
Performance of Hybrid WSML Service Matching
with WSMO-MX: Preliminary Results

Frank Kaufer1 and Matthias Klusch2

1 Hasso-Plattner-Institute at University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, Potsdam,
frank.kaufer@hpi.uni-potsdam.de

2 German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, Saarbrücken

klusch@dfki.de

Abstract. The WSMO-MX matchmaker applies different matching fil-
ters to retrieve WSMO-oriented service descriptions that are semanti-
cally relevant to a given query with respect to seven degrees of hybrid
matching. These degrees are recursively computed by aggregated valu-
ations of ontology based type matching, logical constraint and relation
matching, and syntactic similarity as well. In this paper, we provide
preliminary results of our experimental evaluation of the performance of
WSMO-MX. In summary, it turned out that hybrid matching of WSML-
MX services performs reasonably well.

1 Introduction

The problem of efficiently retrieving relevant services in the envisioned semantic
web has been solved so far by only a few approaches for services described in
OWL-S such as [1, 2], and WSML such as [3, 4, 13]. Though, existing propos-
als for rule based service mediation in WSMO do not provide a general purpose
matchmaking scheme for services in WSML. Recently, this gap has been filled by
a hybrid semantic matchmaker, called WSMO-MX, that applies different match-
ing filters to retrieve extended WSML services that are semantically relevant to
a given query including the goal to be satisfied [5].

For this purpose, both services and goals are described in a Logic Program-
ming (LP) variant of WSML, called WSML-MX, which is based on WSML-Rule.
The hybrid matching scheme of WSMO-MX combines and extends the ideas of
hybrid semantic matching realized by OWLS-MX [2], the object-oriented struc-
ture based matching proposed by Klein & König-Ries [6], and the concept of
intentional matching introduced by Keller et. al [7]. WSMO-MX v0.4 is avail-
able at http://projects.semwebcentral.org/projects/wsmomx/.

In this paper, we build upon this work and show the results of our experi-
mental evaluation of the performance of WSMO-MX based on a first, admittedly
small service retrieval test collection for WSML services derived from the DIANE
test collection.

63

The remainder of this paper is structured as follows. Section 2 provides an
overview on how WSMO-MX works, while the testing environment and the pre-
liminary results of the evaluation of its retrieval performance is given in section
3. Related work is strived in section 4, and section 5 concludes this paper.

2 WSMO-MX Overview

In this section, we briefly summarize the functionality of the WSMO-MX match-
maker and provide a brief example. For further details on the functionality and
implementation of WSMO-MX, we refer to [5].

2.1 Service description in WSML-MX

WSMO-MX pairwisely matches services in a formally grounded variant of
WSML called WSML-MX directly in F-Logic [8, 9]. It adopts the main and
clearly motivated elements required for service matching from WSML, that are
goal, service, capabilities, preconditions, and postconditions but not effect
and assumption. Central to describing services in WSML-MX is the notion of
derivative which is an extended version of the object set introduced by Klein
and König-Ries [6].

A derivative DT in WSML-MX encapsulates an ordinary concept T (in this
context called type) defined in a given ontology by attaching meta-information
mainly about the way how T can be matched with any other type. Such in-
formation is defined in terms of different meta-relations of the derivative DT .
The type T is defined to be either atomic or a complex type with relations,
the derivative DT can also have a set of relations different from T , though this
set is empty by default. A state is a set of state parts, which are derivatives
each defined as atomic, or as complex by means of relations with derivatives as
range. Hence, any service in WSML-MX can be represented as a directed object-
oriented graph with derivatives considered as nodes and relations between them
as edges, as shown in figure 1.

This variant of WSML allows for constraints on both relations and derivatives
formulated in the full Horn fragment of F-logic. Hence, WSML-MX constraints
are as expressive and, in general, only semi-decidable as are WSML-Rule ax-
ioms. However, the WSMO-MX matchmaker approximates query containment
through means of relative query containment for constraint matching. Moreover,
the matching of parts of WSML-MX expressions represented as acyclic object-
oriented graphs without constraints is decidable in polynomial time.

