
Updating Views Over Recursive XML

Ming Jiang, Ling Wang, Murali Mani, and Elke Rundensteiner

Worcester Polytechnic Institute, 100 Institute Road, Worcester MA 01609, USA
{jiangm|lingw|mmani|rundenst}@cs.wpi.edu

Abstract. We study the problem of updating XML views defined over XML
documents. A view update is performed by finding thebase updatesover the
underlying data sources that achieve the desired view update. If such base updates
do not exist, the view update is said to beuntranslatableand rejected. In SQL,
determining whether a view update is translatable is performed usingschema
level analysis, where the view definition and the base schema are used. XML
schemas are more complex than SQL schemas, and can specify recursive types
and cardinality constraints. In this paper, we propose a solution based on schema
level analysis for determining whether an update over XML views is translatable
and for finding the translation if one exists, while considering the features of
XML schemas.

1 Introduction
In databases systems, a user sees a portion of the base data called a view. Therefore
he/she may need to update base data through these views (viewupdates). Especially
in shared databases, it is essential to provide the capacityto support view updates. In
the relational scenario, there have been many studies on determining whether a view
update istranslatable[5]. A common semantics used for determining whether a view
update is translatable isside-effect free semantics. In this semantics, a view update is
said to be translatable if there exists base updates that achieve the desired view update
without affecting any other portion of the view. Current relational/SQL systems use
schema level analysisfor determining whether a view update is translatable, where the
view definition and the base schemas are used.

Nowadays, as XML is becoming the standard format for data exchange, database
community is exploring its ability to store data. In fact, view updates become more
common as many XML databases are available on the internet, and a large number of
users have access to such databases. In this paper, we study how to perform XML view
updates over XML data sources, using schema level analysis.This problem is much
harder than for relational schemas because of the complex features in XML schema,
such as recursive types and cardinality constraints.

Let us consider an example XML document with its schema as in Figure 1. Note
the base schema elementcourse is recursive, as a course may have a child element
pre, which stands for pre-requisite for thiscourse, andpre in turn can havecourse
elements as its children. Similarly, the base elementpre is also recursive. Now consider
two queries overD, as shown in Figure 2 and Figure 3.

In Figure 2, (a) is the XQuery statement which defines the view. (b) is the view
schema tree that corresponds to the XQuery. (c) is the view instance tree generated by
the XQuery and XML documentD. The same goes with Figure 3.1

1 The subscriptsa, b, c in Figure 1 and1,2,3 in Figure 2(c) and Figure 3(c) are for illustration
purpose only. They do not appear in the actual documents or views.

2

<!DocType root[
<!Element root(institute*)>
<!Element institute (name, department+)>
<!Element department (name, professor+,

course+)>
<!Element professor(name, student*)>
<!Element student(name)>
<!Element course(name, pre?)>
<!Element pre(course+)>
<!Element name(#PCDATA)>]>
<root>

<institute>
<name> WPI </name>
<department>

<name> CS</name>
<professor>

<name> Henry </name>
<studenta>

<namea>John </name>
</student>
<studentb>

<nameb> Joe </name>
</student>

</professor>

<coursea>
<name> Database </name>

<prea>
<courseb>

<name>
Algorithm

</name>
<preb>

<coursec>
<name>

Data Structure
</name>

</course>
</pre>

</course>
</pre>

</course>
</department>

</institute>
</root>

Fig. 1.XML documentD with Schema(D)

<result>
{

FOR $course IN Document(“base.xml”) //course

RETURN <course>

{ $course/name }

</course>

}

</result>

course/name

(c) view instance tree

(a) view query

(b) view schema tree STView

(c) result

course1 course2

DatabaseAlgorithm

course3

Data Structure

result

course
*

FOR $course IN
Document(“base.xml”) //course

(b)(a)

name name name

Fig. 2.QueryQ1 and correspond-
ing view

(c) view instance tree

(a) view query

(b) view schema tree STView

(c)

(b)(a)

result

course/name

FOR $pre IN
Document(“base.xml”) //pre

course

*

pre
FOR $course IN
$pre //course*

result

Data Structure

course3

Data Structure

pre pre

course1

Algorithm

course2

<result> {
FOR $pre IN Document(“base.xml”) //pre

RETURN

<pre> {

FOR $course IN $pre//course

RETURN

<course>

{ $course/name }

</course>

} </pre>

} </result>

namenamename

Fig. 3.QueryQ2 and corresponding view

<result>

{ FOR $prof IN Document

(“base.xml”) //professor,

$student IN Document

(“base.xml”)//student

RETURN <prof-student>

{ $prof/name,

$student/name }

</prof-student> }

</result>

(c) query statement Q

result

prof-student

$student/name

*

(b) view schema tree STView

(a) base schema

$prof/name

<!DocType root[
<!Element root(institute)>
<!Element institute (name, department)>
<!Element department (name, professor,
course+)>
<!Element professor(name, student*)>
<!Element student(name)>
<!Element course(name, pre?)>
<!Element pre(course+)>
<!Element name(#PCDATA)>]>

