of the customer and send it 
to the SFS, adding the counterpart of the service in points to the SFS loyalty programme. The SFS 
semantic Web application collects all the information and stores it into its own databases.  

The SFS uses the framework supplied by INFRAWEBS both for design and for runtime activities. 
First of all the Service Providers have access to the Designer (SWS-D) and the Composer (SWS-C), in 
order to define the SWS descriptions and compositions that are needed. In general, SWS descriptions 
can be provided by other parties, and be stored and advertised in different repositories of the 
INFRAWEBS p2p network.  

The main functionality of the SFS allows the user to create or select travel packages. The user is 
able to create new packages using the framework provided by INFRAWEBS. The choice of a complex 
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package triggers the selection of an appropriate composite goal template allowing dynamic 
composition of services (e.g. flight + hotel + car rental) during execution. SFS semantic application 
was described by 12 ontologies, 11 semantic Web services and 16 goal templates. 

The test bed has shown several benefits of using applications based on SWS:  
• Run-time composition of services: the use of composite goal templates enables easy creation of 

basic compositions of services in runtime. 
• Selection of best offers based on SWS discovery: the use of semantics allows for finding the most 

appropriate services matching the user’s needs expressed as a goal. 
• Service providers have fewer difficulties adding new services: each new service that can be 

potentially used by the application should simply be described as a SWS and incorporated to the 
repositories, thus minimizing the integration process.  

• Ideally no modifications to the code are required: the user input data forms can be created 
dynamically based on goal template slots (inputs), minimizing the impact on the maintenance of the 
application. 

• As a J2EE application SFS system has been easily integrated with all INFRAWEBS components by 
using the Java API and the connectors provided by the IIF. 

4.2 Test bed 2 – Opening New Business 

The second test bed implements an e-Government scenario related to the process of opening a new 
commercial activity (for example, adding a new shop to an already existing shop chain). Usually, a new 
shop opening is bound to current local laws and regulations that may be changed in time. That is why, 
the user should first be familiar with the list of needed documents and certificates required to open the 
new activity. Then the user has to ask for each document the office or agency authorized to release 
such a certificate. The process is time consuming, as users need to travel to each appointed agency to 
post the request, sometimes return back to get the certificate if not shipped to them. The user must also 
know the proper relations or dependencies among released service certificates.  

The proposed SWS application allows any user to take advantage of new technology for 
accomplishing all needed activities from her personal computer. It enables huge saving of time, error 
free processes, and much faster responses. The test bed was presented by 9 ontologies, 4 semantic Web 
services and 4 goal templates. 

The test bed offers interesting aspects that complements the results of the SFS test bed:  
• The application is well ahead with current services offered to customers. 
• The application is a .NET (C#) application that uses the IIF Web service implementation. This has 

proved the possibility of integration of multiples technologies provided by the SOA approach 
followed by the IIF. 

• Although it is a simple demonstrator aimed at taking advantage mostly from the semantic content, 
the application could be used by government agencies to show the main advantages they could offer 
to their citizens and how to dramatically decrease the internal costs due to automatic interaction and 
less personnel required. 

4.3 Framework Evaluation Results 

INFRAWEBS Framework has been evaluated in two dimensions ([18]): 
• Environment dimension: measuring the degree of satisfaction and fulfillment of the Framework 

objectives with regards to both test bed results, based on the opinion of the different IIF users – SWS 
providers, SWS test-bed application providers and application end-users.  

• System dimension: this evaluation takes into account the development of the overall service provision 
chain (annotation, design, composition, execution, monitoring), focusing on the primary (innovation–
related) questions that have been identified. The system dimension does not depend on a particular 
demonstrator, because it is more related to the Framework capabilities and features. 
The evaluation has shown that INFRAWEBS offers a framework covering the whole SWS life-cycle 

- from design and static composition - to discovery, run-time composition, execution and monitoring. It 
gives the possibility of creating a new set of semantic-enabled applications that was not possible to 
develop before in such a consistent way with pre-existing platforms or frameworks.  

Moreover, INFRAWEBS is fully based on the current state of WSMO and provides advanced tools 
for the whole WSMO community. The INFRAWEBS design-time components offer graphical user 
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interface for designing and publishing the semantic descriptions of WSMO-based Web services and 
goals in an easier way than before. They allow the user to create such semantic objects without any 
knowledge of WSML language used for their descriptions. 

All INFRAWEBS components make use of the INFRAWEBS Integration Framework (IIF) to 
communicate with each other. Such Framework allows the integration of components of different 
technologies, and by using Web service interface can be used as an open framework. The use of both a 
Java-based API and Web service interfaces for the IIF methods allows the application providers to 
access INFRAWEBS features independently of the technology they use. Moreover, a unified API, 
provided by the SAM component, allows application providers to interact with the run-time 
INFRAWEBS Environment without writing or reading any WSML expressions, significantly 
facilitating the process of creating semantically-enabled applications.  

Along with the clear benefits of INFRAWEBS, the evaluation process has allowed to identify 
some underlying assumptions that should be known for better understanding the applicability of the 
INFRAWEBS Framework and trends for its future development. The most important of them are: 
• All INFRAWEBS components have been developed in strict conformance with the current WSMO 

specification. Since the WSMO itself is in the process of active development, it can lead to 
necessity for adjusting the future version of the INFRAWEBS Framework. 

• The current version of the INFRAWEBS Framework does not support ontology mediation. All 
ontologies used are assumed to be known by all service and service application providers. The 
ontologies are shared using the DSWS-R functionality. 

• User requests to a SWS application are expressed as WSMO goals, which are automatically 
constructed based on the predefined goal templates created in advance by the application 
developers. This restricts a set of possible goals that potentially can be formulated by the user, but 
allows the users with no knowledge of WSMO to use INFRAWEBS applications. 

• The INFRAWEBS run-time composition is only possible for goals created from goal templates 
preliminary designed by the INFRAWEBS Goal Editor. That is why, in order to be decomposable, 
a WSMO goal created by any other tool should be rewritten by means of the Goal Editor. 

• Since INFRAWEBS deals with WSMO-based semantic services, the execution of such services 
requires the presence of so called “adapters”, which ground ontological concepts used in the 
semantic descriptions to the XML Schema data types used in the WSDL descriptions of the Web 
services. Automatic creation of such adapters is an ongoing research in WSMO, and that is why, 
the current version of the INFRAWEBS Framework does not include tools for adapter design.  

• Because of lack of clear specification of WSMO-based service orchestration, the current version of 
INFRAWEBS Composer offers a limited support for orchestration - only on the functional level.  

• The INFRAWEBS choreography engine does not clearly guide the user during the execution 
process. A better engine would be a desirable future enhancement. 

5. Conclusion and Future Trends  

In this paper we have presented the main results of the IST FP6 INFRAWEBS project. The project has 
developed an easy and effective way of constructing and using semantic descriptions for existing and 
new Web services. The advantage of semantic Web services is that they can be understood better by 
other programs and human beings, since not only syntactic information is available, but also the 
meaning (semantics). The presence of such semantic information allows for better possibilities for 
searching and finding useful services. 

The project has adopted the WSMO and WSML standards and imposed no additional 
requirements to them. Therefore, the advanced software components developed during the project are 
of interest to the whole WSMO community. Most of the developed components are available as open 
source software under LGPL license. 

One of the novel aspects in the approach of INFRAWEBS is the combination between the 
Organizational Memory (OM) and the Semantic Web Service Designer. This tool allows a user to 
compose a WSMO-based semantic description of a given Web service based on existing WSDL 
description of this service and a set of WSML ontologies. To ease this process the OM can be 
consulted to find look-alike semantic Web services that can serve as templates for the WSMO object 
under construction. In fact, the use of the OM as a knowledge base holding knowledge about available 
semantic Web services makes the otherwise tedious process of composing a WSMO object (requiring 
expert knowledge of the WSMO model and WSML language) a task doable for the ordinary web 
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service developers. Easing the hurdle of WSMO object construction is an achievement of the project 
that has a potential impact on the adoption of semantic Web services on a larger scale. 

INFRAWEBS offers a SOA framework (IIF) based on an ESB middleware which is easy to use by 
different users (application providers, designers of SWS, etc.) and allows the integration of components 
of different technologies. 

All of the above mentioned analysis allows us to conclude that INFRAWEBS is one of the first 
frameworks for semantic Web service engineering that covers the whole SWS life-cycle and allows 
creation of complex semantically-enabled applications. 
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Abstract. The Hierarchical Task Network (HTN) planning method is
conceived of as a useful method for web service composition as well as
being for task planning. However, no complete success of service compo-
sition by HTN is achieved as yet. The reason is the Web service com-
position process involves interactive dataflow between variables in pre-
condition and input/output parameters of services. While such dataflow
requires to evaluate variables in order to compose services, the perfor-
mance of services is undesirable, because world-altering Web services
cause to alter the world in composition processes. In this paper, instead
of the HTN task planning method, we address more radical approach
of HTN method for web service composition and decomposition on the
premise of the openness and uncertainty of WWW. We capture compos-
ite services, which contain abstract concepts with respect to the variables
of Web services, as abstract programs to be tailored to individual users
and to be instantiated to executable programs in which every variable
can ground in execution. In this view, the web service composition pro-
cess can be conceived of as a sort of automated programming process,
and HTN is deemed as a structural workflow or a prototype of actual
programs. We formalize web service composition/decomposition by HTN
method using the idea of satisfiability of situation calculus, and address
the algorithm for Web service (de)composition that does not require to
perform services.

1 Introduction

The Hierarchical Task Network (HTN) planning method is conceived of as a
useful method for web service composition, and several works on the web service
composition have been attempted with HTN [6]. However, there are a few but
serious discrepancies between task planning and service composition. First, a web
service involves inputs and outputs in addition to precondition and effects, and
the interaction between I/O parameters and precondition/effects may happen.
Second, the constraint in web service composition is not partial orders of tasks
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but control constructs in which there are dataflows and control flows between
subtasks. Therefore, the semantics of web service composition are much more
complex and analogous to programming rather than planning. The realization
of the service composition ought to differ from that of task planning.

Sirin, et al. [10] achieved the web service composition using the HTN task
planning method. They invented the translator from the OWL-S service de-
scription to the SHOP2 [6] task planning domain. To enable the translation
from the web service composition domain to the HTN task planning domain,
they assumed that an atomic Web service is either a strict information pro-
viding Web service, which does not have the effects, or a world altering Web
service, which does not have outputs, but they did not maintain world-altering
and information-providing services.

This assumption is ascribed to the fact that they used SHOP2, which was
originally developed for classical task planning problems, and they did not re-
formalize HTN method for Web services. A precondition of method/operator in
HTN is evaluated to test whether the precondition hold on the state. In case
that a variable in a precondition is unified to some output parameter of a Web
service in planning, we need the value of the output. They argued that we do
not want to actually alter the world during planning, and do want to gather
information from information-providing Web Services.

Besides the complexity in the service composition, Semantic Webs stand on
the assumption that the world is open and dynamic. Therefore, we must consider
the uncertainty of the world in service composition and execution processes.
More precisely, we cannot expect service precondition that hold in a composition
process also hold in a execution process. As a result, we cannot help but abandon
the soundness and completeness of planning when we consider both composition
process and execution process in the dynamic world. In fact, the authors embrace
the problem how to deal with the progression of situation in our decision-making
support application [5], in which light anomalies of the rocket launch operation
process in planning time may change to heavy anomalies in execution time and
one control mode may progress to the successive control mode.

The authors claim that the uncertainty of WWW must be coped with by
Web service agents situated in circumstances, that is known as situated planning
agent [9], which monitors the plan execution, detects failures of the performance,
replans the plan, and adapts the behavior to changeable situations. The behavior
under the uncertainty is the common observation among animals and intelligent
human beings in the real world, and we argue it is the same on even Web service
agents in use.

Under the premise of the situated planning agent in the future, in this pa-
per, we formalize the web service composition and decomposition with expanding
the HTN formalization using the terminologies in automated planning in state
space [2] and situation calculus [8]. In Section 2, we review the formalization of
task planning by HTN [2]. Then, we expand it for Web service composition. We
discuss the concept of applicability, satisfiability, executability for Web services
from the viewpoint of situation calculus, and address an algorithm for service
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composition/decomposition. In Section 3, we describe the implementation of the
service (de)composition algorithm, which is straightforwardly embodied of the
algorithm using nondeterministic search technique with computational continu-
ation. The algorithm is incomplete because of the open world assumption but
do not compel us to perform services in Web composition process. In Section 4,
we discuss the related work, and we make some concluding remarks.

2 Formalisation of HTN for Web Services

2.1 Hierarchical Task Network Planning

In this subsection, we review the classical task planning by HTN according to
the description in [2]. The expansion of HTN to web service composition and
decomposition is described after the next subsection.

Let L be a first-order language for planning, in which there are predicate
symbols, constant symbols, and variable symbols. If an atomic formula, which
does not contain logic connectives, does not contain any variable symbol, it is
called ground atom, otherwise unground atom.

A state s is a set of ground literals, i.e., ground atoms or negations of ground
atoms. S denotes a set of states. An atom p holds in s iff p ∈ s.

