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Abstract. Semantic service descriptions are frequently given using expressive
ontology languages based on description languages. The expressiveness of these
languages, however, often implies problems for efficient service discovery, espe-
cially when increasing numbers of services become available in large organiza-
tions and on the Web. To remedy this problem, we propose an efficient service
discovery/retrieval method grounded on a conceptual clustering approach, where
services are specified in Description Logics as class definitions [10] and they are
retrieved by defining a class expression as a query and by computing the individ-
ual subsumption relationship between the query and the available descriptions.
We present a new conceptual clustering method that constructs tree indices for
clustered services, where available descriptions are the leaf nodes, while inner
nodes are intensional descriptions (generalization) of their children nodes. The
matchmaking is performed by following the tree branches whose nodes might sat-
isfy the query. The query answering time may strongly improve, since the number
of retrieval steps may decrease from O(n) to O(log n) for concise queries. We
also show that the proposed method is sound and complete.

1 Motivation

First research efforts in the fields of service discovery and service matchmaking have
been concentrated on setting up methods and formalisms for describing the service
semantics, with the goal of making service retrieval an automatic or, at least semi-
automatic, task. Expressive ontology languages such as OWL-DL3 are increasingly
used to describe the ontology of a domain as well as specific resources available in
such a domain such as Web services [16, 10]. Thereby such resources may be described
as parts of an ABox, i.e. as instances of concept expressions [16]. Frequently, however,
it is also useful to fully exploit Description Logics (DLs) subsumption capabilities us-
ing concept expressions in a TBox, e.g. to describe all the possible concretizations of
a specific Web service resource (as proposed in [10]) using TBox concept expressions
to represent the generic Web service resources (and their instance to represent Web ser-
vice instantiations). Eventually, the services are retrieved by formulating a request as a
concept expression and checking each service description with regard to instantiation or

3 www.w3.org/2004/OWL/
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subsumption of the query. However, these approaches suffer heavily from runtime inef-
ficiency when the number of available services grows, since the number of instantiation
or subsumption checks grows linearly in the number of the available resources.

In spite of such limitations, most of the current researches that concentrate on the
automation of the service discovery and retrieval focus on the improvement of the effec-
tiveness of the matchmaking process rather than on the efficiency of the whole retrieval
process. Specifically, central to the majority of the current service matchmaking ap-
proaches is that the formal semantics of service descriptions is explicitly defined in an
ontology language such as OWL-DL [12] based on some decidable DLs [1]. In this way
service matchmaking can be performed by exploiting standard DL inferences [16, 22,
7, 13] sometimes jointly with the use of syntactic similarity measures [14].

Less attention has been dedicated to the improvement of the efficiency of the ser-
vice discovery task. In this paper we address such a problem, by proposing an original
tree indexing method, DL-tree, for services described as DLs concept expressions and
referring to an ontology acting as common knowledge base. The DL-tree is obtained by
exploiting a novel conceptual clustering algorithm for concept expressions, DL-link,
grounded on the use of a new, truly semantic similarity measure, GCS-based similar-
ity.

In the DL-tree, available service descriptions are found at the leaf nodes, while inner
nodes are generalizations of their children nodes. Germane to the heuristic construction
of DL-tree are non-standard inference procedures for computing the Good Common
Subsumer [3] of ALE(T ) concept expressions (see Sect. 2). Hence, in this paper, we
focus on the description and evaluation of services specified in this ontology language4.
Since the DL-tree is computed on the ground of the GCS-based similarity, it is different
from the subsumption-based taxonomy representing the ontology.

Once that the DL-tree for a set of service description is obtained, its structure may
be used to focus subsumption-based matching to the branches of the tree where nodes
satisfy subsumption (or instantiation) checks. By this way, we achieve a drastic reduc-
tion of the size of the retrieval space. Query answering time may strongly improve,
since the number of retrieval steps may decrease from O(n) to O(log n) for concise
queries and n resources. Because of the way that the DL-tree is constructed it heuristi-
cally achieves a good covering of the retrieval space while maintaining soundness and
completeness of the retrieval method.

