
On Controlled Flexibility

Signe Ellegaard Borch1 Christian Stefansen2

1 IT University of Copenhagen, Rued Langgaards Vej 7, 2300 København S, Denmark
elleborch@itu.dk

2 DIKU, University of Copenhagen, Universitetsparken 1, 2100 København Ø, Denmark
cstef@diku.dk

Abstract.
Striking a balance between rigidity and flexibility is a central challenge in

designing business processes. Striking this balance begins on the type level,

because expressiveness on the type level is essential to control flexibility on the

instance level. With this paper we would like to start a discussion on the ability

to accurately specify flexibility on the process type level.

The paper proposes a more detailed categorization scheme than the common

categorization of processes into allowed and disallowed sequences.

Specifically, three ideas are put forth: (1) Use a finer granularity in

classification, (2) make fine-grained classification possible across several

dimensions, and (3) provide formalisms, design tools, and systems to make

such classifications easy, adaptable, and directly supported in design tools and

BPS systems.

In addition, the paper poses several open questions related to the suggested

approach, most importantly: How can this finer classification scheme be built

into current formalisms, tools, and systems and how can we make it pleasant for

designers and users to interact with them?

Introduction

The activity of modeling at the business process type layer can be seen as a

classification of all possible sequences of tasks into allowable sequences and

disallowable sequences. When one uses a business process tool to classify sequences

of tasks, the challenge is striking a balance between support and flexibility. In other

words there are two dangers:

1. Too much is allowed

2. Too little is allowed

If too little is allowed, the user will find the system too restrictive because it

disallows sensible ways of working through the process, and the user will repeatedly

have to modify the process on the instance level. If too much is allowed, the system

might suggest tasks that are not ready, and it may be difficult to use by inexperienced

users, or it may introduce inconsistencies in data because some tasks were handled in

the wrong order. In other words, if the system is too flexible, it will not support the

users in doing their work.

BPMDS'06 121

However, the classification into simply allowed and disallowed sequences might

not be fine grained enough: ideally, a business process management system should let

designers express more complex relations between tasks, and support the end-users

with the appropriate kind of guidance, depending on the context of use.

The objective of business process support (BPS) systems research should not be to

make BPS systems as flexible as possible, as also pointed out in [1] – the goal should

be to provide means of controlling flexibility to get the “right rigidity”.

In the following we consider several issues in attaining such controlled flexibility.

Section 2 discusses the problems of the simple accept/deny type of classification

found in many systems, section 3 extends this problem to a setting with multiple inter-

related dimensions, and section 4 discusses the issue of how designers and users

might interact with such a richer system. Section 5 presents points for further

discussion, and section 6 outlines future work, followed by a conclusion in section 7.

Balancing Support and Flexibility

Consider the following business process type1:

 a → (b XOR c) → d

In essence, this business process type makes a classification. It classifies all

possible sequences of the activities a, b, c, and d into those that comply with the

description and those that do not comply. The sequences { <a,b,d>, <a,c,d> }

comply; all others do not.

Let’s consider the two extremes of flexibility. The dictatorial BPS system is one

which allows only the two complying sequences and blocks the user from anything

else. The anarchistic BPS system is one which allows all possible sequences of the

four activities a, b, c, and d.

Neither of these extreme systems is ideal when it comes to satisfying the needs of

an organization.

An anarchistic system could, for example, present an unstructured task list, where

it is up to the user to decide in which order to do the tasks. Such a system would be

based on the assumption that people know what they are doing, and that the system

should support their work with friendly reminders, but interfere as little as possible,

see e.g. [4]. However, some users might need more support than the anarchistic

system provides. The right balance between support and flexibility in a system

depends among other things on the level of education of the users: how well do they

know their tasks, and how well do they know the system.

So far we have pointed out some of the problems pertaining to the classification of

process flows into allowed and disallowed sequences.

