
Aligning Software Architectures of

Mobile Applications on Business Requirements

Volker Gruhn and André Köhler

University of Leipzig, Department of Computer Science,
Chair of Applied Telematics / e-Business, Klostergasse 3, 04109 Leipzig, Germany

{gruhn, koehler}@ebus.informatik.uni-leipzig.de

Abstract. The support of mobile workers with mobile IT solutions can
create dremendous improvements in mobile business processes of a com-
pany. The main charateristic of such a mobile system is the ability to
connect via a (mobile) network to a central server, e.g. in order to access
customer data. The frequency and the location of the use, data topi-
cality, interaction requirements and many more are central aspects when
developing a suitable system architecture. This paper provides a detailed
decription of the four main software architectures for mobile systems and
their main charateristics. Beyond, typical business requirements are de-
veloped, the implications for the system architecture for each of them is
shown.

Keywords. Mobile system, System Architecture, Always-online sys-
tems, Business alignment

1 Introduction

Since the availability of mobile broadband networks and the reduced costs for
mobile devices the use of mobile applications has become an interesting oppor-
tunity in several fields. Companies with large divisions of mobile employees (e.g.
service technicians, sales representatives, healthcare services) can use mobile ap-
plications to gain access to corporate applications and databases at the point of
service (POS). Therewith better coordination of mobile employees, rapid task
assignment, the avoidance of error-prone format conversion, instant access to
customer data and many more becomes feasible [1], [2].

The architecture of a mobile system can range from always-online systems us-
ing browser-based clients to fat client systems synchronizing with a central server
occasionally. Which software architecture fits best for a specific mobile task de-
pends basically on business needs. The frequency of movement, the probability of
network availability, requirements for data topicaility, update mechanisms, syn-
chronisation procedures and many more play a crucial role. Beyond, the costs
for the development of a mobile system depend strongly from the choosen type
of architecture.

As these issues are of particular relevance in the decision process of software
architects and IT project managers, this paper explains the main types of mobile

WISM'06 1113

system architectures with their advantages and disadvantages, typical business
requirements for mobile systems and a matching scheme in order to identify the
suitable architecture for a given set of business requirements.

This paper is organized as follows: Section 2 gives an overview about related
work. Section 3 introduces four main types of architectures for mobile systems,
showing their structure with component diagrams and explaining their main
charateristics as well as their advantages and disadvantages. In section 4, typ-
ical business requirements for mobile systems are given and interdependencies
between with the shown system architectures are described. Section 5 draws a
conclusion.

2 Related Work

The changes for the discipline of software engineering when developing systems
for mobile environments are discussed in [3]. The authors state that ”mobil-
ity represents a total meltdown of all stability assumptions [...] associated with
distributed computing”. A comprehensive overview of software engineering for
mobile systems is given, regarding issues like models, algorithms, applications
and middleware to solve in the future. Our paper adresses the some of these
issues. In [4] an architectural model that identifies the components represent-
ing the essential aspects of a mobile agent system is described. The interaction
design for mobile information systems is subject of [5]. The authors developed
a platform that supports the rapid prototyping of multi-channel, multi-modal,
context-aware applications and describe how it was used to develop a tourist
information system.

A lot of work is done regarding system architectures and other technical
aspects of mobile system. An example for this work is [6], where a three-layer
software architecture for distributed and mobile collaboration is presented. [7]
presents an approach for the modeling and performance evaluation of mobile
multimedia systems using generalized stochastic petri nets. The author focuses
on verifying the optimal performance achievable under some QoS constraints
in a given setting of design parameters. In [8] an approach for modeling soft-
ware architectures for mobile distributed computing is presented. The modeling
method aims at the verification of the correctness of both the functional and
non-functional properties of the resulting mobile system.

The authors of [9] report on a project that aims for providing a system archi-
tecture simplifying the task of implementing mobile applications with adaptive
behaviour. Temporal, spatial and personal mobility are considered in this ap-
proach. A comparison of different architectures for mobile systems is given in
[10], where the client/server model, the agent-based client/server model and
the mobile agent model is considered. In [11] is discussed, how the approach of
service-oriented architectures can be applied within the development of mobile
systems. It is shown, how to compose mobile services and how to apply these
services in the system architecture.

