
Adaptive Workflows based on Flexible Assignment of
Workflow Schemas and Workflow Instances

– Extended Abstract –

Mathias Weske
Westfälische Wilhelms-Universit¨at Münster

Steinfurter Straße 107, D-48149 M¨unster, Germany
weske@helios.uni-muenster.de

1 Introduction

Traditionally, workflow management deals with controlling the execution of application processes
according to pre-defined specifications, known as workflow schemas [3, 8, 13]. This approach is well
suited to support application processes with fairly static control structures. Real-world application
processes, however, are not static in general. In contrast, they may require dynamic modifications to
react quickly to new challenges imposed by the environment of the application process. While the
exact definition of flexibility in workflow management systems is still under discussion [12, 7], it is
widely accepted that dynamic modifications – or adaptations – of running workflows is an important
feature of a flexible workflow management system [10, 2, 11]. This extended abstract sketches the
conceptual design and implementation of dynamic modifications in the context of the WASA project
at the University of Muenster.

2 The WASA2 Approach

We use a workflow language based on process graphs, similar to those used by IBM’s MQSeries
Workflow (formerly IBM FlowMark). Workflows can be atomic or complex, there are data flow and
control flow constraints between workflows, and technical and organizational information is ttached to
workflow schemas. WASA2 is based on an object-oriented approach: Workflow schemas and workflow
instances are objects, which are characterized by a state and a behavior and which communicate with
each other by sending and receiving messages. This general approach allows the flexible re-use of
workflow schemas as sub-workflows in different complex workflow schemas, such that the embedding
of the different occurrences of a workflow schema can be different with respect to its start condition
and control flow and data flow constraints.

The object-oriented design and a distributed object middleware allow distributed workflow exe-
cutions, such that workflow objects of a given workflow application can reside in different sites of a
distributed computing system. In this case, workflows are controlled in a distributed manner without
the need for a centralized workflow engine, which can become a performance bottleneck in large-scale
workflow applications. In terms of flexibility, modeling workflow schemas and workflow instances as
objects allows to change the association of a workflow instance with its controlling workflow schema.
Hence, during its life time, a workflow instance can be controlled using different workflow schemas.

1



Workflow

Complex Atomic 

WF-SubWF
Relationship

Parameter

Output
Parameter

Input
Parameter

 d
es

tin
at

io
n

 s
ou

rc
e 

source WF

super-workflow

instance-of

Instance

Model

Horizontal Data
Connector

version

super-version

sub-version

sub-workflow

Control
Connector

source destination

dest. WF

Figure 1: WASA2 Workflow Meta Schema (Simplified Version).

The remainder of this section sketches the conceptual design of the system, which is specified in
a workflow meta schema; a simplified version of the WASA2 workflow meta schema is shown in
Figure 1. Due to space limitations, we do not elaborate on different modeling alternatives for object-
oriented workflow management systems [14], and we only discuss the parts of the workflow meta
schema which are relevant for dynamic modifications.

The workflow class is in the center of the WASA2 workflow meta schema; it contains workflow
schema objects and workflow instance objects. Workflows can be either atomic or complex. The work-
flow hierarchy (i.e., the relationship between a complex workflow and its sub-workflows) is modeled
by the WF-SubWF Relationship class, which defines a relationship between a complex workflow and
a workflow, which can be complex or atomic. Workflow schemas and workflow instances are iden-
tified by states. The relationship between a workflow instance and the respective workflow schema
is represented by an instance-of relationship. Each workflow schema can be associated with multiple
workflow instances, while each workflow instance is associated with exactly one workflow schema
at any given point in time. This relationship allows the flexible assignment of workflow instances to
workflow schemas, as will be discussed in more detail in the remainder of this extended abstract.

Other parts of the meta schema deal with control connectors and data connectors; a control connec-
tor relates two WF-SubWF Relationship objects, defining execution order of the respective workflows.
Each workflow has a set of input parameters and a set of output parameters, whose commonalities are
represented in a Parameter class. Horizontal data flow represents data flow between workflows of a
common super-workflow, while vertical data flow represents data flow between a super-workflow and

2



its sub-workflows. The complete WASA2 workflow meta schema as well as the design of the system
and its implementation based on CorbaServices is presented in [15].