In the following, we first summarize some important definitions of the DLs repre-
sentation languages, ALC and ALE , and some established reasoning procedures that
we use subsequently (Sect. 2). We define a semantic similarity measure, GCS-based
similarity, for ALE(T ) in Sect. 3. The measure combines extensional size of concept
expressions to reflect their model semantics and an intensional generalization of two
concepts, their Good Common Subsumer (cf. [3]) to consider also the structure of the
given ontology. The GCS-based similarity is used to cluster service descriptions into
the new indexing structure, DL-tree (instead of the DAG given by the ontology), using
a modified agglomerative clustering mechanism in Sect. 4. The DL-tree is exploited
in the service retrieval procedure defined in Sect. 5. In Sect. 6 a preliminary experi-

4 In the conclusion we will indicate some ways to generalize DL-tree to indexing of OWL-DL
concept expressions and instances.

16

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web



mental evaluation of the DL-tree indexing method is presented. Some related works are
examined in Sect. 7 while conclusions and future extensions of DL-Tree indexing are
presented in Sect. 8.

2 The Reference Representation Language

We recall the basics ofALC andALE [1] logics which adopt constructors supported by
the standard ontology languages (see the DL handbook [1] for a thorough reference).
In DLs, descriptions are inductively defined starting with a set NC of primitive concept
names and a set NR of primitive roles. The semantics of the descriptions is defined by an
interpretation I = (∆I , ·I), where ∆I is a non-empty set representing the domain of
the interpretation, and ·I is the interpretation function that maps each A ∈ NC to a set
AI ⊆ ∆I and each R ∈ NR to RI ⊆ ∆I×∆I . The top concept> is interpreted as the
whole domain ∆I , while the bottom concept ⊥ corresponds to ∅. Complex descriptions
can be built in ALC using primitive concepts and roles and the following constructors
whose semantics is also specified. The language supports full negation, denoted ¬C
(given any description C), it amounts to ∆I \CI . The conjunction of concepts, denoted
C1 u C2, yields an extension CI

1 ∩ CI
2 and, dually, concept disjunction, denoted C1 t

C2, yields the union CI
1 ∪ CI

2 . Finally, the existential restriction, denoted ∃R.C, is
interpreted as the set {x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)} and the value
restriction ∀R.C, has the extension {x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}.

ALE logic is a sub-language of ALC as only a subset of ALC constructors is al-
lowed. Specifically, concept disjunction is not allowed and only the atomic negation
can be used, namely complex concept descriptions cannot be negated.

The main inference in DLs is subsumption between concepts:

Definition 1 (subsumption). Given two descriptions C and D, C subsumes D, de-
noted by C w D, iff for every interpretation I it holds that CI ⊇ DI . When C w D
and D w C then they are equivalent, denoted with C ≡ D.

A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is the set of
definitions C ≡ D, meaning CI = DI , where C is the concept name and D is its
description. A contains assertions on the world state, e.g. C(a) and R(a, b), meaning
that aI ∈ CI and (aI , bI) ∈ RI . Subsumption based axioms (D v C) are also allowed
in the TBoxes as partial definitions. Indeed, C ≡ D amounts to D v C and C v D.

A related inference used in the following is instance checking, that is deciding
whether an individual is an instance of a concept [1]. Concept subsumption and in-
stance checking are examples of standard inference services in DLs. Besides of these,
we also use non-standard inference services.

The most used non-standard inference services are the Most Specific Concept of an
individual and the Least Common Subsumer of a given collection of concepts.

Definition 2 (Most Specific Concept). Given an ABoxA and an individual a, the most
specific concept of a w.r.t.A is the concept C, denoted MSCA(a), such thatA |= C(a)
and ∀D such that A |= D(a), it holds: C v D.
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In the general case of a cyclic ABox expressed in an expressive DL endowed with
existential or numeric restriction, the MSC cannot be expressed as a finite concept
description [1], thus it can only be approximated. Generally an approximation of the
MSC is considered up to a certain depth k. The maximum depth k has been shown to
correspond to the depth of the considered ABox, as defined in [17]. We will indicate
generically an approximation to the maximum depth with MSC∗.