Fig. 4.QueryQ3

A user may want to deletecourse1 in Figure 2(c). If we deletecoursea in D, this
update would causecourse2, course3 and their descendants to be removed in Fig-
ure 2(c). This is a side-effect and therefore it is not a correct translation. Now let us
consider Figure 3(c) and try to deletecourse2. We can achieve this by deleting the base
elementcoursec which has thename child. However, doing so will also deletecourse3

in the view and therefore it is also not a correct translation.
Intuitively, recursive base schemas and queries cause the above problems. However,

are the above two scenarios the only cases that recursion mayhave side-effects? If not,
how can we effectively check out all such side-effects? Thisproblem has not been
studied, to the best of our knowledge.

There are also other XML features that need to be considered for XML view up-
date problems, such as cardinality constraints in the base schema. Will these features
make the problem different from the relational scenario? Let us take a look at the query
in Figure 4(c). It indicates that eachprofessor element in the base will join with ev-
ery student element. Therefore eachprofessor andstudent may be used more than
once and we cannot deleteprof -student view element. However, let us reconsider this
query, given the base schema as shown in Figure 4(a). It indicates that there is only one
professor in the base. We now know that eachstudent will be used only once and we
can delete a certainprof -student by deleting the correspondingstudent in the base
XML document. From this example, we can observe that utilizing cardinality informa-

3

tion provided in the base schema may give a better translation for the view update. How
to fully handle cardinality is also discussed in this paper.

Our main technical contributions include: we study how features in XML schemas,
such as recursive types and cardinality constraints, impact the XML view update prob-
lem. We propose an algorithm for determining whether a view update over XML data
sources is translatable and for finding the translation if one exists, based on schema level
analysis. Our algorithm is sound (a translation returned byour algorithm is guaranteed
to not cause side-effects) and complete (a translation is guaranteed to be returned by our
algorithm if there exists one). We believe these results go along way towards under-
standing the XML view update problem and provide the capacity to efficiently update
XML views.
Outline. The rest of the paper is organized as follows. Section 2 defines view update
translatability and then defines the scope of the problem we consider. Section 3 intro-
duces notations and background. Section 4 discusses how to handle unique features in
XML schemas when solving the view update problem over XML data sources. Sec-
tion 5 proposes our three-step checking algorithm and Section 6 gives a conclusion and
discusses the future work.
2 Related Work
There are many studies on view updates in relational scenario, such as [6, 5, 9, 4]. [6]
introduces the concept of a complementary view. The authorsargue that when changing
the data in the base corresponding to the updates on the view,the rest of the database
that is not in the view should remain unchanged. This solution tends to be too strict,
as many view updates are not translatable by this theory. In [5], the authors argue that
we can perform a view update by deleting base tuples that contribute to the existence
of this view element. Also such base tuples are required not to contribute to other view
elements to avoid side-effects. Similarly, in [9], Keller proposes an algorithm to check
whether 1-1 mapping exists between a set of base tuples and a set of view tuples. This
mapping indicates that a certain view element can be deletedwithout side-effects.

While [6, 5, 9] study the view update problem on the schema level, there are other
works such as [4] that study the problem on the instance level. Therefore in [4], more
updates can be performed without side-effects. However, because of the large size of
the database, such data-centric algorithms tend to be more time-consuming.

In order to utilize the maturity of relational database techniques and also adapt to
the current required web applications, people tend to buildXML views over relational
databases, such as [12, 13]. There are some research that consider XML views as com-
positions of flat relational views, such as [7], for the purpose of querying relational
databases. Some other work further study the updatability of XML views over rela-
tional databases. In [15], the authors discuss how to check side-effects for updating
XML view elements over a relational database. In [3] the authors use the nested rela-
tional algebra as the formalism for an XML view of a relational database to study the
problem of when such views are updatable. However, given an XML view over XML
data, how to check the updatability of the view elements and further give the correct,
efficient translation of this view update remains unsolved.

Language for updating XML documents is being studied by [1].[2] discusses
updates in XML scenarios. [14] presents some interesting problems in XML view
updates. [10] considers virtual updatable views for a querylanguage addressing native

4

XML databases, including information about intents of updates into view definitions.
[11] studies type checking in XML view updates.

3 View Update Translatability and Problem Scope
3.1 View Update Translatability Definition
A view update operationu can be a delete, an insert or a replacement. The corresponding
update on the XML base is said to be the translation of the viewupdate.