3 Dynamic Modifications in WASA2

The ability to dynamically modify the structure of running workflow instances is an important feature
of a flexible workflow management system, since it allows running workflow instances to adapt to
changes in the environment. In this context, “environment” refers to the market environment of pro-
cesses, including new services provided by competitors, new and faster or more cost efficient ways to
produce or deliver goods, and providing new services or parts thereof. Besides changes in the mar-
ket, there may be new legal regulations that have to be implemented by application processes. For
instance, consider a new legal regulation that a single checking mechanism has to be changed to a
double-checking mechanism. As a consequence, workflow instances have to use the new checking
policy in order comply with the new regulations. Changes in the technical environment of the process
are another motivation for dynamic modifications. Assume there are new tools available to perform
tasks more efficiently then the active and all future workflow instances should make use of the new
infrastructure.

In dynamic modifications, it is important to define correctness criteria which determine if and when
a workflow instance can be adapted to a new workflow schema. To motivate our correctness criterion,
we start by discussing correctness in workflow applications in general, i.e., without dynamic modi-
fications. Since in the workflow context, generic correctness properties like in database transaction
processing (e.g., conflict serializability, recoverability) do not suffice to describe correct workflows,
application specific correctness criteria have to be defined. From an application-oriented point of
view, these criteria are specified in business process models, which describe which activities have to
be performed, and what are the constraints between them. When supporting business processes by
workflow technology, the correctness of workflow instances is specified in workflow schemas. Hence,
a workflow execution is correct if and only if it satisfies the criteria specified in the respective workflow
schema. Control flow and data flow constraints as well as role information and technical information
are examples of properties which are specified in workflow schemas and which have to be met by work-
flow instances. The task of a workflow management system is to make sure each workflow instance is
executed according to its workflow schema.

Based on this perception of correctness in the workflow context, the approach to controlling dy-
namic changes in WASA2 is fairly simple, yet effective:

A workflow instance can be dynamically modified, i.e., it can be adapted to a new workflow
schema, if the workflow instance could have been controlled from the beginning using the
new workflow schema.

For an example consider Figure 2, which shows a workflow schemaS (a), a modified workflow schema
S0 (b) and two currently active workflow instancesi andj, based on the original workflow schemaS
((c) and (d), resp.). Notice that workflow instancesi andj are correct with respect to workflow schema
S, since they can be continued according toS. We now assume that there is a dynamic modification,
changing workflow schemaS to S0, shown in Figure 2(b).

When a workflow administrator decides to change a workflow dynamically, he or she first suspends
the execution of the workflow. This is necessary, since otherwise race conditions between the normal

3



1c 2c

3e

3f

(d) Workflow Instance j, based on S
(cannot be adapted to S’)

4c1b 2b

3c

3d

(c) Workflow Instance i, based on S
(can be adapted to S’)

1 2

3

4 5

3

7 6

6

(b) Modified Workflow Schema S’

1 2

3

4 5

3

(a) Workflow Schema S

Figure 2: Workflow SchemasS andS0 and Workflow Instancesi; j, based onS.

workflow execution and the correctness checks would occur. In our example, given workflow instances
i andj (so far based onS), the system now has to decide whether these can be continued with the
modified workflow schemaS0. This check is performed by analyzing the current state of the workflow
instances and matching the structure of the new workflow schemaS0 against the states.

We first consider workflow instancei. It is obvious that the workflow instance can be adapted
to S0, since there is a mapping between the sub-workflow instance already executed on behalf ofi

and sub-workflow schemas ofS0. More technically, the decision whether or not a workflow instance
can be adapted to a new workflow schema is taken based on a mapping. The sub-workflow instances
which have already been executed are mapped to the sub-workflow schemas of the new workflow
schema. In our example, sub-workflow instance1b of workflow instancei is mapped to sub-workflow
schema 1 of workflow schemaS0, and sub-workflow instance2b is mapped to sub-workflow schema
2 of S0. The two workflow schemas based on 3 can be mapped to3a and3b. Since furthermore the
control flow constraints of the workflow instance and the workflow schema comply, and assuming that
data flow constraints also comply, a mapping can be found. As a consequence,i can be continued to
become a complete workflow instance based onS0: after the termination of3c, an instance7a (based
on workflow schema 7) and an instance6a (based on workflow schema 6) can be started, and after the
completion of3d an instance6b (based on workflow schema 6) can be executed. Finally, workflow
instances based on workflow schemas 4 and 5 can be performed sequentially. Hence, the resulting
workflow instance is correct and complete with respect to the new workflow schemaS0.

