
Representing data as resources in RDF and

OWL

Pierre-Antoine Champin

LIRIS, Université Claude Bernard Lyon 1,
pchampin@liris.cnrs.fr

Abstract. This paper presents an RDF vocabulary for representing
data values as resources. An intended application is the representation
of relational databases in RDF, and reasoning with them using semanti-
cally rich dialects of RDF, such as OWL. After discussing the rationale
for this work, we present the structure of the vocabulary, some implemen-
tation considerations and possible extensions, which open new research
directions for integrating databases in the Semantic Web.

1 Introduction

RDF, the Resource Description Framework [1] has been recommended by the
W3C as the language of choice for knowledge representation in the so called
Semantic Web (SW). In RDF, objects of the domain are represented as inter-
related resources and identified by Uniform Resources Identifiers (URI), while
attribute values are represented by literals (a string, possibly characterized by
a language or a datatype). The OWL language [2], a dialect of RDF, adds the
formal semantics of very expressive description logics [3] and powerful inference
mechanisms1.

The initial motivation of this work was to represent in RDF/OWL data from
legacy sources, e.g. relational databases. Our contribution is a standard RDF
vocabulary for representing data values as resources. Although that is redundant
with RDF literals, we argue in favor of resources over literals in section 2. In
section 3, we give the formal specification of our vocabulary. We discuss a number
of current and future developments to this work in section 4. Finally, we conclude.

2 Rationale

In this section we demonstrate some advantages of representing data values as
resources rather than literals. Some arguments are concerning RDF as a whole,
while some others are more specifically concerning OWL.

1 Actually, OWL itself has three dialects (called species): Lite, DL and Full. Only
the first two of them are description logics. OWL-Full, on the other hand has no
decidable inference mechanism. In the following, mentions to OWL will only refer
to its decidable species.

2.1 Making RDF more uniform

Any RDF description can be seen as a set of triples, composed by a subject, a
predicate and an object. Only the object of a triple may be a literal, while the
subject and predicate are necessarily resources2. Each triple is usually thought
of as a labelled arc between the subject and the object, hence RDF descriptions
are often referred to as RDF graphs.

From another point of view, an RDF description can be seen as a set of
resources (subjects), which are described by a set of predicate-object pairs (more
usually thought of as attribute-value pairs), where each object can either be
another resource or a literal. From that point of view, we see that literals are
somewhat “weaker” than resources, since they can not in turn be described (i.e.
they can not be the subject of any triple, they are pits in the RDF graph). This
“weakness” will be even more pronounced in OWL (see section 2.2).

Since resources in RDF are intended to represent virtually anything, they
could have been targeted from the start to represent data values, and thus the
irregularity in the language introduced by literals would have been eschewed.
However, literals do have some good properties:

– The distinction between objects and atomic values is widely accepted: it
holds in the most popular object-oriented programming languages, such as
C++ or Java, as well as in modelling formalisms (e.g. Entity-Relationship).

– Literals fit nicely in the recommended XML syntax of RDF (any text node in
the XML tree becomes a literal in the RDF graph). This eases the transition
from any XML DTD or Schema into valid RDF [4].

– Data values come with a number of implicit properties and relations, (e.g.
natural order, arithmetic operations, etc.) which could not reasonably been
made explicit as an RDF graph, essentially because the domain of the
datatype are usually huge or even infinite. So it seems appropriate to manage
them differently from objects.

Let us note that the first two arguments are more “marketing” than technical:
they aim at easing the acceptance of RDF. The third one is the only real technical
argument against our approach, and we will discuss it in section 4.3. Anyway,
our goal is not to ban literals from RDF, but to propose a alternative to them,
which is not ideal either but has, amongst others, the advantage of uniformity.
It is even possible for data resources and literals to coexist (see section 4.1).

2.2 Making OWL inferences more powerful

As we mentioned before, the difference between resources and literals is even
more important in OWL than it is in plain RDF. OWL inference engines can
reason about classes of resources: they can for example decide whether a class

2 For the sake of simplicity, we will not mention the difference between URI nodes and
blank nodes, which both represent resources, while Literals are completely different
objects.

is included in another one (subsumption), whether a class can contain resources
(satisfiability), whether a resource belongs to a given class (instance checking),
or list the classes to which a given resource belongs (realization). They can not,
on the other hand, do the same kind of reasoning with literals, an usually rely
on an additional component, called an oracle, to handle them [5].

It follows that OWL makes a strict distinction between object properties,
which can only be predicate between two resources, and datatype properties,
which can only be predicate between a resource and a literal. Those two kinds
of properties inherit the differences of their different values. On the one hand,
object properties can be transitive, symmetric, functional (i.e. a resource may
have only one value for that property) or inverse-functional (i.e. a resource may
be the value of only one resource for that property). The inverse property of an
object property can also be defined.

