
A Method for Functional Alignment Verification
in Hierarchical Enterprise Models

Irina Rychkova and Alain Wegmann

École Polytechnique Fédérale de Lausanne (EPFL), School of Communication and
Computer Science CH-1015 Lausanne, Switzerland

{Irina.Rychkova, Alain.Wegmann}@epfl.ch
http://lamswww.epfl.ch

Abstract. Enterprise modeling involves multiple domains of expertise:
requirements engineering, business process modeling, IT development
etc. Our experience has shown that hierarchical enterprise models, made
of an assembly of system models, are effective. In these models, two
hierarchies exist: an organizational level hierarchy (describing systems’
construction) and a functional level hierarchy (describing systems’ func-
tionality). Using a uniform hierarchical modeling language, system mod-
els at different hierarchical levels can be aligned in the context of the
enterprise model. Using an operational semantics, each system model
can be translated into executable code for model simulation and test-
ing. The possibility to simulate and test models leads to the alignment
verification for all system models across both hierarchies.
In this paper we propose a method and tool for functional alignment
verification. We use the Abstract State Machine (ASM) and the ASM
language (AsmL) to formalize our graphical models for simulation and
testing. We illustrate this approach with an example.

1 Introduction

In an IT project, marketing managers, business process designers, IT develop-
ers and other specialists develop specific models of an enterprise. Every model
highlights properties of the enterprise from a given viewpoint and often requires
a specific notation and a modeling tool. As a result, the enterprise models can
be seen as a collection of loosely coupled specific models. The main advantage
of this modeling approach is that each model is easy to read and understand
by the relevant specialist. However it is a challenging task to align the different
specific models in the context of one enterprise model.

SEAM [22] stands for a Systemic Enterprise Architecture Methodology and
represents an enterprise and its environment as an enterprise model. This en-
terprise model is a set of hierarchical system models. To structure these system
models (and their relations), SEAM defines a functional and an organizational
hierarchy. The functional hierarchy represents system’s behavior at different lev-
els of details. The organizational hierarchy represents systems’ construction and
related architectural choices.

244 Business/IT Aligment and Interoperability

Alignment across functional and organizational levels requires explicit refine-
ment relationships between system models. Refinement relationship has to guar-
antee the behavioral compatibility of two system models at different hierarchical
levels. Two systems are considered behaviorally compatible if the first system can
be replaced by the second one without the environment being able to notice the
difference of the system’s behavior based on a set of criteria.(adapted from [18])
The process of checking behavioral compatibility for two system models is the
alignment verification.

In SEAM we distinguish 2 types of alignment: (1) functional alignment where
behavioral compatibility of two system models within one organizational level
need to be guaranteed and (2) organizational alignment where behavioral com-
patibility of two system models at different organizational levels need to be
guaranteed. These 2 types of alignment were formalized in [21].

In this paper we present how SEAM system models can be simulated and how
functional alignment verification can be achieved. The simulation and verification
is based on the Abstract State Machine (ASM)[2] operational semantics. The
same method can be extended for organizational alignment verification. This
will be addressed in our future work. We illustrate our approach with a model
of a Cinema web site.

Section 2 presents the SEAM notation and approach for multi-level model
design and alignment verification. Section 3 defines the semantic mapping of
SEAM model into ASM executable language (AsmL) for functional alignment
verification. Here we also discuss the required tool support. Section 4 presents
the related work. Section 5 presents our conclusions.

2 The SEAM Approach for Multi-level Model Design

SEAM is a systemic approach that is applicable to general systems, including IT
systems and enterprises. SEAM epistemological principles are based on General
System Thinking (GST) [24] and Living Systems Theory (LST) [11]. GST defines
system-related concepts such as system boundary, context, etc. LST gives the
notion of organizational level. This concept is useful to describe systems that
span from technical systems up to companies and markets. SEAM ontology is
grounded on the second part of the RM-ODP [18] standard specification. Based
on this standard the main modeling concepts such as object, state, action are
defined [23]. These concepts are necessary to uniformly and rigorously model
systems.

