
ADEPT Next Generation Process Management

Technology – Tool Demonstration

Manfred Reichert1, Stefanie Rinderle2, Ulrich Kreher2,
Hilmar Acker2, Markus Lauer2, and Peter Dadam2

1Information Systems Group, University of Twente, The Netherlands
m.u.reichert@utwente.nl

2 Dept. DBIS, University of Ulm, Germany
{stefanie.rinderle, ulrich.kreher, hilmar.acker, markus.lauer,

peter.dadam}@uni-ulm.de

1 Introduction

In the ADEPT project we have been working on the design and implementa-
tion of a next generation process management technology for several years [4,
8]. Based on a conceptual framework for dynamic process changes, on innova-
tive process support functions, and on advanced implementation concepts, the
developed system enables the realization of adaptive, process-aware information
systems (PAIS). Basically, process changes can take place at the process type as
well as the process instance level: Changes of single process instances [2, 4, 3] may
have to be carried out in an ad-hoc manner (e.g., to deal with an exceptional
situation) and must not affect system robustness and consistency. Process type
changes, in turn, must be quickly accomplished in order to adapt the PAIS to
business process changes [7, 5, 6]. This may also include the migration of (thou-
sands of) instances to the new process schema (if desired). Important require-
ments are to perform respective migrations on-the-fly, to preserve correctness,
and to avoid performance penalties.

2 Process Change Support

ADEPT offers powerful concepts for modeling, analyzing, and verifying process
schemes. Particularly, it ensures schema correctness, like the absence of deadlock-
causing cycles or erroneous data flows. This, in turn, constitutes an important
prerequisite for dynamic process changes as well. In detail, ADEPT supports
both ad-hoc changes of single process instances and the progagation of process
type changes to running instances:

Ad-hoc changes of single instances: We support different kinds of ad-
hoc deviations from the pre-modeled process template (e.g., to insert, delete,
or shift activities). Such ad-hoc changes do not lead to an unstable system be-
havior, i.e., none of the guarantees achieved by formal checks at buildtime are
violated due to the dynamic change. ADEPT offers a complete set of operations

for defining changes at a high semantic level and ensures correctness by intro-
ducing pre-/post-conditions for these operations. All complexity associated with
the adaptation of instance states, the remapping of activity parameters, or the
problem of missing data (e.g., due to activity deletions) is hidden from users.

Process type changes and change propagation: In order to deal with
business process changes we enable quick and efficient schema adaptations at the
process type level (schema evolution). In particular, it is possible to propagate
type changes to running instances (of this type) as well. We provide a compre-
hensive correctness criterion for deciding on the compliance of process instances
with a modified type schema. This criterion is independent of the used process
meta model and is based on a relaxed notion of trace equivalence [7]. It considers
control as well as data flow changes, and it works correctly in connection with
loop backs. In order to enable efficient compliance checks, for each change oper-
ation we provide precise and easy to implement compliance conditions (cf. Fig.
1). Finally, efficient procedures exist for adapting the states of instance when
migrating them to the new schema (cf. Instance I1 in Fig. 1).

Process Schema S: S’

Instance I1 (on S):

�T = addActivity(S, send questions, compose order, pack goods),
 insertSyncEdge(S, send questions, confirm order))

Instance I2 (ad-hoc modified):

Instance I3 (on S):

get order

collect data

confirm
order

compose
order

pack goods

deliver goods

c ollect data

c onfirm
order

compose
order

p ack goods

deliver goods
 s end

questions

g et order
ET=Sync

Instance I1 (on S’):

ET=Sync

s end brochure

Not compliant due to structural conflicts!

Not compliant due to state-related conflicts!

completed activated TRUE Signaled running

Change Operation � … and related compliance condition:

addActivity(S, act, � n � Preds: NS(n) = Disabled] �

Preds, Succs) [� n � Succs:

 (NS(n) � {NotActivated, Activated}) �
 (NS(n) = Disabled � � m � succ(S,n):
 NS(m) � {NotActivated, Activated, Disabled})]

Fig. 1. Process Schema Evolution and Change Propagation

The correct interplay between concurrent type and instance changes is in-
dispensable to provide real benefit for practical applications. Therefore, we have
also dealt with the question how to propagate type changes to running instances
that may be in different states and may have undergone preceding ad-hoc mod-
ifications. For such ’biased’ instances, the current execution schema differs from
the original one.We use a comprehensive correctness principle in this context,
which excludes state-related, structural, and semantical conflicts. Fig. 1 shows an
example: Instance I2 has been individually modified such that type change ΔT

cannot be applied to it; otherwise the resulting instance schema would contain
a deadlock-causing cycle.