Definition 1. A planning operator in task planning is a triple such that

o = ⟨name(o), precond(o), effects(o)⟩.

– name(o) is a name of operator, which has a syntactic expression of the form
n(x1, ..., xk) where n is a unique symbol called operator symbol, and x1, ..., xk

are all of variable symbols that appear anywhere in o.
– precond(o) is the precondition of o, and effects(o) is the effects of o. Both

are a set of literals.

Definition 2. An HTN method in task planning is a 4-tuple, that is,

m = ⟨name(m), task(m), subtasks(m), constr(m)⟩.

Where name(m) is an expression of the form n(x1, ..., xn), n is a unique symbol
for the method, and x1, ..., xn are all of variables that occur anywhere in m. A
set of pair ⟨subtasks(m), constr(m)⟩ makes a task network for m.

If an instance of operator contains ground atoms and does not contain un-
ground atoms, it is called ground, otherwise unground. A ground operator that
includes ground atoms in s is called action for s.

A task is an expression of the form t(r1, ..., rk) like the name of operator and
method, but a name symbol t of task differs from a method name symbol n,
and a task has fewer parameters than the name of the corresponding method.
t is called task symbol, and r1, ..., rk are terms. Every operator symbol is a task
symbol, and every operator can be a task. When a task symbol t is an operator
symbol and its terms can be unified to variables of the operator, the task is called
primitive, otherwise it is nonprimitive. A task such as task(m) on a method m
is nonprimitive, but a subtask may be an operator.
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Definition 3. A task network in task planning is a pair

w = ⟨U,C⟩.

Where U is a set of all task nodes in the network and C is a set of constraint such
as partial task ordering and preconditions for tasks. Note that w contains only
problematic front part of whole network in partial order HTN, and it evolves
along with the progression of the state and the plan.

Each task node u ∈ U contains a task tu. If all of tasks in U {tu | u ∈ U}
are ground, then w is called ground, otherwise w is unground. If all of tasks
{tu | u ∈ U} are primitive, then w is called primitive, otherwise nonprimitive.

2.2 Web Service Network by HTN

In this subsection and hereafter, we formalize Web service network by extending
HTN task planning described above.

We expand the definition of state so that it includes not only atoms from
precondition and effects but also inputs and outputs of Web service. Outputs
of Web service are added as atomic formula into the state as well as positive
effects. Note that inputs of Web services are taken from atoms in the state
and/or outputs of predecessor services. The data stream from an input to an
output via services is called dataflow, and we call a data stream that streams in
and out via services IO fluent.

Definition 4. An atomic service is an expansion of the operator, and defined
as a 5-tuple such that

as = ⟨name(as), inputs(as), outputs(as), precond(as), effects(as)⟩.

– name(as) is a name of service. It has a same syntactic expression of the form
n(x1, ..., xk) as operator name name(o), but variable symbol xi may appear
not only precond(as) and effects(as) but also inputs(as) and outputs(as).

– inputs(as) denotes inputs to the Web service as, and outputs(as) denotes
outputs returned by the Web service. precond(as) represents preserving
or causal condition of as for the web service execution. effects(as) is the
side effects or causal effects onto the state s by the web service execution.
inputs(as) and outputs(as) is a sequence of variables respectively, while
precond(as) and effects(as) is a set of literals.

Definition 5. A composite service is an expansion of the method, and defined
as a 7-tuple, that is,

cs = ⟨name(cs), task(cs), inputs(cs), outputs(cs), subtasks(cs),
precond(cs), controlConstruct(cs)⟩.

Where the definition of name(cs), inputs(cs), outputs(cs), and precond(cs) are
same as the definition of that in atomic service, task(cs) is similar to that of
HTN, but the notation of subtasks(cs) and controlConstruct(cs) firstly appear
here in a composite service.
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A task in Web services is defined as same way in HTN task planning. If
the task symbol t is a name symbol of name(as) of atomic service as and its
terms r1, ..., rn is unifiable to variables of the atomic service, the task is called
primitive.

A task network in Web service is a pair of a set of subtasks(cs), and a set of
controlConstruct(cs).

Definition 6. A task network in web service composition and decomposition is
expressed as

w = ⟨U,CC⟩.
Where U is a set of all task nodes in the network, and CC is a set of all control
construct included in the network. Note that the constraint of CC includes con-
trol flows, dataflows, and preconditions of task-corresponding composite services
and atomic services. The task flows (abstract control flows) and dataflows are
contained in controlConstruct(cs). A composite service can contain only one
control construct in definition, but a control construct can contain subtasks and
sub control constructs in the specific form of various kind of control constructs,
specifically, sequence, ifThenElse, loopWhile, etc.

We can consider various controlConstructs, but in this paper we define only
three as follows.

Definition 7. A sequence is a tuple of any number of subtasks.
seq = ⟨elt1(seq), elt2(seq), ..., eltk(seq)⟩

Where elti(seq), i ≤ k is a subtask in the cs. In the execution of sequence,
elti(seq) is performed in the order of the sequence.

In HTN task planning, constraint constr(m) represents partial orders of sub-
tasks. Therefore, a predecessor and the successor of tasks can be interleaved with
another task. However, no service can part the task sequence in sequential per-
formance of Web services.

Definition 8. An ifThenElse is a 3-tuple as follows.
ite = ⟨if(ite), then(ite), else(ite)⟩

Where if(ite) is a condition that does not cause any side effect in evaluation,
and then(ite) is a subtask or a control construct that is performed when if(ite)
holds in the state. Optional else(ite) is a subtask or a control construct that is
performed when if(ite) does not hold.

Note that then(ite) is performed if and only if the condition of if(ite) holds
in the state, but else(ite) is performed in case that not only the negation of
condition if(ite) holds but also it is unknown with the premise of the open
world assumption of Web Semantics.

Definition 9. loopWhile is a 2-tuple such as
lw = ⟨while(lw), seq(lw)⟩

Where while(lw) is a condition during which holds seq(lw) is performed repeat-
edly. seq(lw) is a sequence. Note that performance of sequence is terminated
even if while(ls) becomes unknown in the execution process.
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2.3 Web Service Composition and Decomposition by HTN

On one hand, the objective of task planning is to obtain totally ordered sequences
of actions that achieve a goal, where a goal g in task planning is a set of ground
literals produced from effects. On the other hand, the objective of web service
composition and decomposition is to obtain a set of executable task flows or
a program that is an instantiated network of web service performance in the
environment, where input and output parameters are variables to be unified to
constants in state, and a goal g may include output variables.

We have two categories of goals in essence in web service composition, i.e.,
the alteration of world by Web service performance and the information retrieval
by performance of Web services. The former is the same as task planning but
the latter differs from task planning in given goals. We give ground literals in
atomic formula (say using individuals in OWL, like on(A B) for Block A and
Block B) as goals in task planning, but we do not designate values of service
outputs as goals in web service composition. The values of output variables
are the very thing we want to know in the information providing services. We
are able to only designate types of variables (note that a variable is also an
instance of an OWL class but unifiable to the range of instances of a class) as
goal (say ?roomtype, a room type of hotel available). Web service decomposers
must generate instantiated task flow that includes atomic services that achieve
world-altering goals and information-retrieval goals. Moreover, the coupling of
world-altering service performance and information-retrieval service performance
may happen through variables.

In this subsection, we discuss the (de)composability of services from the
standpoint of satisfiability in situation calculus [8].

Satisfiability of Web Service: In HTN task planning, an operator is an
abstraction that stands for all instance operators named by an operator symbol.
In an instance of operator o, a variable symbol in name(o), precond(o), and
effects(o) is substituted with a corresponding constant symbol. In Web service
(de)composition, an atomic service can be instantiated through the substitution
of all variables except IO parameters in the precondition, effects, inputs, and
outputs with ground literals in the state space. In addition, IO parameters in a
service must satisfy the state in the execution of the instantiated service.

To discuss the interpretation of assertions in Web service (de)composition,
we consider an state transition machine. Let Σ be the state transition machine
for task planning [2]. We consider a mapping from a state s in assertions of the
planning problem P to a state in Σ. For a state s described in planning language
L, the corresponding state in Σ is denoted by sI , and I is called interpretation.
In case that there is a mapping from si−1 to sIi−1 and si to sIi , if an instance
operator o in P that links from si−1 to si has a mapping to oI that links from
sIi−1 to sIi , it is called satisfiable with respect to the operator o.

We expand this interpretation for task planning to Web service (de)composition.
In case that there is a mapping from si−1 to sIi−1 and si to sIi，and from an
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atomic web service as in P that links from si−1 to si to asI that links from sIi−1

to sIi , we call it satisfiable with respect to the atomic web service as.
For an atomic service as, iff the precondition precond(as) is satisfiable in s,

namely a interpretation of condition of precond(as) holds in an interpretation
sIi , and inputs inputs(as) is satisfiable in s, namely we can find the unification
for each variable of inputs onto s and s has a mapping sIi , where the unification
is identical to that for the instantiation of precond(as), then the atomic service
as is satisfiable with the respect to s.

s |= as ⇔ (s |= precond(as) ∧ s |= inputs(as))

On the other hand, a composite service cs is satisfiable, iff precond(cs),
inputs(cs), and controlConstruct(cs) is satisfiable.

s |= cs ⇔ (s |= precond(cs) ∧ s |= inputs(cs) ∧ s |= controlConstruct(cs))

When the precondition and inputs of a service are satisfiable, let us call
the service applicable. An applicable atomic service is always satisfiable but an
applicable composite services are not necessarily satisfiable. In other words, an
applicable atomic service has a model on s but an applicable composite service
may have no model on s.

In order to know the satisfiability of a composite service, we need to know
the satisfiability of controlConstruct and task.

Satisfiability of Task: In case that a task t(r1, ..., rn) is primitive, the task
t(r1, ..., rn) is applicable and satisfiable, iff the corresponding atomic service as
which may be partially instantiated is satisfiable.

s |= t ⇔ (name(as) ≡ n(x1, ..., xn) = σ(t(r1, ..., rn), θ)) ∧ (s |= σ(as, θ))

Where σ(t(r1, ..., rn), θ) expresses the substitution of t(r1, ..., rn) by unifier θ for
s. Note that θ contains the accumulation of the past unification in (de)composition
process.

In the case that a task is nonprimitive and the corresponding service is com-
posite, then the task t(r1, ..., rn) is satisfiable, iff cs is satisfiable.

s |= t ⇔ (name(cs) ≡ n(x1, ..., xk) ≃ σ(t(r1, ..., rn), θ)) ∧ (s |= σ(cs, θ))

Where k ≥ n and ≃ expresses the equality of name n = σ(t) and xi = σ(rj)
when k = n but some of parameters xi may not be unified to rj when k > n.

Progression in Web Service Composition Let consider a progress by task t
for state si−1. It seems to be the same as the expression on action si = do(a, si−1)
by Reiter [8] whereas a is an action that contain only preconditions and effects.
The application of task t under the state si−1 yields the state si. However,
we cannot really execute the task in service (de)composition processes, if the
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task is a world-altering task. Then, we cannot know values of IO parameters.
Instead, we make a progression by the unification that change abstract types of
variables to more special types. The progression in web service (de)composition
by unification is expressed as below.

si = γ(si−1, t)

Satisfiability of sequence Control Construct: Let be seq a sequence,
and let s0 the initial state for sequence seq. Let us express the performance
of elti(seq) by inputs in1

i−1, ..., in
k
i−1 as elti(seq)(in1

i−1, ..., in
k
i−1). If elt1(seq) is

satisfiable for s0 and inputs in1
0, ..., in

k
0 , then we can make a progress for s0 and

obtain s1 for elt1(seq) by making a progress of unification.

s1 = γ(s0, elt1(seq)(in1
0, ..., in

k
0))

Then, if elt2(seq) is satisfiable for s1 and inputs in1
1, ..., in

l
1, we can obtain the

next state s2, and so forth. Please note that here we omit the substitution of each
element by the unifier that accumulates unifications according to the progress.
Namely, elt2(seq) is σ(elt2(seq), θ) exactly.

s2 = γ(s1, elt2(seq)(in1
1, ..., in

l
1))

We cannot say that if all tasks elti(seq)(in1
i−1, ..., in

k
i−1) in sequence are inde-

pendently satisfiable for each states then the sequence is satisfiable, because the
satisfiability of the control construct also depends on the dataflow. We represent
this constraint of dataflow in control construct dataflow(seq). If the dataflow
constraint is held correctly in the progress of control constructs, we call the
control constructs has a model. Thus,

s0 |= seq ⇔ s0 |= dataflow(seq)
∧

i=1,...,k

si−1 |= elti(seq)

Note that each task elti(seq) may be composite and its satisfiability is de-
cided with the satisfiability of the corresponding composite service. Obviously,
this definition for the control construct and the composite service is recursive
but the computation of satisfiability terminates, because the composite service
is decomposed down to atomic services in an acyclic task network and the sat-
isfiability computation for every atomic service terminates.

Satisfiability of ifThenElse Control Construct: Let be ite an instance
of ifThenElse, and si−1 is the state for ite. Then, we have three possibilities
on the satisfiability of ite with respect to the condition.