1114 Web Information Systems Modeling

data layerapplication layerpresentation layer

client

<<component>>

browser (GUI)

server

<<component>>

presentation logic

<<component>>

business logic

<<component>>

session handling
data

Fig. 1. Web-based always-online architecture

The work described in [12] is an essential basis for this paper. The authors
give an overview about different types of software architectures for mobile sys-
tems, based on an analysis of different types of user and device mobility.

3 Types of Software Architectures for Mobile Systems

When analyzing the communication behaviour of a mobile application, its archi-
tecture is of particular relevance. According to [12], mainly four different types
can be distinguished. First, a complete offline architecture could be used where
(nearly) no communication via a network occurs. As we focus mainly on network
issues, we do not consider this type of architecture. Second, an offline architec-
ture is conceivable, where the mobile user synchronizes the mobile application
occasionally with a central server. Third, a hybrid architecture could combine
the advantages of an offline and an online architecture: If a network is available
the mobile application communicates online with a central server, if the network
is unavailable, the mobile application works offline and can be synchronized later
with the central server. Fourth, with an always online architecture, the mobile ap-
plication would communicate with a central server exclusively. This architecture
is typical for web-based systems. In the following, we present a component-based
view onto these architectures and explain their main characteristics.

3.1 Web-based Always-online Architecture

Whitin this architecture (see Fig. 1), the client works always online via a (mo-
bile) network. The presentation layer is completely realized at the client side,
where only a browser component is needed to realize the graphical user inter-
face (GUI). The application layer is located server-side and contains a session
handling component as well as components for presentation and business logic.
The data layer contains the databases at the server side.

The main advantage of this architecture is, that only a browser is needed
at the client side. Thus, the systems architecture allows the cooperation with a
wide range of client systems independently from the client’ operating systems or
other client-side conditions. Furthermore, as all the data and the logic is located
server-side, no update or synchronization mechanisms are needed. All clients
can work on the same central data base, using the recent data as well as the

WISM'06 1115

data layerapplication layerpresentation layer

Client

 <<component>>

 Rich Client

Server

<<component>>

presentation logic

<<component>>

business logic

<<component>>

update handling

<<component>>

GUI

<<component>>

update handling

<<component>>

session handling

<<component>>

session handling

presentation

logic template

data

Fig. 2. Rich Client Always-online Architecture

recent presentation and business logic. The effort for the administration of such
a systems is very small compared to other system architectures.

The main disadvantage of this solution is, that always a (mobile) network
is needed, otherwise the client is unusable. When using a mobile network, the
coverage in certain areas might not be given. Beyond, mobile networks usually
offer just a small bandwidth causing a probably unsatisfying performance of
the client. Furthermore, browser-based applications are limited in terms of user
interface design to the facilities of HTML, which is quite less than users known
from fat client applications. The simultaneous connection of a large number of
clients to the central server also causes high requirements for the central server
regarding its performance as well as its operational availability.

3.2 Rich Client Always-online Architecture

Within this architecture (see Fig. 2), one disadvantage of the web-based always-
online architecture is adressed: Using a rich client at the client side, the limita-
tions of the user interface design to the facilities of HTML can be overcome, as
rich clients offer the full variety of interaction elements for the interface design.
Beyond, rich clients offer the advantage of moving presentation logic to the client
and therewith offering perfomance and costs improvements through a reduction
of data traffic via the mobile network.

The presentation layer is completely realized on the client, containing a GUI
and a presentation logic component. Additionally, the client contains some el-
ements of the application layer, i.e. an update component for the presentation
logic as well as a session handling component. Both components have an equiv-
alent at the server side, where also a component for the business logic is located
(application layer). The data layer is completely realized at the server side con-
taining templates for the presentation logic as well as other databases.

The main advantages of this solution are the full user interface design ca-
pabilities and the reduced data traffic, still having a thin client. Furthermore,

1116 Web Information Systems Modeling

p
re
s
e
n
ta
ti
o
n
 l
a
y
e
r

a
p
p
lic
a
ti
o
n
 l
a
y
e
r

d
a
ta
 l
a
y
e
r

Client

Server

<<component>>

update handling

<<component>>

update handling

<<component>>

synchronisation

 <<component>>

 Rich Client

<<component>>

presentation logic

<<component>>

GUI

<<component>>

business logic

<<component>>

synchronisation

<<component>>

update handling

<<component>>

update handling

presentation

logic templatedata
data

business logic

template

<<component>>

business logic

<<component>>

session handling

<<component>>

session handling

Fig. 3. Rich client hybrid architecture

all clients can work on the same central data base, using the recent data as
well as the recent presentation and business logic. The effort for the adminis-
tration of such a systems is small compared to other system architectures (ex-
cept the web-based always-online architecture). Furthermore, with rich clients
partly asynchronous communication becomes feasible, producing an improved
user interaction. Short-time network disconnection can be intercepted through
the client-side session component.