The emphasis of WSML-MX on these parts of service modelling is motivated
not only by clear separation of computationally tractable elements but the fact
that it allows the matchmaker for a more detailed explanatory feedback to the
user and more differentiated matching valuations. This is a lesson learned from
matchmaking approaches relying on pure query containment which requires high
ontological homogeneity and results in single match predicates based on overall
and undifferentiated logical implication between goal and service descriptions.

64

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

Webservice_D...
type: Webservice
...

capability

Capability_D...
type: Capability
... postconditionprecondition

...

...

... ...

...

...

... ...

State

StatePart

Fig. 1. Service derivative in WSML-MX

An example for a service in WSML-MX is shown in figure 2; the service offers
tickets for any trip between any two German towns, but if the user departs from
Berlin, her destination must be Hamburg.

State
Webservice_D2

capability

Capability_D4
postcondition Ticket_D5

param->>out
constraint->>c2

GermanTown_D1

param->>in

GermanTown_D2

param->>in

Date_D4

param->>in

departure arrival date

FORALL X. satCons(X,c2) <- (X[departure->>berlin] -> X[arrival->>hamburg]).

Client_D1

param->>in

purchaser

Town_D8
param->>in

livesAt

Fig. 2. Example service in WSML-MX

2.2 Hybrid matching degrees

The result of matching a derivative DG from a goal description with a derivative
DW from a service description is a vector v ∈ R7 of aggregated valuations of
(a) ontology based type matching, (b) logical constraint matching, (c) recursive
relation matching, and (d) syntactic matching. In this respect, the matching of
WSMO-MX is hybrid.

65

Each real-valued entry in the so called (matching) valuation vector v =
(π≡, πv, πw, πu, π∼, π◦, π⊥) with πi ∈ [0, 1] (i ∈ {≡,v,w,∼,u, ◦,⊥}) and∑

πi = 1, denotes the extent (similarity score) to which both derivatives DG and
DW match with respect to the hybrid semantic matching degrees πi of WSMO-
MX. These degrees are the logical relations equivalence, plug − in known from
software component retrieval [10] or the similar rule of consequences from Hoare
logic [11], inverse − plugin, intersection and disjunction (fail) as degrees of
logic based semantic match.

The degree of fuzzy similarity refers to a non-logic based semantic match
such as syntactic similarity or non-subconcept relations with respect to the type
graph, while the degree neutral stands for neither match nor fail, hence de-
clares the tolerance of matching failure. The set-theoretic semantics of the hy-
brid matching degrees are given in Table 1 based on the relations between the
maximum possible instance sets of the derivatives DG and DW , denoted by G
and W. Since we use the heuristic relative query containment for the constraint
matching, these sets are restricted to instances in the matchmaker knowledge
base which satisfy the constraints. We acknowledge that it can not be taken
for granted that the matchmaker is in possession of instances for every deriv-
ative with assigned constraints. However, these precedence instances could be
retrieved by tracking service executions, sampling services/descriptions (services
without real world effects) or - regarding goal derivative instances - by conducting
systematic questionnaires. Furthermore, constraint matching could be ignored
(configuration option in WSMO-MX) for coarse service discovery and applied for
verification purposes in the service composition, when instances are available.

order symbol degree of match pre post

1 ≡ equivalence G = W
2 v plugin G ⊆ W W ⊆ G
3 w inverse-plugin G ⊇ W W ⊇ G
4 u intersection G ∩W 6= ∅
5 ∼ fuzzy similarity G ∼ W
6 ◦ neutral by derivative specific definition

7 ⊥ disjunction (fail) G ∩W = ∅

Table 1. Degrees of hybrid semantic matching of WSML service and goal derivatives

2.3 Hybrid matching process

In order to compute the degrees of hybrid semantic matching of given goal and
service derivatives in WSML-MX, WSMO-MX recursively applies different IOPE
matching filters to their preconditions and postconditions (inherently including
service inputs and outputs as in WSML, but with an explicit parameter flag
similar to the variables in [6]), and returns not only the aggregated matching

66

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

valuation vector but also annotations of the matching process results as a kind
of explanatory feedback to the user. That facilitates a more easy iterative goal
refinement by the user in case of insufficient matching results. The annotations
have a generic format and can be employ for several purposes. In the current
version, WSMO-MX uses them to generate natural language explanations of
the respective matching deviations. In the future they could also be used for
graph-based visualizations of the matching result.