We illustrate our approach with the model of the Cinema Web Site shown
in fig. 1-2.
Problem specification of the Cinema Web Site. ”SEAneMa” is a municipal
cinema that develops a web site to provide clients with new services. A Booking
tickets service enables tickets reservation via internet. To book tickets a client
has to log in on the web site. If logged in, the client can add reservations for
a movie of his/her choice to a virtual cart. The movie can be chosen from an
agenda - the movie list. The web site has to control a number of places (seats)

BUSITAL'06 245

available for every movie. Booking tickets finishes when the client commits and
logs out.

2.1 An enterprise model at different organizational and functional
levels

In this section we present the SEAM ontology and define the concepts of orga-
nizational and functional levels in enterprise models.

In SEAM, all entities that have behavior are considered as systems. For
example, a value network (group of companies), a company (people and IT
systems), IT systems (group of software applications) are all systems.
System is modeled as a working object. In fig.1.a Client is a working object

cinemaBIZ

Cinema

Cinema
ManagementTxn

<<transaction>>

Cinema
Management

Client

cinemaBIZ
Cinema

WebSite Booking
Office

cinemaManagement
webManagement

bookingTickets

Manager Clerk

operation

a) c)

...

cinemaBIZ
Cinema

WebSite Booking
Office

cinema
Management

Manager Clerk

b)

...

Client
Client

...

Fig. 1. Model of the Cinema at two organizational and functional levels: a) Cinema
(seen as a whole) participates in the business operation full interaction (seen as a
whole) by doing the CinemaManagement partial interaction; b) Cinema (shown as a
composite) performs the cinemaManagement full interaction (shown as a whole). The
WebSite system, the Manager human, the Booking office system etc define a new
organizational level for Cinema; c) The cinemaManagement full interaction shown as
a composite. The webManagement and bookingTickets full interactions define a new
functional level for Cinema.

that represents a human. Cinema is a working object that represents a company.
A working object can participate in a collaboration with other working ob-

jects. This collaboration is called a full interaction in SEAM. In fig. 1.a the
Client and the Cinema working objects participate in the business operation
full interaction.

A working object can be decomposed into a set of component working ob-
jects. This decomposition defines an organizational level of the system. Figure
1.a-b represents the model of Cinema at different organizational levels. WebSite,
Booking office, Manager, and Clerk participating in the cinemaManagement
full interaction define a new organizational level for Cinema and represent its
components. A specification of a working object as a whole focuses on its struc-
ture and can be considered as a white box specification of the system.

A full interaction can be seen as a composition of other full interactions
seen as wholes. Interaction seen as a whole defines a functional level of the

246 Business/IT Aligment and Interoperability

WebSite

WebManagement

WebManagementTxn
<<transaction>>

BookingTicketsTxn
<<transaction>>

ClientAccount

Agenda

Movie
{String}

Seat
{0..250}

H LogIn ManageReservation LogOut

BookingTickets

H

H LogIn

ManageReservation

LogOut H

BookingTickets

H H

WebManagement

H H

b)

1..*|list[1]..list[*]

1|seats

ID
{String}

ReservationList

1|reservationList

1|id

0..*1|list[1]..list[*]
PreS:
 1|ca

PreEnv:
 0..*|list[1]..list[*]

PostEnv [valid]:
forAll item in list {
reservationList add item;
seats(item):=seats(item)-1 }

a)
WebSite

Movie
{String}

PreS:
 1|agenda

Valid
{Boolean}

Emergent:
 1|valid
valid = (list==agenda.list)

Cart

GetCommit

Add

ClientAccountList

0..*|ca[1]..ca[*]

WebManagementTxn
<<transaction>>

BookingTicketsTxn
<<transaction>>

ClientAccount

Agenda

Movie
{String}

Seat
{0..250}

1..*|list[1]..list[*]
1|seats

ID
{String}

ReservationList

1|reservationList
1|id

0..*1|list[1]..list[*]

Movie
{String}

Valid
{Boolean}Cart

ClientAccountList

0..*|ca[1]..ca[*]

ManageReservationsTxn
<<transaction>>

Commit
{Boolean}

PreEnv:
 1|commit

0..1|cart

PostEnv:
 1|cart

0..*|list[1]..list[*]