– For positive condition, we have

s |= ite ⇐ (s |= if(ite) ∧ s |= then(ite)).

– For negative condition, we have
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s |= ite ⇐ (s |= ¬ if(ite) ∧ s |= else(ite)).

– For unknown condition, we have

s ̸|= ite ⇐ (s ̸|= if(ite) ∧ s ̸|= ¬ if(ite)).

If if(ite) holds and then(ite) is satisfiable for s, then the ite is satisfiable. If
the negation of if(ite) holds and else(ite) is satisfiable, then ite is satisfiable.
However, when the condition of if(ite) is unknown, we cannot deduce whether
ite is satisfiable. In the execution process, the value of if(ite) is usually known
as a result of the service execution and the progression of state, but it may be
unknown in composition processes without the service execution. Therefore, the
decomposer may not proceed the reasoning at this branch possibility of control.
In such a case, an agent may select one of two strategies, i.e., speculative strategy
or assurance strategy. In the speculative strategy, the agent aggressively takes one
of the possibilities of branches, and the soundness of the instantiated program is
not guaranteed. If the executer fails the execution of the generated program, the
agent repairs the failure and replans at the point. In the assurance strategy, the
agent defensively carries the incomplete programs to the execution phase and
executes it up to the undecomposed point. The agent restarts to plan when the
value of the if(ite) is known. Thus, the functionality of incremental planning
and replanning is requisite for the agent in the open world.

Satisfiability of loopWhile Control Construct: Let be s0 an initial state
for an instance of loopWhile, lw. When a while-condition while(lw) of lw does
not hold by the negation of while(lw), lw is satisfiable and the state s0 does not
evolve. If while condition while(lw) holds for s0, then lw is satisfiable iff seq(lw)
is satisfiable. However, when it is unknown whether while(lw) hold, we treat it
in the same way as ifThenElse.

As a result of one round of iteration for sequence seq(lw), the state evolves
and this process is repeated again while while(lw) is satisfiable for the evolving
state in the loop.

s |= lw ⇐ s |= ¬ while(lw)
s |= lw ⇐ s |= while(lw) ∧ seq(lw)
s ̸|= lw ⇐ s ̸|= while(lw) ∧ ̸|= ¬while(lw)

Note that the states may evolve on the satisfiability check for even the same
procedure, because types of variables evolve more precisely step by step using
the typed unification, which is described later. In the worst case, the evolution
stops even if while(lw) holds, thus the decomposer must detect no progression
in the iteration and exit from the loop.

2.4 Algorithm of Web Service Composition and Decomposition

We cannot decompose the control construct of composite services into subtasks
as HTN task planning does. Instead, we collect all of variable bindings that make
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a control construct in hand satisfiable, and search all possibilities of progression
by substituting all variables in service parameters. Here note that input and
output parameters are typed in DL or OWL, and variables in precondition and
effects also typed. Therefore we need typed unification to compute satisfiability.
The typed unification algorithm is described in the next section.

Let us call an instance of atomic service ground, if it contains ground atoms
except unground variables that are input and output variables in some atomic
services. In HTN method for task planning, a ground instance of operator that is
applicable to s is an active candidate for the plan solution. There is no unground
variable in ground operators. In HTN method for service (de)composition, we
have input and output variables in ground atomic services. Therefore, the active
candidate for the plan solution must be a pair of ground atomic service and its
unifier that instantiated the atomic service.

Suppose that a task node u in U , u ∈ U , is in the network w. Here task(as) =
tu or task(cs) = tu. When w = ⟨U,CC⟩ is primitive, if U is grounded and CC
is satisfiable for s, then w is a solution for s such that the executer can execute
CC for s. Then as instantiates u so as to produce the instantiated task network
w′ from w. If w = ⟨U,CC⟩ is nonprimitive, then w is a solution for s if we can
find a satisfiable unification that satisfies CC and a primitive task network w′ is
obtained as a result of decomposition of cs. In other words, the problem solving
of service composition is to find the path of evolution of partial network w by
decomposition for the subtasks of cs in the unification.

The algorithm of HTN web service composition and decomposition is de-
scribed as follows. Where s is a state in a situation, w is a part of whole task
network that is to be instantiated. w′ is a part of task network that is instanti-
ated. The initial input of w is a network that includes only a top task, and w′

is null set. AS is a set of atomic services, and CS is a set of composite services.
D is a domain knowledge of the target field.

procedure SWHTN(s, w′, w,AS,CS,D)
if w = Ø then return w′

nondeterministically choose any u ∈ U that has no predecessors in w
if tu is primitive then

active ← {⟨σ(as), θ⟩ | as = discover(tu, w,AS,D) and as is satisfiable in s
θ is a unifier with satisfiable bindings of as
σ(as) is a substitution of as with θ}

if active = Ø then return fail()
nondeterministically choose any ⟨σ(as), θ⟩ ∈ active
SWHTN(γ(s, as), w′ + {σ(u)}, σ(w − {u}), AS,CS,D) ; { } means a network.

else ; ; tu is nonprimitive.
active ← {⟨σ(cs), θ⟩ | cs = discover(tu, w, CS,D) and cs is satisfiable in s

θ is a unifier with satisfiable bindings of cs
σ(cs) is a substitution of cs with θ}

if active = Ø then return fail()
nondeterministically choose any ⟨σ(cs), θ⟩ ∈ active
return SWHTN(σ(s), σ(w′ + {u}), σ(w − {u} + sub{u}), AS,CS,D)
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γ(s, as) is a progression by an atomic service as. For a nonprimitive service,
this algorithm decompose it into subtask nodes and evolves the state by the
satisfiable unifier. For a primitive service, this algorithm makes a progression of
state and accumulates the instantiated network. This algorithm contains the loop
of SWHTN() via the tail recursive call. fail() causes automatic backtracking to
the point of the last choice of nondeterministic selection. The algorithm is very
similar to HTN of task planning [2] and SHOP2 [6], because we already have
a convenient terminology satisfiable. We used it instead of the terminology of
ground action in HTN task planning for collecting active atomic service. The
satisfiability checking, which deeply searches down to atomic services from a
composite service, returns several unifier that satisfy the node to the state s.

In the worse case, we cannot obtain complete solutions from this algorithm,
because it is possible that we encounter unknown conditions without the exe-
cution of Web services. In such a case, the agent resolves the problem in the
manner of the speculative strategy or assurance strategy.

3 Implementation

3.1 State Space and Variables

Generally, an atom can be expressed as a form p(r1, ..., rn−1, rn). If an atom is a
state variable such that the combination of predicate p and variables r1, ..., rn−1

has a mapping to rn on each state s, it can be expressed as p(r1, ..., rn−1) = rn. A
state variable can be also expressed as p(r1, ..., rn−1, rn) = true. Then, a negation
of atom ¬p(r1, ..., rn−1, rn) can be expressed as p(r1, ..., rn−1, rn) = false. On
the close world assumption, the absence of positive atom means the negation
of the assertion. On the open world assumption, the absence of positive and
negative assertion means unknown on the assertion.

The state is expressed as a list of state variables as atom. In Lisp, the following
shows an example of the state in which an individual Lucy has an appointment,
and HAL has also an appointment. Note that Lucy is already defined as individual
of Person, and HAL is already defined as individual of Robot.

(setq *state*

(make-state ’((hasAppointment(Lucy) = LucysAppt)

(hasAppointment(HAL) = HALsAppt))))

On the other hand, we make a typed variable in the following form in our
system.

(make-condition ’((hasAppointment((?p - Person)) = ?appt)))

If Person is defined as class in OWL and hasAppointment is defined as an
object property with the domain constraint Appointment, the system can create
?p as an instance of Person and ?appt as an instance of Appointment.

Note that this appointment with variables typed Person is unified with
Lucy’s appointment but not unified with HAL appointment.
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3.2 Typed Unification

The unification algorithm by Russel and Norvig [9] is expanded to accept OWL
classes and individuals. A variable is also an individual of a class in the domain.
Consider the following unification algorithm, where variablep(x) tests for not
lisp symbols but OWL entities whether x is an OWL entities for variable, and
variable?(x) tests for lisp symbols whether x is a variable. Note that a variable
symbol and a constant symbol are bound to an OWL entity in our system, then
a lisp symbol is unified to a lisp symbol in semantics of OWL as shown later.

function Typed-Unify(x, y, θ)
if θ = failure then return failure
else if x = y in semantics of OWL then return θ
else if x ̸= y in semantics of OWL then return failure
else if variablep(x) then return Typed-Unify-Var+(x, y, θ)
else if variablep(y) then return Typed-Unify-Var+(y, x, θ)
else if variable?(x) then return Typed-Unify-Var(x, y, θ)
else if variable?(y) then return Typed-Unify-Var(y, x, θ)
else if compound?(x) and compound?(y) then

return Typed-Unify(Args(x), Args(y), Typed-Unify(Op(x), Op(y), θ))
else if list?(x) and list?(y) then

return Typed-Unify(Rest(x), Rest(y), Typed-Unify(First(x), First(y), θ))
else return failure

As shown below, the algorithm of Typed-Unify-Var looks like the same as
original Unify-Var in [9] at the surface level, but making a new binding {var/x}
differs from the original. In addition to the symbol level binding between var
and x, the class level bindings are taken into account. If two classes of var and
x are disjoint each other, then no unification is made and failure is returned. If
two classes relates each other in subsumption relation, then a mapping to the
specific class is made. Otherwise, a mapping to the intersection of both classes
is made.

function Typed-Unify-Var(var, x, θ)
if {var/val} ∈ θ

then return Typed-Unify(val, x, θ)
else if {x/val} ∈ θ

then return Typed-Unify(var, val, θ)
else if var occurs anywhere in x

then return failure
else return make {var/x} ∈ θ

Typed-Unify-Var+ is prepared for the binding of OWL individual objects. In
practice, our system is built on top of SWCLOS, which is an OWL Full reasoner
and language [4]. In SWCLOS, every OWL entity is an object in CLOS. In the
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integration of our (de)composition system to SWCLOS, a variable var in Typed-
Unify-Var+ is an object typed to OWL classes in the domain, while x may be
an individual object of domain classes or may be an variable object typed to a
domain class.

function Typed-Unify-Var+(var, x, θ)
if x is individual then

if disjoint?(class(var),class(x)) then return failure
else if class(var) = class(x) in semantics of OWL

then return make {symbol(var)/symbol(x)} ∈ θ
else if subsumed?(class(x),class(var))

then return make {symbol(var)/symbol(x)} ∈ θ
else if subsumed?(class(var),class(x))

then return make {symbol(x)/individual(class(var)) } ∈ θ
make {symbol(var)/symbol(x)} ∈ θ

else return
then return make {symbol(x)/individual(intersection(class(var),class(x)))} ∈ θ

make {symbol(var)/individual(intersection(class(var),class(x)))} ∈ θ
make {symbol(var)/symbol(x)} ∈ θ

else return failure

Where individual() creates an individual object of the parameter. Through
this unification, the type of variable is specified step by step. The value of vari-
ables are bound to abstract concepts to special concepts along with the pro-
gression via unification. However, if we have poor ontologies with respect to the
class hierarchy, this unification easily leads silly results. For example, if there
is no knowledge that xsd:integer is disjoint with xsd:float, the intersection of
xsd:integer and xsd:float is resulted. However, if there is an assertion that ship
is disjoint with automobile, the system fails to find the route by amphibious-
vehicle. Generally speaking, it is valuable to give rich information of negation,
disjunction, and complement in ontologies for the open world.

3.3 Nondeterministic Choice by Continuation

The computational continuation is well known as program control technique in
Scheme language. In short, it is a program frozen in action [3]. When the com-
putational object that contains the state of a frozen computation is evaluated,
it is restarted where it left off. This machinery can be a great help to implement
the exception handler, multiprocessing, and nondeterministic search and choice.
In order to implement our (de)composer, we have adopted the technique of con-
tinuation in Lisp [3]. The (de)composition algorithm SWHTN in Subsection 3.4
can be straightforwardly implemented with the continuation.
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4 Related Work and Concluding Remarks

4.1 Toward Reasoning in Services from Reasoning in Action

The study on task planning has a long history. Recently, Ghallab, et al. [2]
published a comprehensive text on automated planning of action. Reiter [8]
enlightened on task planning problem from situation calculus. From the advent of
Semantic Webs, Web Services plus Semantic Webs has emerged as a new field in
planning, and many efforts has been made in various approaches. Berardi et al. [1]
discussed the synthesis of Web services from situation calculus, but the work still
stays at the closed world assumption. Sohrabi et al. [12] demonstrated the web
service composition using agent programming language GoLog, which is based on
situation calculus. However, the problem of the interaction between precondition
and inputs/outputs, which is posed by Sirin et al. in service composition by
SHOP2 [10], seems to be left still open.

All of works mentioned above strongly stick the soundness and complete-
ness of service composition. However, the authors argue that the openness and
uncertainty of WWW lead us to the incompleteness when we consider the exe-
cution process. The problem must be solved by the intelligent behavior of agent
in the changeable world. In this paper, we formalized Web service composi-
tion/decomposition by HTN using the idea of satisfiability in situation calculus,
and addressed the algorithm for service (de)composition. We also suggested that
we need situated planning agent that adaptively behaves in use under the in-
complete service composition and the uncertainty of WWW with the premise of
the open world assumption.