Definition 3 (Least Common Subsumer). Let L be a description logic. A concept
description E of L is the least common subsumer (LCS) of the concept descriptions
C1, · · · , Cn in L (LCS(C1, · · · , Cn) for short) iff it satisfies:

1. Ci v E for all i = 1, · · · , n and
2. E is the least L-concept description satisfying (1), i.e. if E′ is an L-concept de-

scription satisfying Ci v E′ for all i = 1, · · · , n, then E v E′.

Depending on the DL language, the LCS need not always exist. If it exists, it is
unique up to equivalence. In the case of ALC and ALE logic, the LCS always exists [2,
1]. Specifically, in the case of ALC (as in every DL allowing for concept disjunction)
the LCS is given by the disjunction of the considered concepts, thus it is also ”uninter-
esting” as it does not reflect any ontological modeling decisions. In the case of ALE
logic, where disjunction is disallowed, the LCS is computed by taking the common
concept names in the concept descriptions (also in the concepts scope of universal and
existential restrictions w.r.t. the same role), without considering the TBox (see [2] for
more details).

The ALE LCS computed using such an approach often results to be very general.
For this reason the notion of LCS computed w.r.t. the TBox5 to which the concept
definitions refer has been introduced [3].

Definition 4 (LCS w.r.t. a TBox). Let L1 and L2 be DLs such that L1 is a sub-DL
of L2. i.e., L1 allows for less constructors. For a given L2-TBox T , let L1(T )-concept
descriptions be those L1-concept descriptions that may contain concepts defined in T .
Given an L2-TBox T and L1(T )-concept descriptions C1, . . . , Cn, the least common
subsumer (LCS) of C1, . . . , Cn in L1(T ) w.r.t. T is the most specific L1(T )-concept
description that subsumes C1, . . . , Cn w.r.t. T , i.e., it is an L1(T )-concept description
D such that:

1. Ci vT D for i = 1, . . . , n
2. if E is an L1(T )-concept description satisfying Ci vT E for i = 1, . . . , n, then

D vT E

Specifically, in [3], the case of L2 = ALC and L1 = ALE has been focused and it
has been proved that the ALE LCS w.r.t. an acyclic ALC TBox6 always exists, while it
cannot exist in case of cyclic or general7 TBoxes. A brute force algorithm for computing
the LCS w.r.t. a TBox has been also shown. Anyway, such an algorithm cannot be usable

5 The TBox can be described by a DL that is more expressive than ALE .
6 A TBox is called acyclic if it does not contain any concept definition in which the concept

name to define is also used in the concept definition. If this happens, the TBox is called cyclic.
7 A TBox in which inclusion axioms are defined is called general TBox.
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in practice. For this reason, an algorithm for computing an approximation of the ALE
LCS w.r.t. an ALC TBox has been presented. The computed approximation is called
Good Common Subsumer (GCS) w.r.t. a TBox and it can exist also when a general
TBox is considered. The GCS is computed by determining the smallest conjunction
of concept and their negations that is able to subsume the conjunction of the top level
concept names of each considered concept, and the same for the concepts that constitute
the range of existential and universal restrictions w.r.t. the same role. The GCS is more
specific than the LCS computed by ignoring the TBox, though in general it subsumes (or
is equivalent to) the least common subsumer w.r.t. the TBox (see [3] for more details).

3 GCS-based Similarity: A Semantic Similarity Measure for
ALE(T ) Concept Descriptions

In the last few years, several measures for assessing the similarity value between con-
cepts have been proposed in the literature. From them, two main approaches can be
distinguished: 1) measures based on semantic relations (also called path distance mea-
sures); 2) measures based on concept extensions and Information Content.