PreEnv:
0..1|m

PostEnv[valid]:
ca.cart add m

Emergent:
 1|valid
valid = (m is in agenda.list
& seats(m)>0)

PreS:
 1|agenda

PostEnv [commit]:
forAll item in ca.cart
reservationList add item;

PreS:
 1|ca

Add *

Fig. 2. Model of the cinema WebSite at two functional levels: a) WebSite(seen as
a whole) performs ManageReservation partial interaction; b)WebSite (seen as a
whole) performs ManageReservation partial interaction seen as multiple Add reser-
vation partial interactions and one GetCommit partial interaction with undefined order.
ManageReservation finishes when Commit parameter received.

BUSITAL'06 247

system. In fig. 1.b the cinemaManagement full interaction is shown as a whole.
CinemaManagement in fig.1.c is shown as a composite where the webManagement
full interaction defines a new functional level for Cinema.

Working objects and full interactions can have a participation relation that
shows the participation of the working objects in the full interaction.

A working object represented as a whole is described by its partial interac-
tions, internal actions, and properties. SEAM defines a partial interaction as an
action in which the working object communicates with its environment using
parameters. An internal action is an action that does not require any exchange
with the environment. Properties of a working objects can be instantiated only
in the context of an action. Partial interaction and internal action can have a
parameter relation to a property that indicates that the action access or modify
instances of that property. Properties of the working object are encapsulated, i.e.
their state can be changed only as a result of a partial interaction or an internal
action. A specification of a working object as a whole can be considered as a
black box specification of the system. Figure 2.a shows the WebSite working
object as a whole. Agenda, ClientAccountList, ClientAccount, etc are the
properties of WebSite. The BookingTickets partial interaction is shown as a
composition of the LogIn, ManageReservation and LogOut partial interactions.

Figure 2.a-b represents the cinema WebSite from fig.1.c performing Booking
Tickets partial interaction at different functional levels. Figure 2.a shows the
ManageReservation partial interaction as a whole. ManageReservation requires
an instance of the ClientAccount to work with and a list of Movies as a param-
eter, obtained from the environment. This is depicted in the diagram with the
parameter relations PreS, PreEnv respectively. ManageReservation generates
the emergent parameter Valid that validates if given parameters correspond
to the Movie list from the Agenda. If valid, ManageReservation places given
movies to the client’s ReservationList. This is depicted with the parameter
relation PostEnv.

Figure 2.b shows the ManageReservation activity: Add reservation can be
performed multiple times; multiple add reservation (Add*) and GetCommit par-
tial interactions are performed in any order. This depicted in the diagram using
activity transition links. Activity transition links in SEAM specify the execution
constraints for full, partial interactions and internal actions (e.g sequentiality,
non-determinism, concurrency constraints, etc). Action Add requires one Movie
as a parameter and, if valid, places it to the client’s virtual Cart. It is shown
using the parameter relations PreEnv and PostEnv of the Add partial interaction.
Instance information is specified on the relation’s end. ManageReservation fin-
ishes when GetCommit performed and the commit parameter received. ManageReservation
places Movies from the virtual Cart to the client’s ReservationList if commit
or rolls back if cancelled. Cancel is not shown on the diagram. This figure defines
a new functional level for the cinema WebSite.

248 Business/IT Aligment and Interoperability

2.2 Operational semantics for the functional alignment verification

To validate and verify the functional alignment of 2 graphical models, we need
to check the behavioral compatibility of the corresponding system specifications.
To do this an operational semantics for SEAM was defined.

We propose a method for SEAM model simulation based on the transfor-
mation of the graphical model into an executable program. To enable such a
transformation, we had to check that the SEAM graphical language had all
necessary information to simulate the behavior. This did require some improve-
ments to the graphical notation and the addition of stereotypes specific to the
simulation.

We also had to select an executable language that supports the appropriate
abstraction level to simulate an abstract behavior defined by a SEAM graphical
model. In addition, it was important that this language provides an adequate
infrastructure for a testing of the executable specification for the alignment ver-
ification.