The disadvantage of this solution is the permanent need for a (mobile) net-
work, as otherwise the client is unusable. When using a mobile network, the
coverage in certain areas might not be given. Beyond, mobile networks usually
offer just a small bandwidth, causing a probably unsatisfying performance of
the system. The simultaneous connection of a large number of clients to the
central server also causes high requirements for the central server regarding its
performance as well as its operational availability. Additionally, components for
the session and update handling need to be developed, update mechanisms are
needed.

WISM'06 1117

3.3 Rich Client Hybrid Architecture

The two architectures described before suffer from one main disadvantage: If no
mobile network is available, the application is not usable for the mobile worker.
The rich client hybrid architecture adresses this issue (see Fig. 3). The aim of
this architecture is to keep the client as thin as possible but to assure that the
application works also in the emergency when no mobile network is available.

The client consists of a GUI and a presentation logic component (presenta-
tion layer). Additionally, a business logic component as well as session handling,
update handling and data synchronization components are located at the client
side (application layer). Also a database is needed at the client (data layer). The
business logic, session handling, update handling and synchronization compo-
nents are also needed at the server side. The server-side data layer consists of
templates for business and presentation logic and other databases. In the normal
case the application works always-online, using business logic and data from the
server side (like in the rich client always-online scenario). In case of loosing the
network connection, the application would use the equivalent components at the
client. Thus, a synchronization mechanisms is needed.

The main advantage of this architecture is the ability to work always-online
but having also the capability to work offline when no network is available.
Through the use of a rich client, the full user interface design capabilities are
available and reduced data traffic can be achieved. When establishing a network
connection, all clients can work on the same central data base, using the recent
data as well as the recent presentation and business logic. Furthermore, with
rich clients partly asynchronous communication becomes feasible, producing an
improved user interaction. Short-time network disconnection can be intercepted
through the client-side session component.

The main disadvantage of this solution is, that when using a mobile network,
the coverage in certain areas might not be given. Beyond, mobile networks usu-
ally offer just a small bandwidth causing a probably unsatisfying performance
of the system. The simultaneous connection of a large number of clients to the
central server also causes high requirements for the central server regarding its
performance as well as its operational availability. Additionally, components for
the session and update handling need to be developed, update mechanisms are
needed. When working offline, a synchronization mechanism needs to transfer
data stored at the client, resolving possible conflicts with the server-side data
base. In this architecture, the client is a thick client as many components needed
to realize different functionality. All these components need to be developed and
updated regularly, which causes a high administration effort.

3.4 Fat Client Offline Architecture

The fat client offline architecture is quite similar to the rich client hybrid ar-
chitecture except that no online connection is provided (see Fig. 4). The mobile
worker uses the application always offline, the client represents the whole appli-
cation. The data stored on the client is occasionally synchorized with a central

1118 Web Information Systems Modeling

p
re
s
e
n
ta
ti
o
n
 l
a
y
e
r

a
p
p
lic
a
ti
o
n
 l
a
y
e
r

d
a
ta
 l
a
y
e
r

Client

Server

<<component>>

update handling

<<component>>

update handling

<<component>>

synchronisation

 <<component>>

 Fat Client

<<component>>

presentation logic

<<component>>

GUI

<<component>>

business logic

<<component>>

synchronisation

<<component>>

update handling

<<component>>

update handling

presentation

logic template
data data

business logic

template

Fig. 4. Fat client offline architecture

server, e.g. via a stationary network at the mobile workers office. At these points,
also the components for business and application logic need to be synchronized.

The main advantage of this architecture is, that through the use of a fat client,
the full user interface design capabilities are available. As no network connection
is needed, the application can be used very flexible in nearly every environmental
situation. No costs or performance problems due to the restrictions of mobile
networks occur.

The main disadvantage of this solution is, that components for the update
handling need to be developed and deployed regularly. A synchronization mech-
anism needs to transfer the data stored at the client, resolving possible conflicts
with the central server. The synchronization intervalls are completely influenced
by the user, the data and component topicality can not be assured.