It should be possible to use a finer granularity in the classification. Perhaps the

categories could be recommended, suggested, allowed, discouraged, and denied (or

some other classification appropriate to the context). Instead of classification into

1 This description omits all other perspectives than the purely process-structural perspective,

but it is sufficient for the following discussion.

122 Business Process Modeling, Development, and Support

allowed or disallowed sequences, we imagine a continuum, where absolute

prohibition is at one end and optimality/best practice is at the other end. The designer

specifies which sequences belong where in this spectrum.

Controlling Flexibility Across Several Dimensions

Any realistic BPS system is likely to support several dimensions in addition to the

pure process description. Such dimensions might be users, roles, time constraints,
customers, market segments, locations or the employee’s experience to name a few.

The key observation is that it is not enough to classify sequences of activities

isolation; several dimensions play into the classifications.

Consider two examples: (1) Allowing certain activities to be skipped was a

tremendous improvement to early-day systems, but a binary “can be skipped” flag on

each task is unlikely to work well in practice. Dependent scenarios such as “can be

skipped if less than two days left” or “can be skipped by managers” are much more

likely. (2) Complicated relations like “managers and supervisors can carry out activity

b, but managers are recommended, unless time left is less than four days in which

case the supervisor who did activity a is preferred” simultaneously use several

dimensions in the process description and a finer classification than a simple

comply/not comply.

Describing such processes without over- or under-specification is immensely

important, because – as stated before – neither a dictatorial nor an anarchistic system

is desirable – certainly even less so with more dimensions involved.

We must be able to classify relations between tasks along several dimensions,

e.g. classifying depending on parameters such as user role, time constraints,

customer, or the employee’s experience.

From Novice to Developer: Users’ Rights to Make Changes

Another aspect of the use side of flexible systems is who is allowed to make changes.

Skilled users tend to make workarounds when working with rigid systems [2]. One

could argue that a flexible system should be designed to let educated users put their

knowledge into the system, instead of making workarounds.

The system should allow users to skip tasks and restructure running processes, as

well as making changes to the process definitions on the process type level,

depending on the users’ experience and authority. Novice users should be allowed to

make only limited changes whereas experienced users with organizational

responsibility should be able to make fundamental changes.

However, one should take the use context into account – the design of user access

rights might differ substantially, e.g. depending on whether the system is designed for

production or office work. In a production line, other restrictions exist, such as

material ones, which means that users should not easily be able to change behavioral

or operational aspects of the system.

BPMDS'06 123

With categories graduated from allowed to denied, flexibility becomes a question

of expressiveness, namely: Can the business process designer easily and accurately

specify which traces belong in which categories? If the process designer can do this,

we have gained controlled flexibility. We must provide tools and formalisms for the

process designer, or experienced user, to make this classification as easy and

flexible as possible.

Questions to be discussed

We propose a discussion about the following questions:

1. What granularity is needed to classify sequences of activities? Are three

categories (recommend, accept, deny) sufficient?

2. How can we add the notion of classification to the various process description

dimensions in current tools and formalisms? A more concrete example: if the

designer wishes to specify that activity b can be skipped, but only by a user

with role Manager and only if the process time-to-finish is less than 4 days,

how can such controlled flexibility (tying together several dimensions) best be

accommodated?

3. The designer should be extremely prudent when classifying sequences in the

deny category. Can we put forth a proposal for best design practices regarding

what should go into the deny category?

4. How might the UI of the end-user be affected by a more detailed flow

categorization scheme? E.g. several choices of tasks could be presented but

alternative tasks change their status on the task list once they are no longer

strictly required.

5. The process design tools should provide ways of recommending what

constraints can be violated and what cannot based on e.g. data-flow

dependency, resource sharing constraints etc. How should this be built into

the design tools? And how can the idea of controlled flexibility be

implemented in tools in a way that makes it easy to work with for the process

designer? As an example the color or the weight of an edge in a process graph

in the design tool could signify whether the particular sequence is

recommended, allowed or denied. This is currently not part of what process

notations are able to express: e.g. the arrows connecting tasks do not specify

this.