In the former approach all concepts are in an is-a taxonomy, and the similarity
value between two concepts is computed by counting the (weighted) edges in the paths
from the considered concepts to their most specific ancestor. Concepts with a few links
separating them are similar; concepts with many links between them are less similar
[23, 15, 6, 18].In the latter approach the similarity value is computed by counting the
common instances of the concept extensions [8] or by measuring the variation of the
Information Content between the considered concepts [9, 24, 5].

Since the ontology does not have the simple structure of a taxonomy, but it is rather
an elaborated DAG, similarity measures based on distances in the taxonomy cannot be
used. Furthermore, in the considered application domain, the typical scenario consists
of having a set of concept descriptions (the service descriptions) with no one neces-
sarily overlapping the others. Consequently also measures based on overlap of concept
extensions as well as measures based on Information Content cannot be used, since also
semantically similar concept could result to be totally different.

Hence, we define a new semantic similarity measure, the GCS-based similarity,
able to cope with the presented scenario. Moving from the principles of the measures
based on concept extension and Information Content, we propose a similarity measure
exploiting the notion of concept extension, but instead of counting the common in-
stances between two considered concepts, the similarity value is given by the variation
of the number of instances in the concept extensions w.r.t. the number of instances in
the extension of their common super-concept. The common super-concept is given by
the GCS of the concepts (see Sect. 2). The measure is formally defined in the following.

Definition 5 (GCS-based Similarity Measure). Let T be an ALC TBox. For all C
and D ALE(T )-concept descriptions, the Semantic Similarity Measure s is a function
s : ALE(T )×ALE(T ) → [0, 1] defined as follow:

s(C,D) =
min(|CI |, |DI |)
|(GCS(C,D))I |

· (1− |(GCS(C,D))I |
|∆I |

· (1− min(|CI |, |DI |)
|(GCS(C,D))I |

))

19



Fig. 1. Concepts C ≡credit-card-payment,
D ≡debit-card-payment are similar as the ex-
tension of their GCS≡card-payment does not
include many other instances besides of those
of their extensions.

Fig. 2. Concepts C ≡car-transfer, D ≡ debit-
card-payment are different as the extension
of their GCS≡service includes many other in-
stances besides of those of the extension of C
and D.

where (·)I computes the concept extension w.r.t. the interpretation I (canonical inter-
pretation).

The canonical interpretation adopts the set of individuals mentioned in the ABox as
its domain and the identity as its interpretation function [1, 17].

The rationale of the presented measure is that if two concepts are semantically sim-
ilar, such as credit-card-payment and debit-card-payment, then they should have a good
common superconcept, e.g. card-payment, that is so close to the two concepts, namely
the extensions of the superconcept and even the lesser-sized input concept share many
instances, consequently the similarity value will be close to 1. On the contrary, if the
considered concepts are very different, e.g. car-transfer and debit-card-payment, their
GCS, e.g. service, will be high up in the TBox, and this superconcept will have many
instances not contained in the two compared concepts, consequently the similarity value
will be next to 0. In Fig. 1 and Fig. 2 this rationale is illustrated. Opposite to existing
semantic similarity measures, this rationale does not require overlap of compared con-
cepts, and it does not take into account semantic path distance. Moreover, the minimum
extension of the concepts is considered in the measure definition, in order to avoid to
have an incorrect similarity value (high similarity value) in the case in which one of the
concepts is very similar to the super-concept but very different from the considered one.

It is trivial to verify that the function s of Def. 5 is really a similarity measure,
namely that (following the formal definition in [4]) it satisfies the following proper-
ties: 1) s is definite positive; 2) s is symmetric; 3) s satisfies the maximality property
(∀ C,D : s(C,D) ≤ S(C,C)).

4 DL-Link: A Conceptual Hierarchical Agglomerative Algorithm
for Clustering Description Logic Resources

The main goal of Cluster Analysis is to set up methods for the organization of a col-
lection of unlabeled resources into meaningful clusters exploiting a similarity criterion.
Specifically, clusters (classes) are collections of resources whose intra-cluster similarity
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is high and inter-cluster similarity is low. The methods that focus also on techniques for
generating intensional cluster description are called Conceptual Clustering methods.