In this work we use the Abstract State Machine (ASM) operational seman-
tics for SEAM to provide the alignment verification for system models. ASM
is a method of stepwise refinable abstract operational modeling [2].The choice
of ASM as an operational semantics for SEAM was discussed in [19]. The Ab-
stract State Machine language (AsmL) and AsmL environment for model testing
(Asmlt) are ASM based tools developed by Microsoft Research group [8], [1]. Us-
ing ASM as an operational semantics for SEAM together with AsmL and Asmlt
has the following advantages:
Model Simulation support. Any system model at a given functional level can
be represented as an asml specification and simulated using AsmL. The modeler
can specify a program output and communicate with a program via console.
Model Testing support. Asmlt conformance test analyses the behavioral com-
patibility of 2 asml specifications. Therefore it can be used for functional align-
ment verification of system models at different functional levels. For example,
to verify that the model in fig. 2.a is behaviorally compatible with the model in
fig. 2.b, the conformance test should be performed.

3 The Method and the Tool for Functional Alignment
Verification

The ASM operational semantics for SEAM allows interpretation of SEAM mod-
eling concepts in AsmL language and enables the automated generation of exe-
cutable asml specifications. Based on the definitions of SEAM modeling concepts
given in the section 2 and the notion of the AsmL programming concepts [8], we
define the AsmL interpretation of SEAM graphical models.

3.1 The AsmL interpretation of SEAM graphical model

We use our Cinema Web Site example and its SEAM model in fig. 1 and fig. 2
to illustrate the interpretation rules for all general modeling concepts in SEAM.

BUSITAL'06 249

SEAM working object is interpreted as an AsmL namespace.

namespace WebSite //WebSite working object at fig. 2.a

SEAM full interaction is used for the organizational alignment verification. Can be
interpreted as an AsmL method that defines the collaboration protocol for asml com-
ponents representing SEAM working objects.
SEAM property can be interpreted as asml types or classes.
- A property encapsulating other property(es) is interpreted as an AsmL class with
the same name. Encapsulated properties are interpreted as attributes of this class.
Properties encapsulation is expressed using a specific relation;
- A property encapsulating a collection of other properties of the same type is inter-
preted as one of the AsmL instantiated type (e.g. Set, Bag, Map, etc). See Rela-
tions for the details;
- A property who’s state space is defined as one of the AsmL operational types (e.g.
Integer, Boolean, etc) is interpreted as an AsmL class with a single attribute that holds
a variable of this type. If property type is undefined then the property can be inter-
preted as a user declared type.
Instances of the properties derived from SEAM parameter relations can be interpreted
as asml variables.

class ClientAccount //from the ClientAccount property in fig. 2.a-b
var id as ID //from the ClientAccount-ID relation in fig. 2.a-b
var reservationList as ReservationList? // ... fig. 2.a-b

class ID
var valueRef as String //from the ID property in fig. 2.a-b

class ReservationList
var list as Bag of Movie //from the ReservationList property in fig. 2.a-b

class Movie
var valueRef as String //from the Movie property in fig. 2.a-b

SEAM partial interaction and internal action are both interpreted as AsmL
methods with the same name. A precondition is interpreted as an AsmL require
assertion. A postcondition is interpreted as AsmL operation(s) and/or ensure assertions.
Both pre- and postconditions are derived from SEAM parameter relations.

Add(m as Movie, cl as ClientAccount) //from Add partial interaction in fig. 2.b
require (m is in agenda.list) & (seats(m)>0)
cl.cart.list add m; seats(m):=seats(m)-1;

SEAM Relation There are 3 general groups of SEAm relations:
1) Property-Property relations can define attribute-properties for the class-properties
or specify AsmL instantiated types (e.g. Set, Bag, Map, etc);
2) Action-Action relations (activity transitions) define action composition constraints
and include plain, conditional, fork, merge transitions, etc. It is interpreted using the
AsmL control structures such as step, if..then..else, forAll, forEach, etc.;
3) Action-Property relations (parameter relations) are the most important for the
simulation. These relations specify action’s parameters, pre, post and emergent con-
ditions in terms of property instances. Property instances are interpreted as AsmL
variables. Action-Property relation holds the instance information: instance name,

250 Business/IT Aligment and Interoperability

state, and state modification instructions (if modification occurs as a result of the
action). This information is interpreted as AsmL operation expressions (:=, new, +,
-, include, exclude, .. etc.). Being combined with the action composition con-
straints, derived from the Action-Action relations, operation expressions constitutes
AsmL method body.