Sirin and Parsia [11] deeply discussed the integration of OWL and the task
planner. In a sense, it could be said that this paper is a legitimate argument on
the HTN formalization touched by them. We addressed the typed unification to
make a progress on variable bindings. The authors’ system is based on SWC-
LOS [4] for OWL reasoner. Sirin and Parsia pointed out the existentially bound
variables in preconditions may cause the disparity of binding between planning
time and execution time. We have no solution on this problem in this paper. We
know that SWCLOS cannot reason out correctly on the existential quantifier.
On the other hand, the problem on the creation of anonymous individuals men-
tioned by them is easily solved with SWCLOS, because SWCLOS is built on top
of Common Lisp Object System (CLOS) and every concept and individual is an
object, even if it is anonymous.

4.2 Web Service Composition and Decomposition

In this paper, the terminologies of both composition and decomposition, and
occasionally composition/decomposition and (de)composition are used. Usually,
HTN is conceived as a method for web service composition. However, the com-
position process in HTN is strictly coupled with the decomposition process.
Ghallab, et al. often used the terminology of decomposition tree of HTN in their
textbook [2]. We consider an agent in which the composer composes Web services
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in coarse grain size from scratch. In this service composition, the partial order
planner technique like UCPOP [7] may be useful rather than HTN. Then, the de-
composer in the agent decomposes the composed service into fine grain services
by HTN. In this paper, we concentrated the discussion to HTN (de)composition
process, in which we have a top task node of HTN and separated other subtasks
from work flow library at first, and the top task and related abstract tasks are
combined and instantiated along with the reduction the ambiguity of task param-
eters step by step. We call this HTN planning process service (de)composition.

4.3 Framework of Web Service Agent

The agent system includes an executer, memory, and user interface in addition to
the composer and the decomposer [5]. The executer interprets and executes the
instantiated programs with invoking Web Services. The machinery of memory
works as memory for various internal data of agent. Some part in memory reflects
the variations of outer world with sensing data and poling queries, etc. The user
interface works for the communication between the agent and a user. Some
ambiguity and nondeterministic choice in task planning may be solved with the
help from the user through this interface.

References

1. Berardi, D., Calvanese,D., Giacomo, D., Mecella, M.: Reasoning about Actions for
e-Service Composition. International Conference on Automated Planning & Schedul-
ing, ICAPS 2003 (2003)

2. Ghallab, M., Nau, D., Traverso P.: Automated Planning Theory and Practice. Mor-
gan Kaufmann (2004)

3. Graham, P.: On Lisp. Prentice Hall, (1993)
4. Koide, S. Takeda, H.: OWL-Full Reasoning from an Object Oriented Perspective.

Asian Semantic Web Conf., ASWC2006 (2006) 263–277
5. Misono, S., S. Koide, N. Shimada, M. Kawamura, and S. Nagano: Distributed Col-

laborative Decision Support System for Rocket Launch Operation. IEEE/ASME Int.
Conf. Advanced Intelligent Mechatronics, AIM2005, (2005)

6. Nau, D., T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman:
SHOP2: An HTN Planning System. J. Artificial Intelligence Research, 20-12, (2003)
379–404

7. Penberthy, J. S. and D. Weld: UCPOP: A Sound, Complete, Partial-Order Planner
for ADL. Third International Conference on Knowledge Representation and Reason-
ing (KR-92), Cambridge, MA, (1992)

8. Reiter, R.: Knowledge in Action. MIT Press (2001)
9. Russell S. Norvig .P: Artificial Intelligence: A Modern Approach. Prentice Hall,

(1995)
10. Sirin, E., B. Parsia, D. Wu, J. Hendler, and D. Nau: HTN Planning for Web Service

Composition Using SHOP2. J. Web Semantics, 1, Elsevier (2004) 377–396
11. Sirin, E. and B. Parsia: Planning for Semantic Web Services. In Semantic Web

Services Workshop at 3rd International Semantic Web Conference, (2004)
12. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web Service Composition via Generic

Procedures and Customizing User Preferences. Int. Semantic Web Conf., ISWC2006
(2006) 597–611

121

Administrator
Rectangle




 

122

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web



OWL-Q for Semantic QoS-based Web Service
Description and Discovery

Kyriakos Kritikos and Dimitris Plexousakis

Foundation of Research and Technology, Heraklion, Greece,
kritikos,dp@ics.forth.gr

Abstract. Semantic Web Services are emerging for their promise to pro-
duce a more accurate and precise Web Service discovery process. How-
ever, most of research approaches focus only on the functional part of
semantic Web Service description. The above fact along with the prolif-
eration of Web Services is highly probable to lead to a situation where
Web Service registries will return many functionally-equivalent Web Ser-
vice advertisements for each user request. This problem can be solved
with the semantic description of QoS for Web Services. QoS is a set
of non-functional properties encompassing performance and network-
related characteristics of resources. So it can be used for distinguish-
ing between functionally-equivalent Web Services. Current research ap-
proaches for QoS-based Web Service description are either syntactic or
poor or non-extensible. To solve this problem, we have developed a rich
and extensible ontological specification called OWL-Q for semantic QoS-
based Web Service description. We analyze all OWL-Q parts and reason
that rules should be added in order to support property inferencing and
constraint enforcement. Finally, we line out our under-development se-
mantic framework for QoS-based Web Service description and discovery.

1 Introduction

The success of the Web Service (WS) paradigm has led to a proliferation of avail-
able WSs. Current WS standard technologies involve the advertisement of static
functional descriptions of WSs in UDDI registries, leading to a WS discovery
process that returns many irrelevant or incomplete results. While semantic func-
tional discovery approaches, like the one in [1], have been invented to overcome
the above problem, the amount of functionally equivalent WS advertisements
returned is still large. The solution to this problem is: a) the description of the
Quality of Service (QoS) aspect of WSs, which is directly related to their perfor-
mance; b) filtering of WS functional discovery results based on user constraints
on their QoS descriptions; c) sorting the results based on user weights on QoS
metrics.

QoS of a WS is a set of non-functional attributes that may impact the quality
of the service offered by the WS. Each QoS attribute is measured by one or more
QoS metrics, which specify the measurement method, schedule, unit, value range
and other measurement details. A QoS specification of a WS is materialized as
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a set of constraints on a certain set of QoS metrics. These constraints restrict
the metrics to have values in a certain range or in a certain enumeration of
values. Actually, the current modeling efforts of QoS specifications only differ in
the expressiveness of these constraints. However, these efforts fail in QoS metric
modeling. The main reason is that their QoS metric model is syntactic, poor
and not extensible. In this way, the most prominent QoS-based WS discovery
algorithms produce irrelevant or incomplete results.

There are two main approaches for QoS-based Web Service Discovery. The
first one, analyzed in [2], relies on the subsumption of the compared QoS-based
WS descriptions for matchmaking. However, as indicated by the authors of this
approach, subsumption is quite slow and additional techniques must be devised
for speeding it up. The other approach, analyzed in [3], transforms the compared
QoS-based WS descriptions to a Constraint Satisfaction Problem (CSP) [4] and
then solves this problem. This approach has been shown [3] to be quick and
efficient in realistic scenarios. In addition, tools for CSP solving are more ma-
ture than reasoning tools. Thus, the second approach is more appropriate for
QoS-based WS discovery. Unfortunately, this approach also suffers from some
shortcomings that will be analyzed in detail in the sequel of this paper.

Based on the above deficiencies, we have developed OWL-Q [5], a rich, ex-
tensible and modular ontology language that complements the WS functional
description language OWL-S. In addition, we have extended the most prominent
CSP-based QoS-based WS discovery approach [3]. In this paper, after review-
ing the state-of-the-art in QoS-based WS description and discovery, we analyze
in detail all parts of OWL-Q, as OWL-Q’s design has been finalized. Next, we
explain that OWL cannot be used for reasoning about relations between proper-
ties and for enforcing constraints so as to justify the extension of OWL-Q with
SWRL rules. In addition, we provide examples of types of rules that have been
added to OWL-Q. Then, we analyze our QoS metric matching and alignment
and CSP-based WS Discovery algorithms [5, 6] and we shortly describe the
building tools of our QoS-based WS Discovery Engine, which is currently under
development. Finally, we conclude by drawing directions for further research.

2 Related Work

The WSDL and UDDI WS standards are syntactical approaches that do not
express the QoS aspect/part of WS Description. While OWL-S is a standard
semantic approach for WS Description, it does not describe any QoS concept.

Ran [7] proposes a syntactic extension to UDDI for QoS-based WS descrip-
tion. Maximilien and Singh [8] present an architecture and a conceptual model of
WS reputation that does not include concepts like QoS constraints, offers and de-
mands. Furthermore, the QoS metrics model is not rich enough. Tosic, Pagurek
et. al. [9] present the XML-based Web Service Offerings Language (WSOL).
Their work comes with the following shortcomings: (a) no specification of a QoS
demand; (b) metrics ontologies are not developed. Web Service Level Agree-
ment (WSLA) [10] is a XML language used for the specification of Service Level
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Agreements (SLAs). It represents a purely syntactic approach that is not ac-
companied by a complete framework. Tian et. al. [11] propose an ontology-based
approach for QoS-based WS description. However, not only there is no complete
and accurate description of QoS constraints, but also metrics ontologies are only
referenced. Oldham et. al. [12] offer a semantic framework for the definition
and matching of WS-Agreements. However, only unary QoS metric constraints
can be expressed while QoS metric matching could only be enforced by manual
incorporation of rules.

Zhou et. al. [2] extend OWL-S by including a QoS specification ontology. In
addition, they propose a novel matchmaking algorithm, which is based on the
concept of QoS profile compatibility. The deficiencies of this research effort are
the following: (a) The metrics model is not rich enough; (b) QoS metrics have
N+ as their range; (c) QoS Profile subsumption reasoning is quite slow.

Mart́ın-Dı́az et. al. [3] use a symmetric but syntactic QoS model and propose
a CSP-based approach for discovery. Before matchmaking, a QoS specification
is transformed to a CSP which is checked for consistency/satisfiability. Match-
making is performed according to the concept of conformance. Concerning WS
Selection, the (QoS) score of an offer is computed by a Constraint Satisfaction
Optimization Problem (CSOP) [4].

3 QoS-based Web Service Description

3.1 Requirements for QoS-based Web Service Description

After reviewing related work in QoS-based WS Description, we have come up
with the following requirements that must be satisfied by a QoS-based WS de-
scription language [13]:

– Devise an extensible and formal semantic QoS model
– Comply with standards
– Support the syntactical separation of QoS-based and functional parts of ser-

vice specification
– Support refinement of QoS specifications and their constructs.
– Allow both provider and requester QoS specification
– Allow fine-grained QoS specification
– Devise an extensible and formal QoS metrics model
– Devise a corresponding extensible and formal QoS attributes, units, functions

and measurement directives model.
– Allow classes of service specification
– Enabling of tractable matchmaking algorithms

3.2 OWL-Q

Based on the requirements of QoS-based WS Description we have set in the previ-
ous subsection, we have developed an OWL-S extension (syntactical separation),
called OWL-Q [5], for QoS-based WS description of both requests and offers.
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We have extended OWL-S ontological description for two reasons: to comply
with Semantic WS description standards (standards compliance) and to use the
OWL ontology formalism (extensible and formal semantic QoS model). OWL-Q
is actually an upper ontology comprised of many sub-ontologies/facets, each of
which can be extended independently of the others (syntactical separation and
refinement of QoS specifications). Each facet concentrates on a particular part
of our QoS WS description. In its new form, OWL-Q has eleven facets: OWL-Q
(main), Measurement Directive, Time, Goal, Function, Measurement, Metric,
Scale, QoSSpec, Unit and ValueType. In the sequel, a small analysis of each
facet of OWL-Q will be provided while the most important changes with respect
to its previous form will be indicated. The whole ontology will be available soon
at: http://www.csd.uoc.gr/∼kritikos/OWL-Q.owl.

Fig. 1. Part of Main Facet.