A prominent conceptual clustering algorithm is the average-link algorithm [26]. It
starts by assigning each resource to a distinct cluster and iteratively merges the two
most similar clusters until only one cluster remains. The output of the algorithm is a
dendrogram, namely a tree structure representing a nested grouping of resources. We
modify average-link in several ways, in particular we substitute the typical Euclidean
distance measure by the GCS-based similarity and we substitute the computation of the
Euclidean average of each cluster in the computation of the GCS of the merged clusters.

Resources are assumed to be described as ALE(T ) concepts, exploiting a common
vocabulary T (mainly a shared ontology) written in ALC logic. They are clustered by
a batch process by the use of the DL-Link algorithm detailed in the following.

Let S = {S1, . . . , Sn} be a set of available resources.

1. Let C = {C1, . . . , Cn} be the set of initial clusters obtained by considering each
resource as a single cluster

2. n := |C|
3. For i := 1 to n− 1 consider cluster Ci

– For j := i + 1 to n consider cluster Cj

• compute the similarity values sij(Ci, Cj)
4. compute maxhk = maxi,j=1,...,n sij where h and k are the clusters with maximum

similarity
5. create the intensional cluster description Cm = GCS(Ch, Ck)
6. set Cm as parent node of Ch and Ck

7. insert Cm in C and remove Ch and Ck from C
8. if |C| 6= 1 go to 2

DL-Link algorithm starts by considering each service description in a single cluster
(list of available clusters), hence the similarity value8 between all couples of clusters is
computed and the couple having the highest similarity is selected. Then a new descrip-
tion, generalizing the chosen clusters, is created by computing the GCS (see Sect. 2).
The new description is first set as parent node of the chosen clusters, then it is inserted
in the list of the available clusters while the selected ones are removed. The generated
description represents a cluster made by a single element while the resources that it
describes are represented as its children in the dendrogram under construction. We call
such a dendrogram DL-Tree. The same steps are iteratively repeated, until a unique
cluster (describing all resources) is obtained.

An example of the DL-Tree returned by the DL-link algorithm is shown in Fig.3.
It is a binary tree and this is because, at every step, only two clusters are merged9.
Anyway, it can happen that two children nodes (or more than two) of the DL-Tree have
the same intentional description as well as it can happen that a parent node has the same
description as a child node. Since such redundant nodes do not add any information, a

8 The GCS-based similarity measure presented in Sect. 3 is used.
9 The clustering process could be speeded up by finding a way for merging more than two

clusters at every step.
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Fig. 3. DL-Tree index (dendrogram) returned by the hierarchical clustering algorithm presented
in Section 4 applied to the four service descriptions respectively labeled by A, B, C, and D. GCS
is the Good Common Subsumer of two ALE(T ) descriptions.

Fig. 4. Z is a new service description occurring after the DL-Tree construction. Once that the
most similar service description B is found, Z is added has sibling node of B and the parent node
of B is recomputed, as well as all parent node in the path, until the root node.

post-processing step is applied to the DL-Tree. If a child node is equal to another child
node then one of them is deleted and their children nodes are assigned to the remaining
node. If a child node is equal to a parent node then the child node is deleted and its
children nodes are added as children of its parent node. The result of this flattening
process is an n-ary DL-Tree.