ManageReservation(cl as ClientAccount)//from ManageReservation in fig. 2.b
if (commit) then forAll item in cl.cart.list

add item to cl.reservationList.list
seats(item):= seats(item)-1

...

The interpretation rules defined in this section illustrate our approach using a small
example of the cinema web site but can be generalized for any SEAM model.

3.2 Simulation tools

The semantic mapping of SEAM modeling concepts into ASM allowed us to develop
the SEAM-ASML translator. This tool includes the XML parser, SEAM interpreter,
and ASML generator units.

Once a SEAM graphical model is translated into AsmL, it can be simulated to
validate if the model reacts correctly on the proposed test cases. Then more formal
alignment verification using the Asmlt test environment can be performed. The Asmlt
enables different test procedures. The conformance testing is the most interesting in the
light of our problem. Here one asml specification (corresponding, for example, to fig.2.a)
can be tested against the other one (corresponding to fig.2.b) to check their behavioral
compatibility. Positive result of this test informs the modeler that asml specifications
are behaviorally equivalent and, respectively, means that graphical models at different
functional levels are functionally aligned.

SeamCAD is a web-based Computer Aided Design (CAD) tool[10],[9] that allows
drawing and storing of SEAM hierarchical models. The interoperability of SeamCAD
with the SEAM-ASML translator is supported by using an XML intermediate format
for the graphical specifications.

4 Related Work

Many languages for hierarchical modeling exist: Conceptual Graph[16], Catalysis[6],
TROPOS[12], UML[20], DEMO[3], OPM[4], BPEL[14], etc.

TROPOS [12] is a requirements engineering method that aligns its specifications
by providing a goal refinement technique. This method does not consider behavioral
equivalence for model alignment.

Catalysis [6] proposes hierarchical modeling (IT systems, components and program-
ming classes) and aligns its models using a top-down design. The modeling principles
of Catalysis are based on UML. This method does not propose a formal semantics for
its models apart from semantics exist for UML.

DEMO[3] is an EA framework originated from the organizational theory called
Language/Action Perspective. DEMO defines its organizational levels based on a com-
munication paradigm. Functional levels are defined in DEMO based on the view of

BUSITAL'06 251

business processes as transactions. DEMO provides an operational semantics for model
formalization. However alignment verification is not defined in this method.

OPM[4],[5] proposes a method for the complete integration of the systems’ states
and behaviors within a single graphical model. OPM provides a visual notation and de-
fines an operational semantics for model simulation. It does not provide model checking
(i.e. alignment verification).

BPMN[15] and BPEL[14] provide a visual notation and a formalism for business
process model development, simulation, and verification. Operational semantics for
BPEL was defined using Abstract State Mashine (ASM)[7].

The semantics of activity diagrams in UML 2.0 is based on Petri Nets[17]. However,
there were many attempts to define semantics of activity diagrams based on other
formal languages: LOTOS, ASM, CSP, LTS (see [17] for details).

SEAM method focused on the parallel design across organizational and functional
hierarchies. It covers different domains and defines the solution for the functional align-
ment verification based on the principle of the behavioral compatibility [18], [13]. SEAM
uses the ASM operational semantics for model simulation and verification.

5 Conclusion

In this paper we defined the concepts of organizational and functional alignment and
proposed the functional alignment verification technique. We presented SEAM method
for hierarchical system development and specified its modeling concepts. Since the tran-
sition from the descriptive graphical model to the prescriptive executable program is
not straightforward, graphical language as well as executable language have to satisfy
certain criteria (i.e. possibility to specify the operational data for a graphical language
and abstraction level support for executable language). We use ASM and its executable
language AsmL as an operational semantics for SEAM. At the last section the AsmL
interpretation of SEAM modeling concepts was presented. Based on this interpretation
SEAM-ASML translator tool was developed. Using SEAM-ASML translator, one can
obtain an executable asml specification of a system at any given organizational and
functional level. Functional alignment verification is performed using Asmlt confor-
mance testing.