OWL-Q (Main) Facet As can be seen in Fig. 1, the Main Facet connects OWL-
S with OWL-Q and provides the high-level QoS concepts. For the connection
of the two ontological descriptions, the ServiceAttribute class is a subclass of
OWL-S ServiceParameter and references a ServiceElement. Subclasses of the
latter class are ConditionalOutput, Parameter, Input, Precondition, Effect, and
Service. That is a ServiceAttribute can reference any ServiceElement of a ser-
vice’s functional description (fine-grained QoS specification). Another point of

126

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web



connection is that a ServiceProfile contains one or more QoSOffers’s or one QoS
Request (classes of service requirement). A final point of Connection is that the
Actor class is separated into three subclasses: Provider, Requester, ThirdParty
so as to define the main actors involved in QoS-based WS description and mea-
surement. A Service Attribute contains two subclasses: QoSAttribute and Con-
textAttribute and is a subclass of the general class Attribute. An attribute can be
separated into a) physical or service attributes, b) measurable or unmeasurable
attributes and c) unique or derived attributes. Physical attributes like Time,
Temperature and Location characterize environmental (contextual) factors of a
WS or its requester while service attributes like Availability or NumOfInterfaces
are functional or non-functional characteristics of a WS. Measurable attributes
like Time are measured by specific metrics while unmeasurable attributes like
Manageability cannot be measured. Unique attributes like Time are not de-
rived by other attributes and are measured by resource metrics while derived
attributes like Throughput are produced by complex metrics computed by func-
tions using metrics of other attributes. The Domain class represents the domain
of knowledge that a service applies to and is separated into two subclasses: a)
GeneralDomain and b) SpecificDomain. The GeneralDomain stands for every
possible WS. Specific Domain can be further specialized/subsumed, for exam-
ple a possible subclass could be the Travel domain. The Value class represents
any possible integer, double, string or list-based value, it is subsumed by special
symbol classes like Infinity or Limit, and it is mainly used in Goal, Value Type
and Measurement definitions. Other classes that are defined but are unfolded
in separate sub-ontologies are: Function, Measurement, MeasurementDirective,
Metric, QoSSpec, Scale, Schedule, Trigger, Unit, ValueType and Goal.

QoSSpec Facet In this facet, the classes representing QoS offers and requests
are defined. The class QoSSpec is separated into two subclasses: QoSOffer and
QoSDemand in order to enable WS providers and requesters to define in the
same way their QoS constraints (both provider and requester QoS specification).
Of course, the WS requester is enabled not only to specify constraints (by the
QoSDemand class) but also to provide weights to metrics of his interest (by
the QoSSelection class). The QoSSelection class is actually a list of <metric,
weight> entries. The QoSSpec class represents the actual QoS description of a
WS. It describes the security and transaction protocols used (URIs), the cost of
using the service (double) and the associated currency for the cost (unit), the
validity period of the offer or demand (CalendarClockInterval class of the time
ontology [14]) and a list of conjunctive QoS goals/constraints with their weights
(value of 2.0 if it is a hard constraint or a value in (0.0, 1.0) if it is soft).

Goal Facet Mathematical formulas and QoS goals/constraints were previously
expressed in OpenMath (http://www.openmath.org). Now this has changed due
to change of philosophy regarding the QoS Metric Matching Algorithm de-
scribed in the next section. QoS constraints are expressed in the following form:
(f(arguments)|metric) op value, where f is a function, arguments are a list of
functions, metrics and values, op can be one of ≤, ≥, <, >, =, ! =. For exam-
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ple, the fact that metric M is less than 0.1 could be expressed by the user as:
M ≤ 0.1, where op =≤. An appropriate interface will be provided to the user
in order to enable him to specify constraints in our user-friendly customized
expression form.

Measurement Facet Measurements are now modeled in OWL-Q so as to enable
their storage and statistical processing by registries or other parties. Statistical
processing leads to new metric derivation and to validation of QoS-based WS
provider guarantees. The Measurement class in OWL-Q contains a single value
(Value class), it is produced by an Actor at a specific time point (Calendar-
ClockDescription class of [14]), it concerns a specific Metric and belongs to a
specific party (Actor).

Function Facet Functions in OWL-Q are separated into functions applied to met-
rics (for producing complex metrics or checking satisfiability of their constraints)
and functions applied to scales. Metric functions have specific arity and contain
arguments that are either Metrics, values of other Metric Functions. Scale trans-
formation functions are further categorized into five disjoint subclasses and are
used for converting one scale expression to an expression of another scale.

Measurement Directive Facet The MeasurementDirective class specifies the way
simple metrics are measured. It specifies by a URI how the value of a managed
resource is going to be achieved and by a ValueType the type of the return value.
In addition, it specifies if the party responsible for the measurement will ask for
the value or get it when it is ready (i.e it specifies the access model, where
AccessModel = Pull ∪ Push). This class can have many subclasses, some of
which may require a possible extra attribute (timeOut) specification concerning
the time duration (DurationDescription of [14]) that the measurement party will
wait to get the measurement value (consider for example the Status measurement
directive [10]).

Time Facet This facet specifies the Schedule and Trigger classes. A schedule is
used to describe the frequency (frequency has range DurationDescription) and
time interval (interval has range CalendarClockInterval [14]) of a complex met-
ric computation. Alternatively, a complex metric computation can be executed
at a specific time point (CalendarClockDescription [14]), information that is
encapsulated in a trigger definition.

Metric Facet The Metric Facet describes all the appropriate classes and prop-
erties used for a proper formal definition of a QoS metric (QoS metric model).
This metric facet is actually an upper ontology representing any abstract QoS
metric. A specific QoS metric can be created by refining the QoSMetric class.
Many specific QoS metrics (especially the general ones) can be part of a midlevel
ontology created for QoS metric reuse. We prefer specialization to instantiation
because it allows for a quicker reasoning process. We plan to develop a mid-level
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ontology defining cross-domain QoS metrics and a low-level ontology for defining
QoS metrics for particular domains.

The QoSMetric is one of the most important classes of OWL-Q representing
a QoS metric. The values of a QoS metric are provided by an Actor. A QoS
metric belongs to a Domain of knowledge. It has only one name. It measures a
QoSAttribute ∪ MeasurableAttribute on a specific ServiceElement. The value
type of a QoSMetric is an instance of the ValueType class (analyzed in a separate
facet) while the scale of the value is an instance of the Scale class. A QoSMetric
is separated into static and dynamic metrics. A StaticQoSMetric is computed
only once according to a Trigger in order to produce a value for a StaticQoSAt-
tribute. A DynamicQoSMetric is computed repeatedly according to a Schedule
to produce values of a DynamicQoSAttribute that change over time. It can be a
simple QoS metric measuredBy a MeasurementDirective or a complex one. Com-
plexMetrics are derived from other metrics with the help of a MetricFunction.
Last but not least a QoSMetric is related to other metrics according to two types
of Relationships: Independent and Related. When two metrics are related, we can
specify the direction of their values or the impact of one’s value to the other’s
value. According to the scale it uses, a metric can be categorized into absolute,
interval, nominal, ordinal and ratio metrics. Ratio metrics directly reference a
Unit of measurement as a RatioScale is actually equivalent to a Unit. Metrics
can be positively or negatively monotonic. In this way, we know if one metric
value is better than another one.

Scale Facet A measurement scale controls the value type and the type of oper-
ations allowed for a metric and belongs to a specific Attribute. It also specifies
the way one value expression bound to one scale can be transformed to another
value expression of another compatible scale (both scales belonging to the same
metric). So specific scales can be compatible if they belong to the same scale
type and there is a ScaleTransformationFunction that transforms their expres-
sions into each other. Scale is a more general notion with respect to Unit. A scale
can be categorized into five disjoint subclasses: NominalScale, OrdinalScale, In-
tervalScale, RatioScale and AbsoluteScale [15]. Nominal scales concern metrics
that have as value type a set of numbers or strings. The members of this set
cannot be compared (no ordering). Specific nominal scales can be compatible if
there is a one-to-one mapping function between their corresponding value types.
Ordinal scales apply to metrics that have an ordered set as value type. Met-
rics belonging to different ordinal scales cannot be added, multiplied, divided or
abstracted in QoS constraints. We can transform one ordinal scale expression
into another one with the help of monotonic functions. Interval scales preserve
not only ordering but also differences. However, they do not preserve ratios.
The operations of addition and substraction are allowed between different or-
dinal metrics. We can transform one interval scale expression into another one
with the help of affine transformation functions of the form: M = a ∗ M

′
+ b.

Ratio scale preserve ordering, size of intervals and ratios. In a ratio scale there
is always a zero element representing the total lack of the measured attribute.
All arithmetics are allowed between different ratio metrics. We can transform
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one ratio scale expression into another one with the help of mapping functions
of the form: M = a ∗ M

′
. Finally, the following facts are true for an absolute

scale: a) measurement is made simply by counting the number of elements in the
measurement set; b) measured attribute takes the form: “num of occurrences of
x in the entity”; c) all arithmetic analysis is meaningful; d) the set of accept-
able transformations between different absolute scale expressions is the identity
transformation function.

Unit Facet The Unit Facet formally describes the unit of a ratio scale of a ratio
QoS metric. A Unit has one name, several abbreviations and synonyms (even
in different languages). A Unit belongs to a System of Units, which system
can be SelfConsistent or NonSelfConsistent, and is associated with the same
QoSAttribute as the one that is measured by the QoS metric of the unit. A
Unit is separated into BasicUnits and MultipleUnits. The BasicUnit class is
separated into UniqueAttributeUnits and DerivedAttributeUnits, depending on
the type of Attribute measured. A MultipleUnit is associated with a BaseUnit
and converted to it by a constant (magnitude). It has a name composed of the
name of its BaseUnit and a prefix. A DerivedUnit is proportional to some Units
and inverse proportional to other Units. It also has a magnitude that is used to
express its mathematical definition in relation to the other (inverse) proportional
units. An unit is equivalent to another unit and can be converted to it with the
help of their ratio scale and its ratio transformation functions.

Value Type Facet The ValueType ontology describes the types of values a QoS
metric can take. The ValueTypes can be Scalar or NumericUnion, or ListBased
types. Scalar value types are simple value types that can be Numeric or String.
ConstrainedNumeric value types represent Numeric value types that have (up-
per, low or one) limits (e.g. the Integers set [2,5] or the Integer value {2}). The
NumericUnion class represents value types that are expressed as unions of Nu-
meric value types (e.g. [1, 2]∪ {4} ∪ [9, 11]). The List-Based class represents list
value types that have a specific size and whose elements are of a specific Value-
Type. Subclasses of the ListBased class are: numeric or string lists, queues and
timeseries.

3.3 Rules

The most significant change in OWL-Q is the incorporation of rules. It is well-
known at the Semantic Web community that OWL supports very well reasoning
about concepts but not about properties. For example, there is no way we can
specify that a fact p(x, y) can be true, where x, y are instances, if other property
or instance facts are true. As another example, there is no way to specify that two
or more property or class instance facts (or a mixture of them) cannot be both
part of the semantic database. However, it is imperative in OWL-Q to reason
about properties with rules because: a) relations between temporal properties
like duration [14] should be expressed and reasoned about; b) operations or
comparisons on metrics should be restricted according to the scale that they use;
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c) integrity constraints between property facts and/or instance facts should be
able to be enforced; d) compatibility or equivalency of scales and compatibility
of metrics’ value types should be expressed by OWL property facts fired by rules;
e) rule-based algorithms like the metric matching one (see next section) have
to be specified. So we are currently in the process of extending OWL-Q with
rules, which are expressed in SWRL – the most widely used SW rules proposal
at present. However, most reasoners only partially support SWRL and this is a
major obstacle to our under-implementation semantic framework for QoS-based
WS description and discovery.

4 QoS-based Web Service Discovery Framework

4.1 QoS Metric Matching Algorithm

All QoS-based WS discovery algorithms fail to produce accurate results be-
cause they rely on either syntactic or semantically-poor QoS metric descriptions.
Hence, they cannot infer the equivalence of two QoS metrics based on descrip-
tions provided by different parties. Different specifications occur for two reasons:
a) different perception of the same concept; b) different type of system read-
ing for the same metric. For example, equivalent response time metrics could
be associated to different units (e.g. minutes vs. seconds) and to different value
types(e.g. [0.0,10.0] vs. [0,600] respectively). As another example, a DownTime
metric can be either obtained in the form of high-level reading from a system with
advanced instrumentation or can be derived from a resource metric of a system’s
Status obtained from low-level reading of systems with basic instrumentation.

Provided that two QoS metric descriptions are expressed in OWL-Q, we
have developed a rule-based QoS metric matching algorithm [5] that infers the
equivalence of the two metrics. This algorithm is composed of three main rules,
each corresponding to a different case in a two metrics comparison. The last
rule is recursive and reaches the final point of checking the equivalence of two
mathematical formulas in order to infer the equivalence of two metrics.