It is important to note that, in case of a new service description occurs after per-
forming the clustering process, the DL-Tree has not to be entirely re-computed. Indeed,
the similarity value between the new service description and all available service de-
scriptions (leaf nodes of the DL-Tree) can be computed and the most similar available
service is selected. Hence the new service description can be added as sibling node of
the most similar service while the parent node is re-computed as the GCS of the old
child nodes plus the new child. In the same way all the ancestor nodes of the new gen-
erated parent node are computed. In this way a single path of the DL-Tree is updated
rather than the entire tree structure. In Fig. 4 an example of updating of the DL-Tree il-
lustrated in Fig. 3 is reported, in case of a new service description Z occurs. Obviously,
after a certain number of changing of the DL-Tree, the clustering process have to be
recomputed.
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5 Resource Retrieval exploiting DL-Tree

Resource retrieval is performed by matching a given request with available resource
descriptions. In this section we present an algorithm that, by exploiting the DL-Tree
returned by DL-Link algorithm (see Sect. 4), is able to accelerate the resource retrieval
task as well as to outperform the service discovery task. The rationale of the algorithm
is to cut the search space in order to drastically reduce the number of necessary com-
parisons (matches) for finding resources satisfying a given request. The algorithm is
presented in the following.

Let R be a request and let C the root of the DL-Tree C

retrievalProcedure(R,C)

1. returnedResource := null
2. if matchTest(R,C) = false then

– return returnedResource
3. else if C is leaf node then

– returnedResource.add(C)
4. else

(a) if C has left child node Cl then
i. returnedLeftResource = retrievalProcedure(R,Cl)

ii. if returnedLeftResource != null then
– returnedResource.add(returnedLeftResource)

(b) if C has right child node Cr then
i. returnedRightResource = retrievalProcedure(R,Cr)

ii. if returnedRightResource != null then
– returnedResource.add(returnedRightResource)

5. return returnedResource

matchTest(R,C)

1. if (R v C) then
– return true

2. else
– return false

The retrievalProcedure is performed by exploiting the DL-Tree whose leaf nodes are
the available resource descriptions and every inner node (included the root node) is an
intensional description of the child nodes. Given a request R, it is matched with the root
node of the DL-Tree, in order to test if it can be satisfied by the available resources or
not. Indeed, since the root node is the intensional description of all available resources,
then if the match test is not satisfied (false returned value), this means that there are no
available resources able to satisfy the request. On the contrary, if the test is satisfied, the
match test is performed for each child node. If a child node does not satisfy the match
subsumption condition, then the branch rooted in this node is discarded. Otherwise all
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Fig. 5. Retrieval of an available service able to satisfy the request R. Bold boxes represent nodes
satisfying the MatchTest.

the children nodes are recursively explored, until a leaf node is reached or until there
are no child nodes satisfying the match condition.

As MatchTest, the Entailment of Concept Subsumption [16, 22] is used. It checks
for subsumption, either of the requestor’s description by the provider’s or vice versa.
Specifically, we check for the subsumption of description w.r.t. the request since we are
interested in resources able to fully satisfy the request, while considering the vice versa,
resources that only partially satisfy the request could be found.

It is important to note that, at the same level, more than one node could satisfy the
match test. In this case all paths rooted in such nodes will be explored. As an alternative
to such an exhaustive search, an heuristic could be adopted for suggesting the path to
follow. As a possible heuristic, the path rooted in the node that is most similar to the
request can be chosen. Differently from the previous case, in this way only one resource
will be found, but it will be probably the most proper one.

The proposed method drastically reduces the size of the search space, since the
search is restricted only to the branches of the DL-Tree whose nodes satisfy the match
test. A good clustering of n available resources (i.e. a balanced hierarchy) may reduce
the number of necessary matches for finding the right resource from O(n) to O(log n)
(if the request is specific enough), thus strongly outperforming the response time for
a request. An example of application of retrievalProcedure procedure is reported in
Fig. 5.

Here we conclude with the following lemma.

Lemma 1. Resource retrieval using DL-Link algorithm and DL-Tree indexing is sound
and complete.