On the other hand, datatype properties have much less options. Obviously,
stating that they are transitive or symmetric would make no sense since the
subject and object of such properties are not of the same kind. For the same
reason, it is not possible to define the inverse of a datatype property (remember
that literals can not be subject). The only thing one can state about a datatype
property is that it is functional. Note that it is impossible to state that a datatype
property is inverse-functional.

Now, let us consider the following example (illustrated in figure 1). We rep-
resent persons as resources. We define the object property spouseOf, which is
inverse-functional3, i.e. no two persons can be spouse of the same third. In other
words, if we know that x is the spouse of y and z is also the spouse of y, then we
can infer that x and z represent the very same person. We also want to represent
the social security number of people by the datatype property ssn. We can state
that ssn is functional (i.e. a person has at most one social security number), but
we can not state that it is inverse-functional (i.e. that no two persons share the
same security number), hence we can not infer that individual u and t are the
same, having the same ssn.

Fig. 1. Example of inverse-functional properties. Ellipses represent resources, rectan-
gles represent literals.

We see here that some reasoning tasks can be performed when they imply
only resources (the spouseOf property), but not when they imply literals. This

3 It would also be functional and symmetric, but we will only use the fact that it is
inverse-functional in the example.

is all the more disturbing that the relational model, usually considered as se-
mantically less expressive than description logic, has no problem dealing with
unique indexes (notably used for primary keys), which have the exact semantics
of inverse-functional datatype properties4. So we may want to limit our use of
literals, and represent some data values with resources, in order to take full ad-
vantage of OWL inference, especially when representing relational data in OWL.
To benefit from the kind of reasoning described above, we need to ensure that
each data value has a single URI, so as to be recognized as the same value by in-
ference engines. The next section proposes such a unique URI for number values,
text values and tuples.

3 Vocabulary definition

In this section, we give and discuss the formal specification of our vocabulary
for representing data values as resources. Figure 2 describes the vocabulary as
a BNF grammar: terminals are represented between double quotes ("), optional
elements are postfixed with a question mark (?), elements which may be repeated
zero to many times are postfixed with a star (*) and alternatives are represented
by the vertical bar (|). The rest of the section discusses some design choices.

data_uri := namespace suffix

namespace := "http://liris.cnrs.fr/2006/08/data-uri#"

suffix := simple_val | tuple_val

simple_val := number_val | text_val

number_val := "num:0" | "num:" "-"? mantissa ("e" exponent)?

mantissa := digit (("0" | digit)* digit)?

exponent := ("-" | "+") digit ("0" | digit)*

digit := "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

text_val := "txt:" url_encoded_utf8_string

tuple_val := "tpl:" element_val ("%00" element_val)*

element_val := simple_val | ""

Fig. 2. The specification of the data-uri vocabulary

4 Relational databases have another capability lacking from OWL: the unicity con-
straint may hold on a set of columns rather than a single column. Our approach
partially addresses that other problem by identifying tuples as resources (see 3.4). A
more general proposed solution for so called Combined Inverse Functional Prop-
erties (addressing both object and datatype properties) is discussed at http:

//esw.w3.org/topic/CIFP.

3.1 About the limited number of datatypes

While efforts like XML-Schema [6] propose an extensive number of datatypes,
we chose to limit ourselves to a very restricted number: basically, number and
text. When considering the numerous types proposed in by XML-Schema, we
can find two intertwined motivations for their abundance: classifying datatypes
and expressing semantics.

The main goal of XML-Schema is to precisely constrain the kind of data
that an XML document can contain, hence a plethora of subtypes for decimal

and string. The subtypes may be characterized by structural constraints (e.g.
token), semantic constraints (e.g. positiveInteger), or even implementation-
related constraints (e.g. int, byte). Furthermore, XML-Schema proposes other
top-level types, such as boolean, date or dateTime.

Since we represent data by full-fledged resources, we do not need to commit
to a particular classification of datatypes: we can rely on existing class systems
(e.g. OWL classes) to express such a classification whenever we need it (see 4.3).

As for other other datatypes, we consider them as semantic interpretation
of more basic datatypes which can always been brought back to numbers or
texts (see section 4.1). Indeed, everything in a computer is represented by num-
bers and one could argue that even text, from that perspective, is a semantic
interpretation of a number in the computer’s memory5. The limit between “ba-
sic” and “interpreted” datatypes is definitely subjective. Our motivation for
considering only those two basic types was to make the vocabulary as simple as
possible, while remaining usable in most cases.