3.5 Architecture Comparison

The web-based always-online architecture is obviously a very small and leight-
weight architecture, causing relatively small effort for its development and ad-
ministration. But, it has also some significant shortcomings in connectivity and
usability issues. The other three architectures aim on the improvement of these

WISM'06 1119

always-online always-online hybrid offline
web-based rich client rich client fat client

point of service
office + + + +
urban areas 0 0 + +
rurally areas – – + +

data topicality
real–time data required + + – –
relatively recent data required + + + –
other topicality required + + + +

source code redundancy
large redundancy accpeted + + + +
small redundancy accepted + + – –
no redundancy accepted + – – –

software distribution
offline distribution accepted + + + +
online distribution accepted + + + 0
distribution not accepted + – – –

user interface design
and interaction techniques

should be extensive – + + +
can be restricted to HTML + + + +

security issues
decentral organisation accepted + + + +
central organisation demanded + + 0 –

Table 1. Business requirements and their architectural implications

shortcomings. But, as more as they improve connectivity and usability, the effort
for development and administration grows rapidly. The main task for IT project
managers and software architects is, to decide how much effort for the develope-
ment and the administration of such a solution is justifiable for the given business
needs. The following section shows some of the typical business requirements for
mobile solutions and explains, how the appropriate system architecture can be
deduced.

4 Typical Business Requirements for Mobile Systems

and their Architectural Implications

In the following, typical business requirements for mobile applications are de-
scribed and evaluated regarding their effects on the system architecture. The
results are shown in Table 1. If an architecture is thoroughly suitable to fulfill
a given business requirement, it is marked with ‘+’, if it is suitable with some
restrictions it is marked with ‘0’. If an architecture is not suitable for a given
business requirement, this is indicated by ‘–’.

1120 Web Information Systems Modeling

4.1 Point of Service

The typical location of the POS is of particular relevance for deriving a suitable
system architecture. If the application is used mostly in a stationary environ-
ment, all kind of architectures are conceivable. If the application is used mobile
in urban environments, mobile networks will probably be available most of the
time. Thus, the web-based as well as the rich client always-online architecture
will be suitable in most of the cases, the other two architectures will work of
course in every situation. If the mobile application is used in rurally environ-
ments, the availability of a mobile network can frequently not be assured. In
these cases, only the hybrid rich client architecture as well as the fat client
offline architecture is conceiveable.

4.2 Data Topicality

The requirements for data topicality have also a main influence on the system
architecture. If the mobile worker needs always real-time data topicality, only the
always-online architectures can be considered. The rich client hybrid architecture
can be used, if the requirements for data topicality are not so strict (e.g. data
from the previous day are sufficiant). The fat client offline architecture is only
conceivable, if the requirements for data topicality are not critical (e.g. a couple
of days or weeks).

4.3 Sorce Code Redundancy

The architecture of a mobile system influences also the source code redundancy.
If the business logic of an application is used in different contexts (e.g. client
and server side), the business logic component often needs to be developed twice
because of different system requirements. Each later change in the business logic
component also need to be implemented twice. If the complete avoidance of
source code redundancy is demanded (single source, single instance), only the
web-based always-online architecture is conceivable. If a small source code re-
dundancy is accepted (single source, multiple instances), the always-online rich
client architecture should be choosen. If no restrictions regarding the source code
redundancy exists, the hybrid rich client architecture and the fat client offline
architecture are feasible.

4.4 Software Distribution

The distribution of new releases for mobile applications often causes a high
effort. To avoid this, the web-based always-online architecture should be choosen,
as within this architecture the update process can be conducted for a single
server instance of an application. If an online update process is accepted, the
always-online and the hybrid rich client architecture can be used. As the update
process for fat client offline systems usually requires a high amount of data to be
transferred, often only offline updates (e.g. via CD, DVD) are possible, causing
very high costs and organizational effort.

WISM'06 1121

4.5 User Interface Design and Interaction Techniques

Both the rich client and the fat client architecture offer the full range of elements
for designing the user interface. If the application is not to complex and only
simple user interactions are needed (feasible with HTML), the web-based always-
online architecture can be used.

4.6 Security Issues

Within mobile applications often confidential data is processes and transfered.
Thus, a couple of security mechanisms are needed. From the administrators
point of view, a centralized security management would be desirable. This would
be feasible with both the always-online architectures. The hybrid rich client
architecture as well as the fat client offline architecture require also security
effort at the client side.