6 Experimental Evaluation

In this section some preliminary experiments are illustrated in order to show that the
method proposed in Sect. 5 really improves the resource retrieval task w.r.t. to the tra-
ditional approaches based on linear matching.
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6.1 Data sets

For measuring the efficiency of the retrieval method, it has been applied to the SE-
MANTIC WEB SERVICE DISCOVERY DATA SET (SWS DISCOVERY DATA SET for
brevity). It is a set of Semantic Web Services described by means of the DL-based
framework presented in [10]. Since no existing data sets using such a framework were
available, we have created a new one. Moving from the experience of OWLS-TC10

that is a service retrieval test collection consisting of services specified by OWL-S
1.1, the SWS DISCOVERY DATA SET has been built. It consists of an ALC ontology
representing the knowledge base of reference and a set of ALE(T ) services described
using such an ontology. The ontology models broad domains: bank domain, post do-
main, means of communication domain and geographical information. On the ground
of such an ontology, 96 complex concept descriptions acting as service descriptions
have been built. The resulting test set can be downloadable from https://www.uni-
koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/dl-tree

6.2 Evaluation Methodology

The available service descriptions in SWS DISCOVERY DATA SET has been clustered
by means of the DL-Link algorithm (see Sect. 4), obtaining as result a DL-Tree having,
after the flattening post-processing, a depth equal to 7. This represents the maximum
depth, while most of the leaf nodes in the obtained DL-Tree are at level 4. The aver-
age branching factor is equal to 5. In order to measure the efficiency of the retrieval
method, different kinds of queries (requests) have been generated: 1) #96 queries cor-
responding to the leaf nodes of the tree (the actual service descriptions); 2) #20 queries
corresponding to some inner node descriptions of the tree; 3) #116 queries randomly
generated by disjunctions/conjunctions of primitive and/or defined concepts of the ref-
erence ontology and/or available service descriptions.

The efficiency of the method has been measured by counting the number of neces-
sary comparisons (matches) in the tree for finding all available resources able to satisfy
a request. Specifically, the average number of matches for each kind of query has been
considered as well as the minimum and maximum number of matches. These values
have been then compared with the number of checks in the linear retrieval case. More-
over, in both approaches, the average execution time for each kind of query has been
measured, where the experiments have been performed on a laptop PowerBook G4 1.67
GHz 1.5 GB RAM.

6.3 Evaluation Results

Considering the queries generated as explained in the previous section and the DL-
Tree obtained by clustering the SWS SERVICE DISCOVERY DATA SET, the retrieval
procedure presented in Sect. 5 has been applied. The mean number of matches (sub-
sumption checks) and the retrieval execution time have been measured. Specifically, for
each query, the number of nodes visited (namely to which the subsumption check has

10 http://projects.semwebcentral.org/projects/owls-tc/

25



Table 1. Number of comparison (average and range) and mean execution time for finding all the
services satisfying a request w.r.t. the different kinds of requests both in the linear matching and
in the DL-Tree based retrieval.

DATA SET Algorithm Metrics Leaf Node Inner Node Random Query

SWS DISCOVERY DATA SET

DL-Tree based avg. 41.4 23.8 40.3
range 13 - 56 19 - 27 19 - 79

avg. exec. time 266.4 ms. 180.2 ms. 483.5 ms.
Linear avg. 96 96 96

avg. exec. time 678.2 ms. 532.5 ms. 1589.3 ms.

been applied) for finding all the services able to satisfy a request has been counted as
well as the execution time has been measured. Hence the mean number w.r.t. all queries
for a given kind (randomly, inner node, leaf node) has been computed.

The outcomes of the experiments are reported in Tab. 1. Looking at the table it is
straightforward to note the our method requires a very low number of matches w.r.t. the
linear approach. Specifically, independently to the kind of considered request, the DL-
Tree based retrieval decreases the number of comparisons more than 50%. Since a lower
number of comparisons means a decreasing of the response time, then our method is
really able to improve the efficiency of the retrieval and discovery process. This is also
evident looking at the average execution time of the two methods. Focussing on the ex-
perimental result and specifically on the mean execution time for the different kinds of
queries, it is possible to note that querying for inner nodes requires the lowest execution
time. This is because most of the resources satisfying the queries are at the highest lev-
els of the DL-Tree, so finding them requires less execution time. Moreover the structure
of such queries is very simple. Since the adopted match test is based on subsumption
test (see Sect. 5), consequently the time necessary for checking for subsumption de-
creases when the query is simple. Conversely, querying for randomly generated queries
requires the highest execution time. This is because the structures of such queries are
more complex then those of leaf node queries and inner node queries (that are the sim-
plest ones). Particularly, the benefits of our approach increase with the increasing of
available services.