Unfortunately, equivalency of mathematical expressions, which is a problem
area of symbolic computation, is undecidable. For this reason, we decided to use
CSP solving that is decidable although computationally expensive. The trick
for this transformation/change is the simple observation that symbolic expres-
sion equality can be seen alternatively as unsatisfiability of a CSP containing
a constraint enforcing that the difference of the two expressions is not zero.
In other words, if the CSP does not have any solution, then the constraint
cannot be enforced and the negation of its formula is always true. The latter
infers the equality of the expressions compared, which is our goal. For example,
suppose that we want to check if two expressions (x + 1)2 and x2 + 2x + 1
are equal. We can easily transform the previous problem to a CSP: [(X :
−∞ . . . + ∞), ((x + 1)2 − x2 − 2x − 1! = 0)] and try to solve it. There is no
solution to this CSP, so the constraint is unsatisfiable, the difference of the two
expressions is always zero and thus these expressions are equal.
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Due both to changes on the OWL-Q Ontology and to the above reasoning,
we have modified our metric matching algorithm as follows:

match (M1,M2) ⇐ rrm (M1,M2) ∨ rcm (M1, M2) ∨ ccm (M1,M2) (1)
sm (M1, M2) ⇐ svm (M1.scale, M2.scale,M1.type, M2.type)
∧M1.object = M2.object ∧M1.measures = M2.measures (2)
rrm (M1,M2) ⇐ ResourceMetric (M1) ∧ResourceMetric (M2) ∧ sm (M1,M2)

(3)

rcm (M1,M2) ⇐ ResourceMetric (M1) ∧ CompositeMetric (M2) ∧ sm (M1,M2)
∧M2.derivedFrom ∩ CompositeMetric = ® ∧ ¬∃V ∈ M2.derivedFrom match (M1, V )

(4)

ccm (M1,M2) ⇐ CompositeMetric (M1) ∧ CompositeMetric (M2)
∧ sm (M1,M2) ∧msm (M1.derivedFrom, M2.derivedFrom)
∧ ¬solveCSP (M1.derivedFrom, M2.derivedFrom,

M1.measuredBy −M2.measuredBy! = 0) (5)

where M1 and M2 are Metrics, svm (M1.scale, M2.scale,M1.type, M2.type) is a
rule that infers if the scales and value types of metrics M1 and M2 are compatible,
msm (M1.derivedFrom,M2.derivedFrom) is a rule that matches one by one
the M1’s list of derivative metrics with the corresponding metrics list of M2,
and solveCSP (List1, List2, equation) is a logic procedure that solves the CSP
defined by the two first metric lists and the equation given by third argument.
When the latter procedure finds a solution, it returns true, otherwise it returns
false. More details about all other clauses and symbols can be found in [6].

Therefore, the above algorithm infers that two metrics M1 and M2 match if
one of the three body rules of rule (1) is satisfied. The first (rule (3)) and the
second (rule (4)) of the three body rules have not been altered and we are not
going to further describe them.

The last of the three body rules, rule (5), compares and possibly aligns one by
one the metrics from which M1 is derived with the corresponding metrics of M2

and updates appropriately the measurement formulas of M1 and M2. Then from
the derivation lists of M1 and M2 and their measurement formulas a (possibly
non-linear) CSP is defined and solved. More details about the algorithm can be
found in [6].

Composite-to-Composite Metric Matching Example. Assume that a
WS provider defines composite metric Avail1 that measures the QoS Prop-
erty of Availability of his whole WS and is derived from two Resource metrics
Downtime1 and Uptime1 based on the formula: 1−Downtime1/(Downtime1 +
Uptime1). In addition, assume that a WS requester defines composite metric
Avail2 that also measures the QoS Property of Availability and is derived
from two Composite metrics Downtime2 and Uptime2 based on the formula:
Uptime2/(Uptime2+Downtime2). Further assume that all metrics have as value
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type the interval [0.0, 1.0] and that the following facts are true: smatch(M1,M2),
rcm(Downtime1, Downtime2), rcm(Uptime1, Uptime2). We want to see if com-
posite metrics Avail1 and Avail2 are matched based on the satisfiability of
rule (5). The first three clauses of this rule are trivially true. The fourth clause in-
fers that: rcm(Downtime1, Downtime2), rcm(Uptime1,Uptime2). So Downtime1

and Downtime2 are mapped to a new metric Downtime and Uptime1 and
Uptime2 are mapped to Uptime. In this way, it stands that: M1.derivedFrom =
M2.derivedFrom = [Downtime, Uptime], M1.measuredBy = 1−Downtime/(
Downtime+Uptime), M2.measuredBy = Uptime/(Uptime+Downtime). The
last clause of the rule will create and solve a CSP that has the following defini-
tions: Downtime, Uptime :: [0.0, 1.0] and constraints: 1−Downtime/(Downtime+
Uptime) − Uptime/(Uptime + Downtime)! = 0. This CSP is unsatisfiable so
finally the fact match (M1,M2) is inferred.

4.2 QoS Metric Alignment Algorithm

The Alignment process is executed when any QoS specification S is published
or queried on the underlying QoS-based WS discovery system. Its goal is to
align S with all already processed offers Oi and demands Dj by finding their
common QoS metrics based on the QoS metric matching algorithm. After metric
alignment, S is transformed to a CSP which is checked for consistency (i.e. if it
has a solution). If the CSP is inconsistent, then neither S nor its CSP are stored
in our Repository (R) and S’s owner is informed. In case of an inconsistent
demand, the discovery algorithm is also not executed. The alignment process
relies on the concept of the Metric Store (MS), which is part of R. MS stores
all unique QoS metrics encountered so far. So when a new QoS spec arrives, we
don’t need to examine if any of its metrics matches with any metric of all offers
or demands but with any metric in the MS. In this way, there is a minimization
of all possible metric-to-metric comparisons. In addition, all unique metrics of
this new QoS spec are added to the MS. If this QoS spec is inconsistent, its
metrics are not removed from the MS. More details about this algorithm and
how the transformation of a QoS spec S to a CSP is carried out can be found
in [6].

4.3 QoS-based Web Service Discovery Algorithm

One of the most prominent QoS-based WS discovery algorithm [3] expresses each
QoS-based WS description as a CSP. Then it separates the QoS-based advertise-
ments into two categories: the ones that satisfy completely the QoS-based request
and the others that do not satisfy the request. However, this algorithm presents
four major drawbacks: 1) it performs syntactic metric matchmaking producing
false negative and false positive results; 2) QoS spec matchmaking relies on the
concept of conformance, which is not absolutely correct (see next paragraph); 3)
it does not provide advanced categorization of results; 4) it does not return any
result when QoS requests are over-constrained, where over-constrained problem
specifications happen very often in the real-world.
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Matchmaking of QoS offers and demands is based on the concept of confor-
mance [3], which is mathematically expressed by the following equivalency:

conformance (Oi, D) ⇔ sat
(
Pi ∧ ¬PD

)
= false (6)

To explain, an offer Oi matches a demand D when there is no solution to the
offer’s CSP Pi that is not part of the solution set of the demand’s CSP PD. This
definition is slightly wrong as it excludes from the result set those QoS offers that
provide better solutions than that of the demand’s. For example, suppose that a
WS provider and requester use the same metric X, measuring the QoS Property
of Availability, that has as value type the set (0.0, 1.0) ↑, where ↑ denotes that
this type is positively monotonic i.e. greater values are better than lower ones.
Further assume that the WS provider’s CSP has the constraint: X ≥ 0.96 while
the WS requester’s CSP has the constraint: 0.95 ≤ X ≤ 0.999. Based on the
above definition, the provider’s offer does not match the request as it contains
solutions greater than that of the request’s, although these solutions are better.
Thus, a more correct definition of matchmaking is the following: an offer Oi

matches a demand D when its CSP Pi has solutions that are either contained
in the solution set of the demand’s CSP PD or are better that the demand’s
solutions.

Based on the deficiencies of [3] and the new definition of matchmaking, we
have proposed two QoS-based WS discovery algorithms [6]. The first one is only
restricted to unary constraints but is more effective and easy to implement while
the other is more generic but harder to implement. These algorithms presuppose
that the offers set {Oi} and the demand D are already aligned and transformed
to corresponding CSPs Pi and PD respectively. Due to space limitations of this
paper, we are going to analyze only the second algorithm.

Generic Discovery Algorithm This algorithm checks if the whole solution of
the offer is worse than all solutions of the demand by assigning a preference or
value to each CSP solution. So it is more closed to the definition of conformance
we have previously given in this section.

The big question is how the assignment of preferences to solutions takes
place. The technique we use is based on utility functions and weights on CSP
variables [3]. Each CSP variable (a map of a metric) is given a (user) weight
or preference (taking values from the set [0.0, 1.0]) to reflect the significance of
this variable to the preference/value of the solution. In addition, each possible
value of this variable is given also a preference (∈ [0.0, 1.0]) by the variable’s
utility function. The preference of a CSP solution is given by the following sum
on all variables Xj : ps =

∑
Xj

(wXj · ufXj (vXj
)), where wXj

is the weight of the
variable Xj , ufXj () is its utility function and vXj is its value.

Based on the above technique, a partial ordering of all solutions of a CSP
can be inferred. This is the appropriate mean in order to define matchmaking:
an offer’s CSP Pi matches the CSP PD of the demand if its worst solution has
a preference of greater or equal value with respect to the preference of the worst
solution of the demand. This definition leads to two main observations: a) CSOPs
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for offers and demands have to be solved in order to find the preference of the
worst solution; b) constraints are only used to reduce the domain of the variables.
The second observation hides an important conclusion: constraint relaxation is
inherent to the optimization of CSPs based on preference functions. To explain,
a matching offer may have a (worst) solution that violates constraints of the
demand affecting one or more variables of less significance. However, this solution
surely provides better values for variables of higher significance/preference. It is
like relaxing some constraints of the demand in order to match this offer. The
next paragraph provides a sketch of the QoS-based WS discovery algorithm,
while the last one provides a simple example of its application.

Algorithm. [Matchmaking] We compute the preferences pD
s1

and pD
s2

of the
demand’s CSP PD worst sD

1 and best sD
2 solution respectively by solving two

CSOPs (minimization and maximization) [5]. For each offer’s CSP Pi, we com-
pute the preferences pi

s1
and pi

s2
of its worst si

1 and best si
2 solution respectively

in the same manner as above. Then, we consider four cases:

1. If (pi
s2
≤ pD

s1
), then the offer is put in the fail match list.

2. If (pi
s2

> pD
s1
∧ pi

s1
< pD

s1
), then the offer is put in the partial match list.

3. If (pi
s1
≥ pD

s1
∧ pi

s2
≤ pD

s2
), then the offer is put in the exact match list.

4. If ((pi
s1
≥ pD

s1
∧ pi

s2
> pD

s2
) ∨ (pi

s1
≥ pD

s2
)), then the offer is put in the super

match list.

The first case expresses the fact that the offer’s best solution is not better than
the worst solution of the demand and justifies the classification of the offer as
failed. The second case expresses the fact that the offer has some bad solutions
but also some good solutions so it is considered as a partial result. The third case
concerns offers that contain a subset of the solutions of the demand and justifies
their classification as exact. The last case is about offers that contain not only
solutions of the demand but also better ones. That’s why they are classified as
super results/matches.

[Selection] In this process, either the best two categories of results (if not
empty) or the third category are ordered based on the weighted sum of the
preferences of their worst and best solutions [5].

Example. To demonstrate our QoS-based WS discovery algorithm, we supply a
simple example of its application to a small set of four QoS offer CSPs Pi and
one demand CSP PD. Assume that all CSPs have the following three definitions:
X1 :: (0.0, 86400.0] ↓, X2 :: (0, 100000] ↑ and X3 :: (0.0, 1.0) ↑. Based on these
variable definitions, assume that each CSP has the following constraints: P 1 :
[X1 ≤ 10.0, X2 ≤ 100, X2 ≥ 50, X3 ≥ 0.9], P 2 : [X1 ≤ 4.8, X2 ≤ 50, X2 ≥
40, X3 ≥ 0.95], P 3 : [X1 ≤ 16, X2 ≤ 40, X2 ≥ 30, X3 ≥ 0.98], P 4 : [X1 ≤
16, X2 ≤ 50, X2 ≥ 40, X3 ≥ 0.98], and PD : [X1 ≤ 15.0, X2 ≥ 40, X2 ≤ 60, X3 ≥
0.99]. Moreover, assume that the WS requester does not provide weights to
the constraints of his demand and associates the following weights to the three
metrics/variables: X1 ← 0.3, X2 ← 0.3, X3 ← 0.4, while a = 0.7 and b = 0.3 [5].
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In addition, assume that the following utility functions are applied to the CSOPs:
ufX1 = (16−X1)/16, ufX2 = (X2 − 30)/70, ufX3 = (X3 − 0.9)/0.1 [5].

For each offer CSP Pi we have the following preferences: [P1 : p1
s1

= 0.1982, p1
s2

=
1.0],[P2 : p2

s1
= 0.4528, p2

s2
= 0.7857], [P3 : p3

s1
= 0.32, p3

s2
= 0.7428], [P4 : p4

s1
=

0.3628, p4
s2

= 0.7428]. The demand’s CSP PD has the following preferences:
PD : [pD

s1
= 0.4216, pD

s2
= 0.8285]. So the discovery algorithm will produce the

following results lists: Super = [ ], Exact = [O2], Partial = [(O1), (O3), (O4)],
Fail = [ ].

As it can be seen, offer O2 is in the Exact match list although it violates
the last constraint of the demand. The reason for this is that the preference
of its worse solution is greater than the preference of the worse solution of the
demand. To put it in another way, O2 provides a far better lowest value for the
X1 attribute with respect to the worse lowest value for the X3 attribute. Another
observation is that O1 pays the penalty of providing the minimum possible value
for the X3 attribute and is considered a partial result.

4.4 QoS-based Web Service Discovery Engine

We are currently in the development phase of our QoS-based WS discovery
engine by using the Pellet reasoner for ontology reasoning and the ECLiPSe
(http://eclipse.crosscoreop.com) system for solving linear constraints, while the
Java programming language is used as a bridge between them. Pellet is chosen
because it supports the tasks of ontology validation and reasoning, OWL 1.1
datatype reasoning and partial SWRL inferencing. ECLiPSe is chosen as it sup-
ports advanced linear constraint solving and extends the common facilities of
Prolog. Additionally, it can be extended to support non-linear constraint solving
through external solvers. More details about the architecture and the function-
ality of the main components of the discovery engine can be found in [6].