5 Conclusion

In this paper we presented the four basic software architectures conceivable for
mobile systems. The decision, which architecture is the most suitable in a given
project situation depends on the business requirements on the one hand side
as well as on the restrictions for the development and administration effort on
the other hand side. Both aspects have strong interdependencies. The higher the
business requirements are, especially in terms of connectivity and usability, the
higher the costs for the development and the administration of the solution are.

Considering this, no general recommendation for a system architecture of a
mobile system can be given. It is rather necessary to asses single aspects of busi-
ness requirements like the exact needs for connectivity, redundancy and update
preferences and many more. For each single aspect the best system architecture
can be derived, but often the result will vary over all considered aspects. Then,
a compromise need to be found for the given situation. The above given business
requirements and their relation to the developed system architetures can help
to support this process.

6 Acknowledgements

The Chair of Applied Telematics/e-Business is endowed by Deutsche Telekom
AG. The results presented in this paper were partly developed within a research
project in cooperation with the company inverso GmbH [13].

References

1. Gruhn, V., Köhler, A., Klawes, R.: Modeling and analysis of mobile service
processes by example of the housing industry. In van der Aalst, W.M., Bena-
tallah, B., Casati, F., Curbera, F., eds.: Business Process Management, Springer
LNCS 3649 (2005) 1–16

1122 Web Information Systems Modeling

2. Nah, F.F.H., Siau, K., Sheng, H.: The value of mobile applications: a utility
company study. Communications of the ACM 48 (2005) 85–90

3. Roman, G.C., Picco, G.P., Murphy, A.L.: Software engineering for mobility: a
roadmap. In: ICSE ’00: Proceedings of the Conference on The Future of Software
Engineering, New York, NY, USA, ACM Press (2000) 241–258

4. Schoeman, M., Cloete, E.: Architectural components for the efficient design of
mobile agent systems. In: SAICSIT ’03: Proceedings of the 2003 annual research
conference of the South African institute of computer scientists and information
technologists on Enablement through technology, South African Institute for Com-
puter Scientists and Information Technologists (2003) 48–58

5. Belotti, R., Decurtins, C., Norrie, M.C., Signer, B., Vukelja, L.: Experimental
platform for mobile information systems. In: MobiCom ’05: Proceedings of the
11th annual international conference on Mobile computing and networking, New
York, NY, USA, ACM Press (2005) 258–269

6. Dustdar, S., Gall, H.: Architectural concerns in distributed and mobile collabora-
tive systems. Journal on System Architecture 49 (2003) 457–473

7. Tsang, T.: Modelling and performance evaluation of mobile multimedia systems
using qos-gspn. Wireless Networks 9 (2003) 575–584

8. Issarny, I., Tartanoglu, F., Liu, J., Sailhan, F.: Software architecture for mo-
bile distributed computing. In: WICSA ’04: Proceedings of the Fourth Working
IEEE/IFIP Conference on Software Architecture (WICSA’04), Washington, DC,
USA, IEEE Computer Society (2004) 201

9. Augustin, I., Yamin, A.C., Barbosa, J.L.V., Geyer, C.F.R.: Isam, a software archi-
tecture for adaptive and distributed mobile applications. In: ISCC ’02: Proceed-
ings of the Seventh International Symposium on Computers and Communications
(ISCC’02), Washington, DC, USA, IEEE Computer Society (2002) 333

10. Kan, Z., Luo, J., Hu, J.: The design of a software technology architecture for
mobile computing. In: HPC ’00: Proceedings of the The Fourth International
Conference on High-Performance Computing in the Asia-Pacific Region-Volume 2,
Washington, DC, USA, IEEE Computer Society (2000) 762

11. van Thanh, D., Jorstad, I.: A service-oriented architecture framework for mo-
bile services. In: AICT-SAPIR-ELETE ’05: Proceedings of the Advanced Indus-
trial Conference on Telecommunications/Service Assurance with Partial and In-
termittent Resources Conference/E-Learning on Telecommunications Workshop
(AICT/SAPIR/ELETE’05), Washington, DC, USA, IEEE Computer Society
(2005) 65–70

12. Book, M., Gruhn, V., Hülder, M., Schäfer, C.: A methodology for deriving the
architectural implications of different degrees of mobility in information systems.
In H. Fujita, M., ed.: New Trends in Software Methodologies, Tools and Techniques,
IOS Press (2005) 281–292

13. http://www.inverso.de.

WISM'06 1123

1124 Web Information Systems Modeling