Along the lines of this argumentation it is clear thatj cannot be adapted to the new workflow
schema. It proceeded further thani; in particular, it already started a sub-workflow instance based on
workflow schema 4, i.e.,4c. Since in the modified workflow schemaS0, 4 can only be stated after
additional sub-workflow instances have completed, workflow instancej (d) violates this requirement.
Even starting sub-workflow instances for 7 and 6 (as specified inS0) right away would not help, since
by the control flow constraints specified inS0, an instance of 4 cannot start until workflow instances
based on workflow schemas 7 and 6 have been executed. This constraint imposed by workflow schema
S0 cannot be satisfied by any continuation ofj. Hence,j cannot be modified dynamically with respect
to workflow schemaS0.

4



In WASA2, the instance-of relationship associates a workflow instance object with a workflow schema
object. At each point in time, each workflow instance object is associated with exactly one work-
flow schema object, while each workflow schema object can be associated with an arbitrary number
of workflow instance objects. Given this organization, dynamic modifications can be implemented by
changing the respective instance-of relationship objects at runtime. To implement a dynamic modifica-
tion based on a workflow schemaS with numerous currently active workflow instances, the following
steps are carried out:

� create a new workflow schema (or use an existing one)S0

� based on the instance-of relationship, letC be the set of all workflow instances which are asso-
ciated withS

� compute a setC0
� C of workflow instances which can be adapted to the new workflow schema

S0, based on finding a mapping as sketched above

� allow a workflow administrator to select a subset ofC0 of workflow instances, which will ac-
tually be dynamically modified; update instance-of relationship of these workflow instances
accordingly

� all workflow instances are continued using their respective instance-of relationships, i.e., mod-
ified workflow instances are continued withS0, and non-modified workflow instances are con-
tinued with the original workflow schemaS

To perform an adaptation of workflow instancei to S0, sub-workflow instances which are no longer
needed are deleted, and new sub-workflow instance objects are created, as specified in the new work-
flow schemaS0. These workflow instance objects are embedded in the context of the complex work-
flow instance by creating the respective WF-SubWF Relationship objects. In our example, new work-
flow instance objects7a, 6a, 6b, 4d and5b are created and attached to the complex workflow using
WF-SubWF Relationship objects. The workflow is continued with the execution of the sub-workflow
instances7a and6a.

4 Related Work

Two recent workshops were devoted to adaptive and flexible workflow management [7, 12]. In [5]
a taxonomy of adaptive workflow management is proposed. In particular, the constantly changing
market environment of business processes is regarded as a major motivation for flexible workflow
management. Process level adaptations and resource level adaptations are among the requirements for
a flexible workflow management system. Techniques for exception handling in workflow management
systems are identified and classified in [9, 1]. An approach to enhance the flexibility of workflow
management systems based on an integration of workflow and workspace management techniques is
discussed in [6]. To classify flexibility requirements,a priori anda posteriori flexibility is character-
ized by properties of the application that are known before it starts and after it has started, resp.

In [10] a workflow language ADEPT is proposed, which allows to specify workflow schema using
symmetric graphs. There are different node types, reflecting for instance split and join nodes, and
start and end nodes of loops. Based on this workflow language, a model ADEPTflex supporting a
set of operations to change the structure of workflows is defined, allowing to dynamically change

5



workflows, while keeping their symmetric structure. ADEPT does not consider workflow schemas;
only workflow instances are discussed. Hence, the approach does not consider dynamic changes in
presence of multiple workflow instances based on a modified workflow schema. There is an operational
running prototype implementing dynamic modifications according to ADEPTflex. In [4], a Petri-
Net based approach to model workflows which includes flexibility mechanisms is proposed. Simple
dynamic modifications are allows, for instance to leave unspecified defined portions of the net to be
filled when the workflow executes; this is denoted by late modeling; this functionality is implemented
in the CORMAN prototype [4].