5 Future Work

As future work, we plan to evaluate our metric matching and discovery algo-
rithms in order to show their performance and accuracy. We also intend to
exploit advanced techniques for solving over-constrained problems like semi-ring
based constraint satisfaction [16]. We also plan to extend OWL-Q with the de-
scription of the context of both the WS and the WS requester so as to achieve
Context-aware QoS-based WS discovery. Our ultimate and final goal is to ac-
complish QoS-based and context-aware WS composition.
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Abstract. There is a growing discrepancy between the creation of dig-
ital content and its actual employment and usefulness in a learning soci-
ety. Technologies for recording lectures have become readily available and
the sheer number and size of such objects produced grows exponentially.
However, in practice most recordings are monolithic entities that cannot
be integrated into an active learning process offhand. To overcome this
problem, recorded lectures have to be semantically annotated to become
full-fledged e-learning objects facilitating automated reasoning over their
content. We present a running web-based system — the e-Librarian Ser-
vice CHESt — that is able to match a user’s question given in natural
language to a selection of semantically pertinent learning objects based
on an adapted best cover algorithm. We show with empirical data that
the precision of our e-Librarian Service is much more efficient than tradi-
tional keyword-based information retrieval; it yields a correct answer in
most of the cases (93% of the queries), and mostly with a high precision,
i.e., without supplementary hits. We also describe some ideas to improve
the retrieval performance by user feedback.

1 Introduction

The World Wide Web (WWW) is the largest knowledge base that ever existed.
The availability of material with educational content in the WWW increases
dramatically. However, its usage in an educational environment is poor, mainly
due to two facts [16, 6, 18, 22]. First, there is currently no reliable mechanism to
prove the correctness of the data. Second, there is way too much information,
in particular redundant and not relevant information, so that finding appropri-
ate answers in an efficient way is a rather difficult task being reliant on the
user’s interaction. The user is charged with the awkward, time consuming and
diverting task of filtering the pertinent information out of the noise. Turning
large knowledge bases as the WWW into useful educational resources requires
to identify correct, reliable, and machine understandable resources, as well as
to develop simple but highly efficient search tools with the ability to perform

139



logical inferences over these resources. This idea is fully in the stream of current
Semantic Web thinking.

In this paper we describe a running system1 — the e-Librarian Service CHESt
[12, 13] — that is able to understand a user’s questions given in natural language
(NL) and to retrieve semantically pertinent resources. We call such resources
Learning Objects (LOs). By LO we refer to an entity about a precise subject
that may be used for learning, education or training [20], e.g., a multimedia
sequence including machine processable metadata that semantically describe its
content. Our E-Librarian Service can be perceived as a specialization of passage
retrieval techniques; see [14] for an overview.

It has been realized that digital libraries do benefit from having its content
understandable and available in a machine processable form, and it is widely
agreed that ontologies will play a key role in providing the infrastructure to
achieve this goal. One of the basic building blocks of our e-Librarian Service
is a common domain ontology, which has a double use. First, it is used for
the translation of the NL user questions into a formal language, i.e., Description
Logics (DLs). DLs are a family of knowledge representation formalisms that allow
to represent the knowledge of an application domain in a structured way and to
reason about this knowledge [1]. The semantic interpretation, i.e., the translation
of a NL user question into a DL is described in [12]. Second, the domain ontology
is used to describe the LOs in the knowledge base with additional semantic
metadata. We developed a tool that helps to semi-automatically generate the
semantic metadata based on the textual content of the LOs.

Our e-Librarian Service implements a retrieval algorithm that is based on
the concept covering problem. Among all the LOs that have some common in-
formation with the user query, our algorithm is able to identify the most perti-
nent match(es), keeping in mind that the user in general expects an exhaustive
answer while preferring a concise answer with only little or no information over-
head. The evaluation of our algorithm shows that in an educational environment
our e-Librarian Service is much more appropriate than a traditional keyword-
based search engine, because it delivers much less information overhead while
simultaneously providing a higher precision.

The paper is structured as follows. After this introduction, section 2 discusses
related work and projects. The main contribution of the paper is the algorithm
for retrieving semantically pertinent LOs from a given knowledge base. The
algorithm is presented in section 3, and explicitly discussed and evaluated in
section 4. Section 5 provides an outlook and discussion how the system can be
improved by user contributions and feedback, while section 6 concludes the paper
with a brief summary of achieved results.

2 Related Work

Instead of the traditional Question Answering (QA) as being subject in linguis-
tics and information retrieval [17], our approach is not targeted to compute a
1 http://www.linckels.lu/chest
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coherent answer being expressed in NL. We simply provide a set of interrelated
resources (LOs), which contain the information that is necessary to answer the
user’s question. The user has to read the provided LO(s) to obtain an answer.

We address three different approaches related to document matching and
retrieval based on DL inferences. First, an approach for matching documents
based on non-standard inferences in the DL sub-languages ALNS,ALN ∗, and
ALE is presented in [9]. A matching problem modulo equivalence and modulo
subsumption is of the form C ≡? D and C v? D respectively, where C is
a description and D a pattern. A solution or matcher of these problems is a
substitution σ such that C ≡ σ(D) and C v σ(D), respectively. The solution is
based on computing homomorphisms between description trees. Although this is
an excellent solution for dealing with complex descriptions such as for comparing
complete documents, it is less appropriate for our purpose. In our case, LOs
are described by simple semantic annotations with few role-imbrications. The
resulting description trees are rather flat and comprise rarely more than two
levels.

Second, the concept covering problem [7] is based on DLs with structural sub-
sumption. The proposed algorithm for identifying the best cover relies on the
computation of minimal transversals in a hypergraph. The algorithm has been
implemented in the project MKBEEM (Multilingual Knowledge Based European
Electronic Marketplace). That solution is very pertinent for our e-Librarian Ser-
vice because it always finds the best cover, i.e., the best matching LOs w.r.t. the
user’s question (see section 3.2).

Another definition of the concept covering problem that eliminates the limi-
tation of DLs to provide structural subsumption has been presented in [5]. There,
the concept covering problem is based on the concept abduction problem (CAP)
[19], which is able to provide an explanation if subsumption does not hold. It
is stated as follows: S (supply) and D (demand) are two descriptions in a DL
L, and satisfiable in a terminology T . A CAP, identified by < L, S, D, T >, is
finding a concept H ∈ L (hypotheses) such that T |= S uH v D, and moreover
S u H 6≡ ⊥. The algorithm was implemented in a project for semantic-based
discovery of matches and negotiation spaces in an e-marketplace. One of the
weaknesses of this solution is that does not always return an optimal cover.

We decided to base our e-Librarian Service on the concept covering problem
as presented in [7] because for our application DLs with structural subsumption
provide sufficient expressiveness. Furthermore, our system must always return an
optimal cover. Finally, the solution is simple and adapted to our LO descriptions.

3 The LO Retrieval Problem

In this section we describe the retrieval aspect of our e-Librarian Service that can
be perceived as a specialization of passage retrieval techniques. Passage retrieval
techniques have been extensively used in standard IR settings, and have proven
effective for document retrieval when documents are long or when there are
topic changes within a document, thus making it an appealing candidate for
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the present work [14]. By retrieval we refer to answering a user’s question by
identifying only the semantically most pertinent LOs according to the given
question. In addition, the system must be able to quantify the quality of the
yielded results, i.e., to measure the semantic distance between the user’s query
and the identified LOs. This measure is also used to rank similar results.

Our solution is based on the concept covering problem and on the quantifi-
cation of the semantic difference. The novelty of our approach is that it always
proposes a solution to the user, even if the system concludes that there is no
exhaustive answer. By quantifying the missing and supplementary information,
the system is able to compute and visualize the quality and pertinence of the
yielded LO(s).

3.1 Least Common Subsumer and Semantic Difference

The least common subsumer (lcs) [2] stands for the least concept description
(w.r.t. subsumption) that subsumes a given set of concept descriptions.

Definition 1 (Least Common Subsumer). Let L be a DL and C, D,E be
L-concept descriptions. The concept E is a lcs of C,D iff it satisfies:

– C v E and D v E, and
– E is the least L-concept description with this property, i.e., if E′ is an L

concept description satisfying C v E′ and D v E′, then E v E′.

Definition 2 (Semantic Difference). [21] Let L be a DL and C, D ∈ L two
concept descriptions with C v D. Then the semantic difference C−D is defined
by:

C −D = maxv{E ∈ L : E uD ≡ C}.
This definition of semantic difference requires that the second argument sub-

sumes the first one. However, the semantic difference C − D between two in-
comparable descriptions C and D can be given by computing the least common
subsumer of C and D:

C −D = C − lcs(C, D).

3.2 Finding Pertinent Documents

Although the principle of the concept covering problem (see section 2) is the most
pertinent solution for our E-Librarian Service, we think that a user might not
be satisfied if the delivered answer to his/her precise question is a concatenation
of different — normally not related — resources from the knowledge base. First,
there is no transition between the different LOs in the answer. Second, we risk
that there is mean to much information because the original concept covering
problems adds all LOs to the answer until the answer is covered completely.

We learned from experiments [11] that users prefer few but precise answers
even if these answers are not complete, rather than a set of different concatenated
documents. This assertion is confirmed by pedagogical analyzes, e.g., [10, 6, 8, 4]

142

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web



that students are searching for one — the best — answer, and do not consider
different delivered search results. They would rather reformulated their query
until they receive only a few results, or until they find the perfect result.

Our modified concept covering problem defines a cover as a concept descrip-
tion C w.r.t. a terminology T that shares some information with another concept
description Q w.r.t. T .

Definition 3 (Cover). Let L be a DL with structural subsumption, T be an
L-terminology and CT = {Ci 6≡ ⊥, i ∈ [1, n]} the set of concept descriptions
occurring in T . Then Cj ∈ CT is a cover of a L-concept description Q 6≡ ⊥ if
Q− lcsT (Q,Cj) 6≡ Q.

The best cover can be defined based on the remaining information in the
query (denoted as Miss) and in the cover (denoted as Rest). The Miss is the
part of the query that is not part of the cover, and the Rest is the information
that is part of the cover but not required by the query.

Definition 4 (Miss and Rest). Let Q,C be be two L-concept descriptions.

– The Miss of Q w.r.t. C, denoted as Miss(Q,C) is defined as follows:
Miss(Q,C) = Q− lcsT (Q,C).

– The Rest of Q w.r.t. C denoted as Rest(Q,C) is defined as follows:
Rest(Q, C) = C − lcsT (Q,C).

The best cover can be assumed as being the cover with the smallest Miss
and Rest. Therefore, we have to quantify the Miss and the Rest, i.e., measure
the size of a L-concept description.

Definition 5 (Size of a Concept Description). The size of a L-concept
description, denoted as | · | is inductively defined by:

– |⊥| = |>| = 0,
– |A| = |¬A| = 1,
– |∃r.C| = |∀r.C| = 2+ |C|,
– |C uD| = |C tD|= |C| + |D|,
– |¬C| = |C|.

Definition 6 (Best Cover). Let C,D be two L-concept descriptions. A cover
C is called a best cover w.r.t. Q using a terminology T iff:

– C is a cover w.r.t. Q using T , and
– there does not exists any cover C ′ of Q using T such that

(|Miss(Q,C ′)|, |Rest(Q, C ′)|) < (|Miss(Q,C)|, |Rest(Q,C)|)
where < stands for the lexicographic order.

By choosing a lexicographical order we give preference to a minimized Miss,
e.g., for (Miss,Rest), the couple (1,2) < (2,1) because the first couple has a
smaller Miss than the second one. In fact, the e-Librarian Service aims to give
an exhaustive answer in the first place, i.e., to yield an answer that covers the
user’s query as much as possible, even if there is more information in the answer
than required. Only in the second place, the Rest is considered in order to rank
the results that have the same Miss.
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3.3 Algorithm for the LO Retrieval Problem

Our best cover algorithm is called LOFind (see figure 1). As input a query Q is
expected that was translated into a L-concept description, and a L-terminology
T , i.e., a set of semantic descriptions of LOs. The output of LOFind is the set E
of best covers w.r.t. Q using T .

Require: a query Q 6≡ ⊥, a set of concept descriptions CT = {Ci 6≡ ⊥, i ∈ [1, n]}
Ensure: a set of best covers E = {Cj ∈ CT , j ∈ [0..n]}
1: E ← ∅
2: MinMiss ← +∞
3: for each Ci ∈ CT do
4: if Q− lcs(Q, Ci 6≡ Q) then
5: if |Miss(Q, Ci)| < MinMiss then
6: E ← Ci

7: MinMiss ← |Miss(Q, Ci)|
8: else if |Miss(Q, Ci)| = MinMiss then
9: E ← E ∪ Ci

10: end if
11: end if
12: end for

Fig. 1. The algorithm LOFind

The algorithm works as follows. Let us suppose that CT is the set of semantic
descriptions of the LOs in our knowledge base. Then, each LO is tested if it is a
cover (line 4). If so, then it will only be maintained, if either the size of its Miss
is smaller than (line 5) or equal to (line 8) the smallest Miss found up to now. In
the first case, the current LO replaces all the former best cover-candidates (lines
6 + 7). In the second case, the current LO is added to the best cover-candidates
found up to now (line 9).