3.2 About the representation of numbers

A (non-null) number is represented by a signed integer mantissa m not ending
with 0, optionally followed by a signed exponent e, the semantics of which being
classically m.10e. The absence of the decimal point in the mantissa, as well as
the strange constraint on the last digit, are quite unusual. Let us recall that
we need each data value to have a unique URI, or inference engines may over-
look the equality of differently represented values. Relying on the exponent to
represent the position of the decimal point with regards to non-null digits, we
guarantee that each decimal number is represented in a unique way, if somewhat
unusual (e.g. 1e+1 instead of 10).

One may also remark that only decimal numbers can be represented in our
scheme; rational numbers with an infinite decimal representation, such as 1/3,
can not be exactly represented. We do not consider this limitation to be too seri-
ous since classical atomic types can not represent those values either –as a matter
of fact, binary floating point numbers are well known to be unable to exactly

5 The opposite reasoning is also possible: everything in the computer’s memory is a
representation in some language of other entities; from this point of view, text is
the most primitive representation, while numbers are one particular interpretation
of some texts.

represent even simple decimal numbers. Furthermore, tuples (see section 3.4)
can be used to exactly represent ratios if required.

3.3 About the representation of text

The production rule text val only states url encoded utf8 string; this re-
quires explanations. Recall that UTF-8 is an encoding algorithm allowing to
represent any sequence of unicode character [7] as a sequence of bytes. However,
according to [8], URIs can only be composed of a subset of ASCII characters6.
Other byte values are URL-encoded, i.e. they are replaced by the percent (%)
character, followed by their value as two hexadecimal digits. Those two com-
bined encodings allow for any unicode string to be embedded in the URI.

We set another constraint on text URIs: the encoded text must not contain
the null character (i.e. character with unicode value 0). This does not seem to
be a severe limitation since that character is a mere artifact rather than a real
character (it is not used in any language), hence data containing it would hardly
qualify as text. We need that limitation because we use the null character as a
separator in tuples (see below).

3.4 About the representation of tuples

In addition to simple values (i.e. numbers and texts), the BNF grammar in fig-
ure 2 allows to represent tuple values. This may seem contradictory with the
considerations of section 3.1, stating that we aim at simplicity. Furthermore,
RDF provides standard constructs for lists of resources. The reason again is
to allow the unambiguous representation of compound values, in order to iden-
tify them. This would become obsolete, should Combined Inverse Functional
Properties7 be supported by inference engines, to allow sets of properties to
be inverse-functional. However, our solution has the advantage of providing a
working solution with existing engines.

A tuple is a sequence of simple values, either numbers or texts; some ele-
ments of the sequence may also have no value at all (represented by the empty
string "" in production rule element val). Elements are represented using the
same scheme as simple values, and separated by the null character (URL-enco-
ded %00), which may not appear otherwhise.

4 Using the data-uri vocabulary

We describe here some ongoing and future developments of this work.

6 A nice feature of UTF-8 is that all the characters present in the ASCII standard are
encoded as a single byte whose value is their ASCII code.

7 http://esw.w3.org/topic/CIFP

4.1 Representing relational databases

As stated in introduction, the initial motivation for this work was the represen-
tation in RDF of relational databases8, in order to reason about the relational
schema and data with OWL. Simple value URIs as well as tuple URIs proved
useful to capture the semantics of unicity constraints and primary keys in the
relational schema. Datatypes not fitting exactly into simple datatypes (number
and text) are represented by an intermediate resource, linked to a canonical

representation as a data resource. For example, dates have canonical represen-
tations as text (ISO 8601), number (number of seconds since epoch) or of course
tuples (year, month, day). Finally, data resources are linked to the correspond-
ing literal in order to make it easier for existing application to exploit the RDF
graph.

Fig. 3. A simple RDF graph using our vocabulary

An example is given in figure 3, where two resources x and y have a value
for the object property date. Those resources, as the property name implies,
represent values of a complex datatype not handled by our vocabulary. However,
they are identified by the inverse-functional property iso8601, which link them
to the appropriate text resource. Since iso8601 is inverse-functional, it can be
inferred that date1 and date2 are actually the same resource. Assuming that
date is a also inverse-functional (i.e. representing the primary key of a relational
table), x and y can in turn be inferred to be identical.

4.2 Identity and difference

Note that in figure 3, the text resource is also linked to the corresponding literal
with the standard property rdf:value. This is useful for the sake of interoper-
ability: applications unaware of our vocabulary can still rely on the literal value.
But this also has an interesting property with respect to reasoning.

We already stressed out in section 2.2 the fact that resources allow more
powerful reasoning than literals, because using the same URI twice is recognized
as two references to the same resource, which is not the case when using the

8 See http://liris.cnrs.fr/∼pchampin/dev/cross.

same literal value twice. However, the use of two different URIs is not necessar-
ily considered by OWL as references to different resources. Indeed, a resource
may have several URIs (hence the use of inverse-functional properties to unify
synonym URIs).