From the presented initial experiments it is possible to assert that our method really
improve the efficiency of the resource retrieval task.

7 Related Work

Service discovery is the task of locating service providers that can satisfy the requester’s
needs. Generally, it is performed by matching a request against available service repre-
sentations - implying linear query performance.

Most of the current works concentrating on the automation of the service discovery
task, focus on the improvement of the effectiveness of the service matchmaking, i.e. on
engineering the service description. Central to the majority of the current SWS match-
making approaches is that the formal semantics of service descriptions is explicitly
defined in an ontology language such as OWL-DL [12]. In this way, service matchmak-
ing can be performed by exploiting standard DL inferences [16, 22, 7, 13] sometimes
jointly with the use of syntactic similarity measures [14].
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Less attention has been dedicated to the improvement of the efficiency of the service
discovery task, that, on the contrary, is the focus of our work. In [21], a way for turning
efficient resource retrieval is proposed, by abstracting from a more expressive to a less
expressive language, e.g. from OWL to DL-lite. Even if this approach is semantically
sound, differently from our method, it looses completeness.

Most of the efforts have been employed for the optimization of reasoning and query
answering. In [11], a set of optimization techniques for improving tableaux decision
procedures for DLs are presented. They can be effectively used for performing ser-
vice matchmaking. In [20], an algorithm for optimizing query answering of SHIQ
knowledge bases extended with DL-safe rules is proposed, by exploiting the reduc-
tion to disjunctive programs. A combination of DL-tree retrieval with the optimizations
defined in [20] could be more helpful than either on its own. Möller et al. [19] pro-
pose optimization techniques for improving the scalability of the instance retrieval task.
This is orthogonal to our work as our method could be used also for performing in-
stance retrieval by firstly clustering the MSCs of the considered knowledge base and
then querying for the concept of interest, by checking for nodes of the DL-Tree that are
subsumed by the query concept until leave nodes are found.

Another recent approach aiming at a scalable discovery process is Semantic Dis-
covery Caching (SDC) [25]. It is based on an index structure, the SDC graph, that is a
subsumption hierarchy made up of goal templates and usable Web services. Templates
are organized w.r.t. their semantic similarity. The lower layer is the cache that captures
knowledge on the usability of the available Web services. Based on this structure, the
discovery process uses inference rules between the similarity degree of goal templates
and the usability degree of Web services.

8 Conclusion and Future Work

We have presented a sound and complete method for improving the efficiency of the
resource retrieval task and its validity has been experimentally shown. It is based on
the exploitation of a tree-index (DL-Tree) that is built by applying a new conceptual
clustering algorithm to available resource descriptions. For clustering resources, a new
semantic similarity measure has been presented, while intentional cluster descriptions
are built exploiting the Good Common Subsumer for ALE(T ) concept descriptions.

Further work for improving the effectiveness of the similarity measure has been
planned. Moreover, the validity of the method applied using different matching proce-
dures will be verified. Furthermore, an incremental clustering algorithm will be devel-
oped, in order to cope with new available services avoiding the recomputation of a new
clustering.

Our approach has been restricted to ALE(T ) concept expressions and instances.
However, the DL-Tree indexing procedure actually works with approximations: non-
standard inference procedure like the Good Common Subsumer and the Most-Specific
Concept. By approximating more expressive DLs expressions (i.e. OWL-DL expres-
sions) to weaker languages, such as ALE(T ) and ALC, it is still possible to use the
DL-Tree indexing procedure. Actual empirical evaluations of whether typical OWL-
DL ontologies benefit from DL-tree indexing will however still have to be performed.
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