More concrete, the state of the goal is matched with that of the service
by matching their state part derivatives and then recursively by the pairwise
matching of relation range derivatives of equally named relations. Subsequently,
WSMO-MX computes the maximum weighted bipartite graph match, where
nodes of the graph correspond to the goal and service state parts. The re-
spectively computed valuation vectors act as weights of edges existing between
matched state parts.

At each step in the recursion, the parameter matching filter is applied first,
since its result, an annotation record, is not valuated for any of the hybrid
matching degrees. Then each of the logic based semantic matching filters (type,
constraint, and relation matching) is applied. While type matching, in essence,
bases on the subconcept relations and path distance between types (classes) in
the matchmaker ontology, F-logic constraint matching is computed by means of
relative query containment, and relation matching recursively matches the ranges
of equally named relations with each other. Syntactic matching is performed in
case one of these filters fails (compensative), or complementary in any case, if not
specified differently. The user can also ask for just a first coarse-grained filtering
by means of exclusively syntactic matching without any semantic matching.

Finally, all valuation vectors computed during recursive matching of goal and
service derivatives are aggregated into one single valuation vector. For aggrega-
tion, each individual valuation vector is weighted for the respective matching
filter as specified by the user for the given goal; the weighting is assumed to be
equal by default. This aggregated valuation of hybrid matching degrees is then
recomputed with respect to the intentions of the considered derivatives.

The overall result of the matching process is a ranked list of services with
their hybrid matching valuation vector and annotations. Services are ranked with
respect to the maximum value of hybrid semantic matching degrees in descending
order (cf. table 1), starting with π≡.

2.4 Example

Goal, service, ontology. Suppose the user defines a goal derivative Ticket D4
as shown in figure 3. That is, she is looking for any ticket for a trip between
two arbitrary towns, but if it starts in Berlin, then it must not end in Bremen.
Please note, that the user may specify matching relaxations for any object of
the goal as exemplified, but also different weights for the matching filters to be
applied. In this example, we assume the filters to be equally weighted.
The part of the type hierarchy in the matchmaker ontology and all instances
used in this example are shown in figure 4.

67

StateGoal_D2

capability

Capability_D3
postcondition

Ticket_D4

Town_D3

typeSimRel->>sub
param->>in

Town_D4

typeSimRel->>sub

Date_D3

param->>in

departure arrival date

typeSimRel->>sub
param->>out
missingStrat@(via)->>assumeEquivalent
constraint->>c1

Town_D5

typeSimRel->>sub
existensialIntension->>true

via

FORALL X. satCons(X,c1) <- (X[departure->>berlin] -> not X[arrival->>bremen]).

Customer_D1

purchaser

Town_D7

param->>in

residence

param->>in
synSimUsage->>compensative
synSimScope->>scpType
synSimMetric->>loi
synSimMinDegree->0.7

Fig. 3. Example goal in WSML-MX

In this example, the service derivative Ticket D5 given in section 2 will be
matched against the goal derivative Ticket D4 as follows.

Matching. Since the capabilities of both goal and service derivatives do not
include any precondition, the hybrid semantic matching of them is restricted to
the matching of their postcondition states.

1. match types: the types of Ticket D4 and Ticket D5 are equal. Hence the
valuation is v1 = (1, 0, 0, 0, 0, 0, 0).

2. match parameters: both are output parameters, no annotation necessary
3. match relations

(a) departure: the types of Town D3 and GermanTown D1 are not equiva-
lent, but Town D3 allows subtypes. Since GermanTown is a subconcept
of Town, the valuation is v2 = (0, 1, 0, 0, 0, 0, 0, 0).