ADEPT comprises a number of system components. The buildtime compo-
nents support the correct modeling of process schemes and the process-oriented
composition of application services in a plug & play like fashion. The runtime
components, in turn, enable (distributed) process control and worklist manage-
ment, support dynamic process changes at the described levels (also in case of
distributed process control), and show how the different concepts also work in
conjunction with each other. Furthermore, comprehensive interfaces for applica-
tion programming are offered.

The implementation of ADEPT has raised many challenges, e.g., with respect
to the representation of schema and instance data: Unchanged instances are
stored in a redundant-free manner by referencing their original schema and by
capturing instance-specific data (e.g., activity states). As an example, consider
instances I1, I3, I4, and I6 from Fig. 2. For changed (’biased’) instances, this
approach is not applicable. One alternative would be to maintain a complete
schema for each biased instance, another to materialize instance-specific schemes
on-the-fly. We follow a hybrid approach: For each biased instance we maintain
a minimal substitution block that captures all changes applied to it so far. This
block is then used to overlay parts of the original schema when accessing the
instance (I2 + I5 in Fig. 2).

D E F A

B

C

unchanged ("unbiased") instances
(and their marking on S)

I4

I3

I1

D X E

I6

I2

changed ("biased") instances
(and their marking on S +)

A C D
I5

original schema S

substitution block of I5
(representing deletion of B)

substitution block of I2
(representing insertion of X)

Fig. 2. Managing Schema and Instance Data

3 Demo description

In our prototype, effects of ad-hoc instance changes can be visualized by a special
monitoring component. The same applies for process type changes (cf. Fig. 3).
Users define a new process type by introducing a respective process template.
Based on such a template new instances can be created and new schema ver-
sions be derived. Fig. 3 shows version V2 of an online ordering process. After
committing the change, the system automatically checks compliance conditions
and reports migration results to the user (cf. Fig. 3). This report summarizes
which instances are compliant with the new schema version. For non-compliant
instances the report indicates state-related (I3 in Fig. 3) or structural conflicts
(I2 in Fig. 3). Fig. 3 also illustrates the interplay between type and instance

changes: I2 has been individually modified, but cannot be migrated to the new
schema version due to a structural conflict.

online order, version V2

I1 running on version V2

I2 running on version V1

I3 running on version V1 conflict info

efficient migration

(ad-hoc modified)

Fig. 3. Screen of ADEPT Demonstrator

In order to gain experience we have deployed this system to different research
groups (e.g., [1]). They have used it as platform for realizing flexible PAIS in
domains like healthcare, e-commerce, transportation, and the automotive indus-
try. The experiences made have helped us to refine our conceptual framework
and to develop new system components with advanced programming interfaces.

References

1. S. Bassil, R. Keller, P. Kropf: A Workflow-oriented System Architecture for the
Management of Container Transportation. Proc. BPM’04, Potsdam, LNCS 3080,
June 2004, pp. 116–131.

2. W.M.P.v.d. Aalst: Exterminating the Dynamic Change Bug: A Concrete Approach
to Support Worfklow Change, Inf. Sys. Frontiers, 3:297-317, 2001

3. M. Reichert, P. Dadam, T. Bauer: Dealing With Forward and Backward Jumps in
Workflow Management Systems. SoSyM, 2(1):37-58, 2003

4. M. Reichert, P. Dadam: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10(2): 93–120 (1998).

5. C.A. Ellis, K. Keddara, G. Rozenberg: Dynamic Change within Workflow Systems.
Proc. COOCS’95, 1995, Milpitas, CA, pp. 10-21

6. F. Casati, S. Ceri, B. Pernici, G. Pozzi: Workflow Evolution, DKE, 24:211-38, 1998
7. S. Rinderle, M. Reichert, P. Dadam: Flexible Support Of Team Processes By Adap-

tive Workflow Systems. Distributed and Parallel Databases, 16(1):91–116 (2004).
8. S. Rinderle, B. Weber, M. Reichert, W. Wild: Integrating Process Learning and

Process Evolution. Proc. BPM’05, Nancy, France, 2005, 252–267