5 Conclusions

This extended abstract sketches the design of controlled dynamic modifications of workflow instances
by a flexible assignment of workflow schemas to workflow instances. By allowing to change the as-
signment of workflow instances and workflow schemas at different points in time, different schemas
can be used to control a workflow. An adaption of a workflow instancei to a workflow schemaS0

can be done wheneveri can be continued such that it fitsS0. This elegant yet simple characterization
of the correctness of a dynamic modification allows to maintain the correctness property of workflow
instances with respect to workflow schemas, while providing workflow flexibility by dynamic modifi-
cations. Future work in the WASA project will be centered around user interface design, and we plan
to use the WASA2 system in real-world workflow applications which make use of the capabilities of
the system.

References

[1] Deiters, W., Goesmann, T., Just-Hahn. K., Lffeler, T. Rolles, R.:Support for exception handling through
workflow management systems. In Proceedings CSCW-98 Workshop: Towards Adaptive Workflow Sys-
tems. (downloaded from http://ccs.mit.edu/klein/cscw98/paper19 on 09-24-1998)

[2] Ellis, C., K. Keddara, G. Rozenberg:Dynamic Change Within Workflow Systems. In Proc. Conference on
Organizational Computing Systems (COOCS) 1995, 10–22

[3] Georgakopoulos, D., M. Hornick, A. Sheth:An Overview of Workflow Management: From Process Mod-
eling to Workflow Automation Infrastructure. Distributed and Parallel Databases, 3:119–153, 1995

[4] Hagemeyer, J., T. Herrmann, K. Just-Hahn, R. Striemer:Flexibility in Workflow Management Systems (in
German). Software-Ergonomie ’97, 179–190, Dresden, March 1997.

[5] Han, Y., Sheth, A., Bussler, C.: A Taxonomy of Adaptive Workflow Management. In
Proceedings CSCW-98 Workshop: Towards Adaptive Workflow Systems. (downloaded from
http://ccs.mit.edu/klein/cscw98/paper03 on 09-24-1998)

[6] Joeris, G.: Aspects and Concepts of Flexibility in Workflow Management Systems. (in German) In Proc.
D-CSCW98 Workshop on Flexibility and Cooperation in Workflow Management Systems, Dortmund,
Sept 1998. Technical Report Angewandte Mathematik und Informatik 18/98-I, University of Muenster,
Germany 1998

[7] Klein, M. (Ed.): Towards Adaptive Workflow Systems. Workshop in The 1998 ACM Conference on Com-
puter Supported Cooperative Work, Seattle, Washington, November 14-18, 1998 (Online Proceedings at
http://ccs.mit.edu/klein/cscw98/ on 09-24-1998)

[8] Leymann, F., W. Altenhuber:Managing Business Processes as an Information Resource. IBM Systems
Journal 33, 1994, 326–347

6



[9] Luo, Z., Sheth, A.: Defeasible Workflow, its Computation and Exception Handling. In
Proceedings CSCW-98 Workshop: Towards Adaptive Workflow Systems. (downloaded from
http://ccs.mit.edu/klein/cscw98/paper10 on 09-24-1998)

[10] Reichert, M., P. Dadam:Supporting Dynamic Changes of Workflows Without Loosing Control. Journal
of Intelligent Information Systems, Special Issue on Workflow and Process Management, Vol. 10, No. 2,
1998

[11] Sheth, A., D. Georgakopoulos, S.M.M. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, A. Wolf:Report
from the NSF Workshop on Workflow and Process Automation in Information Systems. Technical Report
UGA-CS-TR-96-003 University of Georgia, Athens, GA, 1996

[12] Siebert, R., Weske, M. (Eds.):Flexibility and Cooperation in Workflow Management Systems. (in German)
Workshop at D-CSCW98, German Conference on CSCW 1998, Dortmund, Sept 1998. Technical Report
Angewandte Mathematik und Informatik 18/98-I, University of Muenster, Germany 1998

[13] Weske, M., Vossen, G.:Workflow Languages. In: P. Bernus, K. Mertins, G. Schmidt (Editors): Handbook
on Architectures of Information Systems. (International Handbooks on Information Systems), pp 359–379.
Berlin: Springer 1998

[14] Weske, M., Hündling, J., Kuropka, D., Schuschel, H.:Object-Oriented Design of a Flexible Work-
flow Management System. (in German) Informatik Forschung und Entwicklung. 13(4) 1998, pp 179–195.
Berlin: Springer 1998

[15] Weske, M.: Design and Implementation of an Object-Oriented Workflow Management System. Fach-
berichte Angewandte Mathematik und Informatik 33/98-I, Universit¨at Münster 1998

7