(b) via: this relation is not defined for Ticket D3, but the missingStrat-
egy for this relation is assumeEquivalent yielding a valuation v3 =
(1, 0, 0, 0, 0, 0, 0, 0).

(c) arrival: analogous to departure types of the ranges of arrival are subtypes
and yield the valuation v4 = (0, 1, 0, 0, 0, 0, 0, 0).

(d) date: is equal in goal and service, hence valuated as v5 =
(1, 0, 0, 0, 0, 0, 0, 0)

(e) purchaser: type matching fails for Customer D1 and Client D1, but
compensative syntactic matching is allowed using loss of information
(LOI) metric. For the unfolding only the types of the derivatives should
be used (scpType), yielding the term vectors (Customer : 1, T own :
1, P erson : 1, Location : 1, T own : 1) and (Client : 1, T own :
1, P erson : 1, Location : 1, T own : 1) for Customer D1 and Client D1,

68

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

Town

Location

Station

Date

Thing

Ticket

Trainticket

GermanTown

Person

Customer Client

t1:Ticket_D4[departure->>berlin;
arrival->>leipzig; ...].

t2:Ticket_D4[departure->>berlin;
arrival->>kiel; ...].

t3:Ticket_D5[departure->>hamburg;
arrival->>bremen; ...].

t4:Ticket_D5[departure->>hamburg;
arrival->>hannover; ...].

t5:Ticket_D5[departure->>berlin;
arrival->>hamburg; ...].

t6:Ticket_D6[departure->>berlin;
arrival->>bremen; ...].

Fig. 4. Example ontology (type hierarchy and instances)

respectively. The similarity degree is 0.75, and therefore greater than
the declared minimum of 0.7. The resulting valuation vector is v6 =
(0, 0, 0, 0, 0, 0, 1, 0).

The aggregated relation valuation is v7 = v2+...+v6
5 = (0.4, 0.4, 0, 0, 0, 0.2, 0)

4. match constraints: Ticket D4 has the constraint c1. This is satisfied by
the instances t1, . . . , t5. The constraint c2, which is imposed on Ticket D5 is
satisfied by the instances t3, . . . , t5. That means the instances for Ticket D5
are a subset of those of Ticket D4 and hence the valuation is v8 =
(0, 1, 0, 0, 0, 0, 0, 0)

Finally, the aggregated valuation for the derivative matching of Ticket D4 and
Ticket D5 is

v9 = v1+v7+v8
3 = (7

15 , 7
15 , 0, 0, 0, 1

15 , 0).

This means that the advertised service is hybrid semantically matching with the
request. In particular, they are exactly and plug in matching to the same extent
(0.46).

3 Evaluation of performance

The preliminary experimental evaluation of the retrieval performance of WSMO-
MX focuses on measuring its recall, precision, and F1 based on an initial test
collection.

69

3.1 Testing environment

At the time of writing, there is no service retrieval test collection for WSML
available. As a consequence, for testing the performance of WSMO-MX, we had
to develop an inital test collection.

Service Retrieval Test Collection WSML-TC1. For this purpose, we borrowed
domain ontologies, service offers and requests from the DIANE project3, and
transformed parts of them from their F-DSD format into WSML-MX F-Logic.
The resulting test collection WSML-TC1 contains approximately 300 concepts
and over 800 instances in the domain ontology and 27 web services (offers) and
21 goals (requests) with over 1000 derivatives.

The goals belong to 5 different domains: book buy (10), cinema ticket booking
(4), tv set buy (5), printing request (3), train ticket service (5). They are chosen
such that they have large modeling overlaps making it more challenging for
syntactical and hybrid matching approaches which rely on syntactic similarity.
As usual, the relevance sets of WSML-TC1 were subjectively determined, that is
whether a service is relevant for a request depends on a categorical point of view.
That is motivated in part by the fact that semantic service matching shall be
employed in a wide range of use case scenarios, from crisp composition planning
to human oriented service discovery making it impossible for a general purpose
matchmaker like WSMO-MX to take every possible prerequisite (e.g. available
inputs/mediators, intended usage, etc) into account.