6. Is more than one dimension needed? (Perhaps several different soft-goal-

based metrics?)

Future Work

An obvious generalization to be addressed in future work is having several

classifications corresponding to several business (soft-)goals. Our example here with

classes recommended, suggested, allowed, discouraged, denied could pertain to a best

124 Business Process Modeling, Development, and Support

practice, but other metrics could be employed and give rise to more (orthogonal)

classifications.

Using Fine-Grained Classification in the Feedback Loop

Suppose we have three categories: recommend, accept, deny. The BPS system may

write all process instances that were only accepted to a log and occasionally present

these to the designer with suggestions for improvements. In this way the

categorization serves to create a feedback loop to the designer, thus enabling

continuous adaptation and improvement on the business process type level.

The BPS system might also use such a classification to monitor soft goals. One soft

goal could be lead-time, and sequences that fall in the “accept” category perhaps have

a longer lead-time than sequences in the “recommend” category. The BPS system can

now help management monitor soft goal achievement by reporting the fraction of

instances completing in the “recommend” category.

Introducing Finer Granularity in Existing Process Descriptions

Introducing a finer granularity in existing processes may involve a lot of quite

cumbersome manual work. Hence, an enticing idea is to be able to derive whether a

sequence is recommended or simply allowed.

A crude first-approximation is simply considering data-dependencies and globally

declared rules or goals as – in Soffer’s terminology [3] – essential constraints

(violation is denied) and other constraints as inessential (violation is allowed, but not

recommended).

Deriving a finer classification from pre-existing processes may in fact be useful in

two settings: it makes the transition to a fine-grained system easier and it alleviates

some of the burden of specification in daily work.

Conclusion

This paper discussed the notion of controlled flexibility and put forth three

suggestions for improvement:

1. Use a finer granularity in classification, that is, rather than just having

sequences classified as allow and deny, use a finer spectrum such as

recommended, suggested, allowed, discouraged, denied (or any spectrum

appropriate to the context).

2. Make fine-grained classification possible across several dimensions. The

classification across several dimensions should also be classified on a finer

spectrum.

3. Provide formalisms, design tools and systems to make such classifications

easy and adaptable. Simple being able to observe after-the-fact that a

process followed best practice is not sufficient. The classification should be

BPMDS'06 125

ubiquitous: when designers describe processes, when users execute processes,

when experts monitor processes, etc. A finer granularity improves nothing if

it is not visible to designers and users.

Finally, we mentioned several points of discussion. The most important being how

to construct formalisms, tools, and systems that help us attain controlled flexibility

without overwhelming us with verbosity.

References

[1] Bider, I.: Masking flexibility behind rigidity: Notes on how much flexibility people
are willing to cope with, Extended Abstract of Keynote Talk, BPMDS’05. In

Proceedings of the CaiSE'05 workshops, Vol. 1, FEUP, Porto, Portugal, 2005.

[2] Kammer, P. J.; Bocher, G. A.; Taylor, R. N.; Bergman, M.: Techniques for
Supporting Dynamic and Adaptive Workflow. CSCW: The Journal of Collaborative

Computing, vol. 9, 2000.

[3] Soffer, P.: On the Notion of Flexibility in Business Processes. In Proceedings of

the CaiSE'05 workshops, Vol. 1, FEUP, Porto, Portugal, 2005.

[4]Wulf, M.; Gryczan, G.; Züllighoven, H.: Process Patterns - Supporting
Cooperative Work in the Tools & Materials Approach. Information systems Research

seminar In Scandinavia: IRIS 19; proceedings, Lökeberg, Sweden, 10 - 13 August,

1996. Bo Dahlbom et al. (eds.). - Gothenburg: Studies in Informatics, Report 8, 1996.

S. 445 – 460, 1996.

126 Business Process Modeling, Development, and Support