3.4 Illustrating Example

LO1 ≡ Protocol
LO2 ≡ ∃howWorks u TCP/IP
LO3 ≡ Protocol u∃hasTask.ErrorHandling
LO4 ≡ Protocol u∃hasTask.FlowControl
LO5 ≡ FlowControl

Fig. 2. Example of a terminology of LO definitions.

For the sake of simplicity, let us suppose that there are 5 LOs in the knowledge
base. The corresponding semantic descriptions are shown in figure 2. We use the
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DL sub-language EL that has structural subsumption and allows conjunction
(u), existential restriction (∃r.C), and the top concept (>). The content of the
LOs deals with the following topics:

LO1: information about protocols in general,
LO2: explanation how the protocol TCP/IP works,
LO3: explanation that error handling is a task of a protocol,
LO4: explanation that flow control is a task of a protocol,
LO5: explanation of flow control.

Step 1: Expanding the Terminology. Expanding the terminology means,
making explicit some implicit knowledge. The expanded terminology uses the
example taxonomy about networking (see figure 3) and is shown in figure 4.

 

� 

Communication Service 

Protocol 

TCP/IP 

ProtocolService 

FlowControl ErrorHandling 

Fig. 3. Sample of a taxonomy about networking.

LO1 ≡ Protocol u Communication
LO2 ≡ ∃howWorks u TCP/IP u Protocol u Communication
LO3 ≡ Protocol u Communication u∃hasTask.(ErrorHandling u ProtocolService u Service)
LO4 ≡ Protocol u Communication u∃hasTask.(FlowControl u ProtocolService u Service)
LO5 ≡ FlowControl u ProtocolService u Service

Fig. 4. Example of an expanded terminology.

Step 2: Computing the Covers. Let us suppose that the user has entered
the NL question “What are the tasks of TCP/IP? ”, and that the question was
translated into the following EL-concept description: Q ≡ TCP/IP u ∃hasTask.
In the expanded form the user’s question can be denoted as:

Q ≡ TCP/IP u Protocol u Communication u ∃hasTask.
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The aim is now to identify the LOs within the expanded terminology that
cover the expanded query, i.e., that have something in common with Q; these
are: LO1, LO2, LO3, and LO4.

Step 3: Computing the Best Cover. Now, for each cover the according Miss
and Rest have to be computed. The best cover is the one with minimal Miss and
Rest, with a preference to the minimal Miss.

size of the Miss size of the Rest
LO1 |TCP/IP u∃hasTask|= 3 |>|= 0
LO2 |∃hasTask| = 2 |∃howWorks| = 2
LO3 |TCP/IP| = 1 |ErrorHandling u ProtocolService u Service| = 3
LO4 |TCP/IP| = 1 |FlowControl u ProtocolService u Service| = 3

Conclusion: LO3 and LO4 are the best covers and are delivered as an answer to
the user’s query. Both LOs have the same Miss and Rest, 1 and 3, respectively so
that their rank is the same. It is interesting to mention that the concept TCP/IP
does not appear in one of the best covers, although it appears in the query and in
LO1. This shows that the best cover is not computed on a statistical evaluation
of keywords, but that it is in fact the result of the logical inference.

Other covers, usually those where the size of the Miss is greater by one than
the size of the Miss of the best cover, are yielded as second choice, here: LO2.

4 Evaluation

Our algorithm was compared in a benchmark test with a traditional keyword-
based search engine. Unfortunately, no similar measurements are available for
the related projects referred in section 2.

4.1 Knowledge Base and Set of Questions

We used the online tele-TASK archive2 that contains hundreds of recorded uni-
versity lectures, as knowledge base. We selected the lecture series about Internet-
working, which is a set of 30 units with a total of 38 hours of recorded lectures.
We split the 30 lecture units into 1000 smaller LOs. A set of 123 NL questions
about the topic Internetworking has been created. We tried to work out questions
as students would ask, e.g., “What is an IP-address composed of?”, “How does a
datapacket find its way through a network?”, “What is a switch good for?”, “Do
internetprotocols guarantee an error-free communication?”. We also indicated
for each question the relevant answer(s) that should be delivered.

2 http://www.tele-task.de/
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4.2 Evaluation Constraints

We call an answer from the e-Librarian Service a perfect hit if it covers the query
completely, i.e., where the Miss and the Rest compute to zero. We call an answer
from the e-Librarian Service a sufficient hit if it covers the query completely, but
the answer contains more information than necessary, i.e., where the Miss equals
zero and the Rest computes to some positive value.

For the evaluation we only considered the best covers with minimal Miss, not
the second choices. This means that if the e-Librarian Service did not deliver an
exhaustive answer as best cover but only as second choice, then we considered
the answer to be wrong.

The results achieved with our e-Librarian Service have been compared with
the results of a traditional keyword-based search engine. The keyword-based
search engine is working in the usual way by browsing the textual content of the
LOs. The textual content was generated by converting the PowerPoint-slides into
pure text. A LO is considered to be a potential answer, if at least one (relevant)
keyword from the user’s query can be found. The keyword-based search engine
does not consider stop words, i.e., words with no semantic relevance.

4.3 Benchmark Results

The benchmark test was performed on a standard Windows XP computer with
a 1.4 GHz CPU and 512 MB of RAM. The e-Librarian Service has been imple-
mented as a Java application. The processing time of the first question is about
200 ms, while for the rest it is less than 10 ms. The outcomes of the benchmark
test are the following.

First, the e-Librarian Service scored better than the keyword search regarding
the pertinence of the results. In most cases the e-Librarian Service yielded the
correct answer:

perfect hits sufficient hits total queries
e-Librarian Service 93 (76%) 112 (91%) 123 (100%)
Keyword search 9 (7%) 103 (84%) 123 (100%)

These numbers emphasize the pertinence of our e-Librarian Service as an
appropriate tool for an educational environment; in most cases the learner gets
a satisfying, even perfect, answer from the system. The fact that some answers
contain little more information than necessary is no problem at all and can even
have a positive effect for the learner.

Second, the precision of our solution is confirmed by the fact that in average
less than 0.7 LOs are delivered in addition to the perfect answer (compared to 6
LOs for the keyword-based search). Figure 5 shows the number of supplementary
LOs being delivered in addition to the expected answer. This important outcome
points out that the e-Librarian Service usually is achieving the correct answer
with no additional information (for 93 out of 123), and in a few cases one (12
out of 123) or two (6 out of 123) supplementary LOs. The keyword-based search
engine in general delivers a lot more of secondary LOs.
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Fig. 5. Number of supplementary LOs yielded with the optimal answer.

This result is an important evidence for the pertinence of our tool in an
educational environment; the user asks a precise question (or enters a keyword
phrase) and expects few but concise answers. However, the keyword-based search
leaves the user with the awkward task of filtering the pertinent answers out of
the noise.

Third, in information retrieval the performance of a retrieval algorithm is
measured by recall and precision [3]. Let use emphasize that for each question
in the test set, there are only few relevant documents to be retrieved (in average
1.29 relevant answers per question). For this reason, we refer only to an average
recall-level rather than to the 11 standard recall-levels. For an average recall-
level, the precision of the e-Librarian Service is 84.41%, compared to 40.42% for
the keyword-based search. These numbers confirm the previous outcome that our
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algorithm has a very high precision about the pertinence of the yielded answers;
its average precision is more than twice as much than the precision achieved
with the keyword-based search.

5 Improving Search Result Quality with User Feedback

As shown in the previous section, our e-Librarian Service is able to provide suf-
ficient, even perfect, answers for most user questions. To further improve the
quality of the search results, we decided to make use of the user’s intellectual
capabilities. The user has the possibility to vote for appropriate answers. Fur-
thermore, we discuss possible diversification of user feedback and address the
problem of general scalability of the e-Librarian Service.

5.1 Direct User Feedback

Direct user feedback can be achieved in different forms. The most simple way is
to let the user determine whether a given result set of LOs really is appropriate
according to his/her question or not. As usual, the user enters a query and the
e-Librarian Service returns a list of LOs ordered by their computed rank. For
each result a check box is displayed and the user has the possibility to indicate
the appropriateness (and therefore indirectly also the quality) of the answer by
leaving a mark in the check box. The e-Librarian Service has to keep track of
user feedback and to channel that data into the rank computation of the LO
result sets. Of course, different users might have different opinions about the
accuracy of given answers.

The e-Librarian Service faces the problem to provide both an objective answer
as well as a feedback-driven and therefore more or less subjective answer. For
keeping track of the user feedback, an index data structure is maintained to
provide efficient access. In the index, the users’ questions (translated into DL
formulas) are mapped with appropriate LOs and connected with a feedback-
based computed rank (feedback rank) of each LO w.r.t. the user’s question. In
the simplest approach, the feedback rank corresponds to the number of users
giving a positive feedback. The index is of the following form:

< user question, {LO, feedback rank} > .

For each user question the index provides access to the most appropriate LOs
according to the user given feedback.

To avoid the aforementioned problem of objective and subjective answers, the
e-Librarian Service displays both the (objective) best covers and the (subjective)
feedback-based results. Thus, the user has the possibility to see objectively com-
puted results and results according to the opinion of other users. If both results
fit in the way that they both display the same top-rank result, the quality of our
algorithm is confirmed.

User feedback might also serve as a personalization feature. For registered
users the e-Librarian service is able to provide answers that have already been
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confirmed by the user’s personal feedback. For this reason, the index data struc-
ture has to be extended to include also a set of user names for all users that
have given feedback for a distinct LO:

< user question, {LO, feedback rank, {user names}} > .

In the same way, a more distinguished feedback is possible by giving the
user the possibility to quantify the result’s accuracy of fit within a given range
of numbers. Instead of marking a simple check box (range: 0/1), the user has
to enter a number corresponding to the appropriateness of the result set, e.g.,
−3 =does not fit at all . . . +3 =fits perfectly. Now, the index data structure has
to provide the average user feedback for each LO as well as a set of user names
including each user’s personal feedback:

< user question, {LO, avg. feedback rank, {user name, user feedback}} > .

The probability that any two users are asking the same complex question
obviously is rather low. Thus, in addition to an index entry corresponding to the
complex (composite) user questions, supplementary index entries can be created
for all single context literals of the DL formula that represent the user’s question
(by concept literal we refer to any atomic DL formula or its negation). There,
we have to take the following into account: A complex user question might
perfectly match with a given answer. But, for a single concept literal within
the user’s question this answer might indeed be appropriate but not perfect.
Therefore, feedback-hits for complex questions have to get full feedback score,
while feedback-hits for single concept literals (within the user’s question) do only
get a partial feedback score.

5.2 Diversification of User Feedback

Besides taking into account simple user feedback data, the question, if a given
LO is well suited to provide the right answer to a user’s question also depends
on the user’s expectations. Different users asking the same question might ex-
pect different answers. This comes, because different users prefer different levels
of complexity, of difficulty, and of elaborateness [15]. Moreover, different users
come from different background, have different motivations, and thus, different
context.

Simple user feedback can be extended in different dimensions by providing
facilities to express the users customized requirements and by giving the user
the possibility to quantify those characteristics for given LO result sets. The
user must be able to specify, if (s)he prefers complex and precise LOs or if a
short overview about the requested topic is sufficient for his/her purposes. The
other way around, the user should also be able to provide feedback data about
the characteristics of a given LO. In this case, for each result set of LOs several
switches have to be implemented (checkboxes, text fields, or sliders) to give the
user the possibility to indicate his/her opinion about the diverse qualities of the
presented LOs.
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If the e-Librarian Service keeps track of the user’s actions, also statistics can
be gathered about LO usage. If a user has already accessed and used a given
LO, this information can be used to customize the computation of the best
cover w.r.t. the previous knowledge of the user. Anyway, connecting the logical
inference capabilities of the e-Librarian Service with sophisticated user feedback
information seems to be a promising approach to augment the quality of the
computed search results and will be subject of further research.

6 Conclusion

In this paper we have proposed the e-Librarian Service CHESt based on a re-
trieval algorithm that returns only semantically pertinent LOs from a multimedia
repository w.r.t. a user’s query given in NL. We have applied two non-standard
inferences of DLs — the least common subsumer (lcs), and the difference oper-
ation — to compute the best cover of the user’s query. The e-Librarian Service
has been developed in the context of the Web University project3, which aims
at exploring novel internet- and IT-technologies in order to enhance university
teaching and research. Our solution is particularly interesting for education in a
self-directed learning environment, where it fosters autonomous and exploratory
learning [11].

A similar e-Librarian Service for learning fractions in mathematics with a
different retrieval algorithm has already been tested successfully in school [11].
We were able to measure a relevant improvement in the students’ scores. This is
mainly attributed to the fact that the students were more motivated by using our
system — because they quickly found the pertinent answer to their question(s)
— and therefore put more effort into learning and acquiring new knowledge.

Currently, we are working to improve the quality of the achieved results by
implementing approaches concerning the integration of user feedback and social
networking information as described in section 5.
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