For the formal declaration of relevance in test environments, we de-
fine two further derivative meta relations: declaredRelevanceTo and
numberDeclaredRelevant . The first one is used to assign a goal derivative
with a service derivative, the latter counts all relevant web service derivatives
by means of the following rule:
FORALL D,C D[numberDeclaredRelevant->>C] <-

EXISTS R D[declaredRelevanceTo->>R] AND count(D,R,C) .

Hardware. For the performance tests, WSMO-MX v0.5 and OntoBroker v4.3
were deployed on a machine with Win XP, Apache Tomcat 6 (also tested with
5.5), Java 6 (also tested with Java 5), 2.39 GHz, and 2 GB RAM.

3.2 Experiments

On the basis of the very first and admittedly small test collection WSML-TC1,
we initially conducted six experiments to investigate the matchmakers behav-
ior with respect to different configurations for semantic, syntactic, and hybrid
matchings. We measured the retrieval performance of WSMO-MX in terms of
its recall, precision, and F1-measure as known from information retrieval [12].
The unfolding of derivatives for the syntactic matching is done online, results
are indexed only for one matching request, such that overall time needs are

3 http://hnsp.inf-bb.uni-jena.de/wiki/index.php/DSD

70

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

comparable between syntactic and non-syntactic matchings. For non-testing en-
vironments at least all offers could be indexed in advance of the user request
which reduces the effective matching time to some milliseconds.

Experiment 1: Pure logic based semantic matching At first we exam-
ined how well pure semantic matching performs, relaxing only derivative type
deviations in three steps of increasing degree of fuzzyness as follows.

– default : Only type deviations explicitly granted in the goal descriptions are
allowed

– subSuper : All service derivatives without explicitly defined type deviation
are considered sufficient similar to each other if their types have a logical
subconcept relationship

– relation-3 : Types are only required to have a maximum distance of 3 in the
taxonomy graph spanned by logical subconcept relation.

The strict configurations default and subSuper deliver solely relevant results.
While the default configuration only achieves a recall of below 0.7 (Fig. 5),
subSuper already delivers a full recall which is due to the fact that the test
collection relies on one homogenous domain ontology. Only the fuzzier relative-3
configuration attains 100% recall, but at the expense of a final 70% fallout and
a time consumption of almost 1 sec per query which is similar to 0,89 sec per
query for subSuper, but more than three times as much as needed for default
matching (0,3 sec).

Experiment 2: Syntactic similarity metrics This experiment is about com-
paring the four provided metrics for syntactic matching: Jaccard, Extended-
Jaccard, Multiset-Jaccard, and Cosine. Therefore the configuration was fixed to
alternative syntactic matching with a minimum matching degree of 0.6. For the
unfolding relations and types were considered up to a maximum depth of 2.

It could be observed that for the chosen threshold all metrics except Cosine
deliver 100% or almost 100% correct results. But only Jaccard and Multiset-
Jaccard also achieve a high recall of over 90%. Extended-Jaccard’s recall is below
0.6, but additional variations showed that this metric is the least vulnerable with
respect to precision. In total, figure 6 shows that Jaccard provides the best overall
results. In this configuration, Multiset-Jaccard is only slightly worse.

It is remarkable that the syntactic matching achieves full precision and almost
the same recall level as the pure semantic matching while consuming only a
sixth of the overall computation time. Furthermore the most computation is
needed for unfolding and index generation which could be done in advance of the
matching. But please note that the computation time of the semantic matching is
largely determined by the client-/server communication of the matchmaker and
the reasoner. With the new reasoner API of OntoBroker 5 this can be reduced
significantly and will be investigated in detail in future evaluations.