OWL inference engines will therefore not assume that data resources are
distinct, even if their URIs are different, unless we explicitly state that difference,
which is not reasonable if we handle a large number of data resources. It seems
that, by gaining the ability to recognize identity between data values, we lost
the ability to recognize difference (ability that we had with literals).

An elegant solution is to use a functional datatype property (rdf:value
in our example) to link every data resource to its corresponding literal. This
forces resources with different values to be different themselves. For example, in
figure 3, resources txt:2006-08-01 and txt:2006-08-15 would not be deemed
different based on the sole fact that they have different URIs. However, since
they have different literal values for functional property rdf:value, they are
necessarily different. We see that, by combining the use of resources and literals,
we manage to keep the advantages of both.

4.3 Ontologies of data

As stated before, we can envision to use OWL (or any other RDF class system) to
define classes containing the resources we defined in this paper. Classes Number,
and Text seem obvious, but we could also imagine any relevant subclass hierarchy
for them, instead of being limited to the classification proposed by XML-Schema.
It is possible, for example, to define Odd and Even as two disjoint subclasses of
Number.

A problem remains however: stating exactly which resources are instances of
those classes is not practically achievable, for there can be an infinity of such
resources (as in the Odd/Even example). A consequence is that we are able to
reason with values themselves (as demonstrated in section 4.1) or with classes
of values, but it is not trivial to link them.

A first solution would be to systematically add information about the data
resources used in an RDF graph. For example, when using the resource for
number 2, one would add a triple stating that this resource in an instance of
Even. From that, it could be inferred that 2 is also an Number, and is not an
instance of Odd. The drawback of this approach is that it duplicates information
about the data resources in every graph using them, and that it is dependant on
the ontology. However, it would enable existing inference engines to make the
link between instances and classes.

A second solution, that we experimented, is to take advantage of the datatype
oracle of OWL inference engines. As suggested in section 4.2, we link every data
resource with the corresponding literal. We can then define data classes based on
the datatype of their corresponding literal (e.g. the class Integer is the class of
data resources linked to an xsd:integer literal). The drawbacks are similar to
those of the first approach: the literal value of data resources must be duplicated
in every graph using them, and only the classification known by the datatype

oracle can be inferred that way. It has however the advantage of working with
existing inference engines, in addition to the advantage stressed in section 4.2.

A third solution would be to instrument inference engines so that they could
delegate the reasoning about data resources to other specialized engines, much
in the way the current implementations delegate the reasoning about literals to
an oracle. Theoretical work about this kind of distributed reasoning exists in the
literature [9, 10], and some of them are implemented by OWL inference engines9.
It seems to be, in the long run, a more powerful and extensible approach than
the one of oracles, for some part of the reasoning can nevertheless be performed
locally by standard inference mechanism.

5 Conclusion

We presented an RDF vocabulary for representing data values as resources. After
demonstrating some advantages of this approach over the use of RDF literals, we
gave the formal specification of the vocabulary, discussed some design choices and
presented experimented and intended uses of the vocabulary. We think this work
opens a number of interesting research directions for Semantic Web technologies
and data integration.

Conversion functions from and to URIs of our vocabulary have been imple-
mented as an open-source library, and are available at http://liris.cnrs.fr/
∼pchampin/dev/data-uri. The author would like to thank Djamal Benslimane
and Geert-Jan Houben for their comments on that paper.

References

1. Manola, F., Miller, E.: Resource Description Framework (RDF) Primer. W3C
Recommendation, http://www.w3.org/TR/rdf-primer/ (2004)

2. Dean, M., Schreiber, G.: OWL Web Ontology Language. W3C Recommendation,
http://www.w3.org/TR/owl-ref/ (2004)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

4. Connolly, D.: Gleaning Resource Descriptions from Dialects of Languages
(GRDDL). W3C Working Draft, http://www.w3.org/TR/grddl/ (2006)

5. Baader, F., Kusters, R., Wolter, F. [3] 227–269
6. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes Second Edition. W3C

Recommendation, http://www.w3.org/TR/xmlschema-2/ (2004)
7. Graham, T.: Unicode: A Primer. MIS Press, M&T Books, Foster City, CA (2000)
8. Berners-Lee, T., Fielding, R., Irvine, U., Masinter, L.: Uniform Resource Identifiers

(URI): Generic Syntax. RFC 2396, Internet Engineering Task Force (IETF) (1998)
9. Serafini, L., Tamilin, A.: Distributed reasoning services for multiple ontologies.

Technical Report DIT-04-029, University of Trento (2004)
10. Grau, B.C., Parsia, B., Sirin, E.: Working with multiple ontologies on the semantic

web. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: ISWC 2004.
Volume 3298 of Lecture Notes in Computer Science., Springer (2004) 620–634

9 http://www.mindswap.org/2003/pellet/