References

1. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Towards a Tool Environment for Model-Based Testing with AsmL.

2. Börger, E., Stärk, R.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer-Verlag, Berlin Heidelberg New York (2003)

3. Dietz, J. L. G.: DEMO: towards a discipline of Organisation Engineering. 1999.
4. Dori, D., Object-Process Methodology, A Holistic Systems Paradigm. 2002:

Springer Verlag.
5. Dori, D., Reinhartz-Beger, I., Sturm, A. OPCAT - A Bimodal CASE Tool for

Object-Process Based System Development. in ICEIS 2003. 2003. Angers, France.
6. D’souza, F.D., Wills, C. A.: Object, Components and Frameworks with UML, The

Catalysis Approach. 1999: Addison-Wesley.
7. Farahbod R., Glsser U., Vajihollahi M.: Abstract Operational Semantics of the

Business Process Execution Language for Web Services, Simon Fraser University,
Tech. Report #SFU-CMPT-TR 2004-03, 2004

252 Business/IT Aligment and Interoperability

8. http://research.microsoft.com/fse/asml/
9. Lê, L.S., Wegmann, A.: Definition of an Object-Oriented Modeling Language for

Enterprise Architecture. to be published in HICSS 2005. Hawaii, USA.
10. Lê, L.S., Wegmann, A.: SeamCAD 1.x: User’s Guide, School of Computer and

Communication Sciences, EPFL, Lausanne Switzerland, Report No. IC/2004/98,
November 2004.

11. Miller, J.G.: Living Systems. University of Colorado Press, 1995.
12. Mylopoulos, J., Kolp, M., Castro, J.: UML for Agent-Oriented Software Develop-

ment: The Tropos Proposal, Proceedings of the 4th international conference on the
Unified Modeling Language UML 2001, Toronto, Canada, October 1-5, 2001.

13. Philippi, S.: Formally based modeling and inheritance of behaviour in object-
oriented systems. Journal of Systems and Software, Feb 2004.

14. Specification: Business Process Execution Language for Web Services Version 1.1,
The IBM, 2004.

15. Specification: Business Process Modeling Notation (BPMN) Version 1.0, Business
Process Management Initiative (BPMI),May 3, 2004

16. Sowa, J.,F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Pacific Grove, Brooks Cole Publishing Co., 1999

17. Störrle, H.: Semantics of UML 2.0 Activities, Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC ’04), Rome, Italy,
September 26-29, 2004.

18. Reference model of open distributed processing part 1. Draft International Stan-
dard (DIS), Helsinki, Finland, (15-18 May 1995)

19. Rychkova, I., Wegmann, A., Balabko, P.: Operational ASM Semantics behind
Graphical SEAM Notation. Workshop DAIS-FMOODS’03, Paris 2003.

20. Unified Modeling Language: Superstructure (final adopted spec, version 2.0)”,
Technical report, Object Management Group, November 2003.

21. Wegmann, A., Balabko, P., Lê, L.S., Regev, G., Rychkova, I.: A Method and Tool
for Business-IT Alignment in Enterprise Architecture. CAiSE Forum’05, Porto,
Portugal

22. Wegmann, A.: On the systemic enterprise architecture methodology (SEAM). Pub-
lished at the International Conference on Enterprise Information Systems 2003
(ICEIS 2003), Angers, France.

23. Wegmann, A., Naumenko, A.: Conceptual Modeling of Complex Systems Using an
RM-ODP Based Ontology. Proceedings of the 5th IEEE International Enterprise
Distributed Object Computing Conference - EDOC 2001, Seattle, USA, September
2001, pp. 200-211.

24. Weinberg, G. M.: An Introduction to General Systems Thinking. New York: Wiley
& Sons, 1975.

BUSITAL'06 253