71

Fig. 5. Type matching

Experiment 3: Syntactic similarity threshold The minimal matching de-
gree is crucial for WSMO-MX because syntactic matching is applied to single
derivatives instead of whole service descriptions (like in OWLS-MX [2]). To find
a suitable threshold, we used the best configuration from the last experiment
(metric: Jaccard) and increased the threshold successively from 0.4 to 0.7 in
steps of 0.05. Beginning with 0.6 the syntactic matching delivers only relevant
documents, whereas 0.4 and 0.45 entail a final fallout of about 60% (50%) for
their final but late full recall. A threshold of 0.6 achieved still a recall of 0.9
(0.65 - 80%, 0.70 - 70%). The results for the thresholds 0.5 and 0.55 are closer
to those of 0.6-0.7 with a fallout of 10-20% and almost full recall. For this test
collection 0.6 can be considered as most suitable threshold. For ontologies of
more heterogeneous origin probably a lower threshold should be chosen.

Experiment 4: Unfolding service derivative scope In this experiment the
scope of a derivative used for syntactic matching is varied. For the last experi-
ments, both, types and relation were used. Now, this configuration is compared
to only using types or relations. As can be seen from the F1-measure graph in
figure 7, only combination of both leads to the best result. Separate consider-
ation of recall and precision shows that types determine the recall (100% but
final fallout of 40%) and the relations the precision (almost 100%, but recall only
50%). Syntactic matching with an unfolding of relations and types needs twice
as much time as with only one of both scopes.

72

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

Fig. 6. Metrics experiment: Jaccard, Cosine, Extended Jaccard, Multiset Jaccard

Experiment 5: Unfolding depth Beside the scope the unfolding result of a
derivative is dependent from the maximum unfolding depth. In this experiment
we increased the depth starting with 0 which means that only the derivative
itself is unfolded. From unfolding depth 3 on, no significant changes could be
observed. Figure 8 clearly shows that only the unfolding depths 2 and 3 yield
good results. Although the depths 0 and 1 achieve a final full recall, the high
fallout of 80% (55%) is not acceptable. Unfolding (and matching) for depth 2
takes twice as much time as for 1 which in turn takes twice as much as for depth
0.

Experiment 6: Hybrid vs logic based matching Finally, we compared the
performance of hybrid matching based on integrated and compensative syntactic
matching with best syntactic only matching as well as default and subSuper
matching from the first experiment. All four matchings have no fallout and
only differ with respect to recall (figure 9) and computation time. Though not
significant, the hybrid matching performed best, but only slightly better than
subSuper and the pure syntactic matching. However, on average, the syntactic
matching takes only 0,15 sec per query, whereas hybrid matching takes 0,61 and
subSuper 0,89. Overall, this indicates the usefulness of syntactic matching in
combination with, or instead of logical reasoning.

73

Fig. 7. Syntactic matching with different scopes: types (t), relations (r), both (tr)

4 Related work

WSMO-MX has been the first implemented full-fledged matchmaker for WSMO-
oriented services. The mediator based discovery approaches and discovery models
for WSML presented, for example, in [3, 4, 13] do not allow for general goal-
service matching, but require problem specific mapping, or construction rules.

In general, semantic service matching determines whether the abstract se-
mantic description of a requested service (or goal) conforms to that of an adver-
tised service based on their functional and non-functional semantics. This is at
the very core of any semantic service discovery framework. Current approaches
to semantic service matching can be classified according to

– what kinds and parts of service semantics are considered for matching, and
– how matching is actually performed in terms of syntactic similarity measure-

ments, logic based reasoning within or partly outside the service description
framework, or a hybrid combination of both

Most matchmakers for the semantic Web today perform service profile match-
ing while only very few perform process model matching or even a combined
functional service matching. Since all semantic Web service description frame-
works, except SAWSDL, provide a strict logic based profile semantics (IOPE),
it comes at no surprise that most matchmakers rely on crisp logic based rather
than hybrid semantic matching of semantic Web services of which only a few
approaches exist. Process matching approaches or even combined approaches are
more than rare leaving a lot of space for further research.

74

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

Fig. 8. Influence of unfolding depth

For WSMO-MX, we did improve on the idea of hybrid matching that has
been applied to OWL-S service matching by OWLS-MX [2] and in general by
LARKS [14] through allowing for a more fine-grained parametrisation, and inte-
grated interleaving of syntactic and semantic matching. In any case, the lack of a
sufficiently large and commonly agreed test collection for evaluating the perfor-
mance of semantic Web service matchmakers for any of the current description
frameworks is a general problem which can only be tackled by the community
as a whole. In this respect, the presented results of the performance evaluation
of WSMO-MX can only be considered preliminary.

5 Conclusions

WSMO-MX performs hybrid semantic web service matching based on both
logic programming, and syntactic similarity measurement. It applies differ-
ent matching filters to retrieve WSMO-oriented service descriptions that are
semantically relevant to a given query with respect to seven degrees of hy-
brid matching. These degrees are recursively computed by aggregated val-
uations of ontology based type matching, logical constraint and relation
matching, and syntactic similarity as well. WSMO-MX v0.4 is available at
http://projects.semwebcentral.org/projects/wsmomx/. In this paper, we pro-
vided preliminary results of our experimental evaluation of the performance of
WSMO-MX. In summary, it turned out that hybrid matching of WSML-MX
services performs reasonably well, and can outperform crisp logic based match-

75

Fig. 9. Hybrid (with syntactic similarity) vs. pure logic based (default, subsumption)
matching

ing. Furthermore, the experiments indicated that pure syntactic matching - if
parametrized appropriately - can keep up with logic matching regarding recall/
precision and significantly outperforms it with respect to computation time. We
are currently working on extending the test collection WSML-TC1, and the up-
dating of WSMO-MX for an upcoming release.

References

1. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery,
interaction and composition of semantic web services. Journal of Web Semantics
1(1) (2003) 28

2. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
owls-mx. In: Proceedings of 5th International Conference on Autonomous Agents
and multiagent Systems AAMAS, Hakodate, Japan (2006)

3. Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., Fensel, D.: A
logical framework for web service discovery. In: Proceedings of the ISWC 2004
Workshop on Semantic Web Services: Preparing to Meet the World of Business
Applications. Volume 119., Hiroshima, Japan, CEUR Workshop Proceedings (No-
vember 2004)

4. Valle, E.D., Cerizza, D.: Cocoon glue: a prototype of wsmo discovery engine for the
healthcare field. In: Proceedings of the WIW 2005 Workshop on WSMO Imple-
mentations. Volume 134., Innsbruck, Austria, CEUR Workshop Proceedings (June
2005)

76

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

5. Kaufer, F., Klusch, M.: Wsmo-mx: A logic programming based hybrid service
matchmaker. In: Proceedings of the 4th IEEE European Conference on Web Ser-
vices (ECOWS 2006), IEEE CS Press, Zurich, Switzerland. (2006)

6. Klein, M., König-Ries, B.: Coupled signature and specification matching for auto-
matic service binding. In: Proceedings of European Conference on Web Services
(ECOWS 2004). LNCS 3250, Erfurt, Germany, Springer (September 2004) 183

7. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic location
of services. In: Proceedings of the 2nd European Semantic Web Symposium
(ESWS2005), Heraklion, Crete (June 2005)

8. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42 (1995)

9. Angele, J., Lausen, G.: Ontologies in f-logic. In Staab, S., Studer, R., eds.: Hand-
book on Ontologies. Springer (2004) 29–50

10. Zaremski, A.M., Wing, J.M.: Specification matching of software components. In:
3rd ACM SIGSOFT Symposium on the Foundations of Software Engineering. (10
1995)

11. Hoare, C.: An axiomatic basis for computer programming. Communications of the
ACM (CACM) 12(10) (10 1969) 576–580

12. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
Addison-Wesley. pages 75ff, ISBN 0-201-39829-X (1999)

13. Lara, R., Corella, M.A., Castells, P.: A flexible model for web service discovery.
In: Proceedings of the 1st International Workshop on Semantic Matchmaking and
Resource Retrieval: Issues and Perspectives, Seoul, South Korea. (2006)

14. Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent
Systems 5 (June 2002) 173–2003

77