Definition 1. Let D be an XML document and V a view defined byDEFV over D. An
XML document update sequenceU

R is a correct translation of a view updateuV if
u

V (DEFV (D))=DEFV (U R(D)).
This definition is depicted in Figure 5. The update is correctif the diagram in Fig-

ure 5 commutes.

v

D

uv(v)

DEFv
DEFv

(2) uv

(3) UR
UR(D)

(1) (4)

v

D

uv(v)

DEFv
DEFv

(2) uv

(3) UR
UR(D)

(1) (4)

Fig. 5.Rectangle rule

3.2 Problem Scope
Update Operations ConsideredAs we introduced above, a view update operation can
be a delete, an insert or a replacement. Deletions are typically considered to be different
from insertions. For instance, consider an SQL view defined as a join betweenstudent
table andprofessor table, where astudent row joins with at most oneprofessor row.
The SQL standard [8] supports deleting a row in this view by deleting a corresponding
student row, whereas inserts are rejected as they might need to insert into student
table, orprofessor table or even both, which is more complex and hard to decide. As
the first work considering view updates over XML data sources, we consider only dele-
tions and inserts are out of our scope. Further, we study single view element deletion,
as opposed to deleting a set of view elements. In addition, wedo not use a view update
language. As we focus on updates of a single view element, howthe view element is
specified (by the view update language) is not significant.

Base Schema LanguageWe use DTD (Document Type Definition) as schema lan-
guage to describe the underlying databases. DTD is a very expressive and complex
language. The two most significant features in DTD that we consider are recursion and
cardinality. The cardinality information is obtained fromthe content model in DTD,
which uses ”*”, ”+”, ”?”, ”,” or ” |”. We will not consider other features in XML schema
languages, for doing so will make the algorithm extremely complicated and hard to un-
derstand. More specifically, we will not consider ID/IDREF constraints in DTD, and
sub-typing and key/foreign key constraints in XML schema.

View Definition Language We will use a subset of XQuery as the view definition
language described as follows:
1. The XQuery we consider could have FOR, WHERE and RETURN clauses and

dirElemConstructor [1] in the statement.

5

2. In each FOR clause, there can be multiple variable bindingstatements.
3. In an XPath expression, multiple ”//” and ”|” can exist. Further, a node test [1] can

be specified as a wildcard.
4. RETURN can contain nested XQuery statements.

Even though we consider WHERE clause, the predicates specified in the WHERE
clause are not used to determine whether a view update is translatable. Though consid-
ering such predicates might result in more view updates being translatable, it can be
handled similarly as in relational scenario and we want to focus on the unique XML
features. Also, the LET clause is not considered as an XQuerythat uses LET can be
rewritten into one without the LET clause. Similar to SQL solutions, we do not con-
sider aggregation, user-defined functions and Orderby clauses.

Restrictions on Translations Considered There are various strategies for translat-
ing view updates. For those base XML elements correspondingto the view element
to be deleted, we can set its value to null, or delete it but keep its descendants, etc.
However, we consider only the translations where we delete an XML view element
by deleting the corresponding base elements and also the descendants. This keeps the
problem tractable, and is similar to existing solutions in SQL/relational scenarios. Now
the problem we study can be described as:

Problem Statement:LetSchema(D) be an XML schema andQ a view query over
Schema(D). Given a view schema noden, n ∈ Q, does there exist a translation for
deleting a view element whose view schema node isn that is correct for every instance
of Schema(D)?

Note that we study the problem with schema level analysis, which utilizes the view
definition and the schema of the base XML data sources. In other words, we do not
examine the base data to determine whether there exists a translation. Such schema
level analysis is similar to the approach in relational scenarios [5, 9]; data level analysis
for the view update problem has been studied in [4].

4 Notations
In this section we first introduce some concepts and notations which are the founda-
tion of later discussions. A summary of them can be found in Table 1 2. Let D be an
XML document(base XML data sources) with schemaSchema(D). Schema(D) can
be represented as a tree called the base schema tree, denotedasSTBase. TheSTBase

of the XML Document in Figure 1 is shown in Figure 63.
The XML view is defined as a queryQ overSchema(D). The corresponding in-

stance is denoted asV . Q specifies a view schema tree, denoted asSTV iew, such as
Figure 2(b), Figure 3(b) and Figure 4(b).

vei is a view element inV that is to be deleted. The node inSTV iew corresponding
to vei is called the view schema node ofvei, denoted asSNV iew(vei). Let us consider
the view elementcourse1 in Figure 2(c),SNV iew(course1) is the nodecourse in
Figure 2(b).

2
SNV iew stands for View Schema Node andSTV iew stands for View Schema Tree.SNBase

andSTBase are analogously defined for the base XML document.
3 Note there is some information not captured bySTBase such as order of elements. We only

capture those information that will be utilized by our algorithm, such as cardinality constraints
and recursive types.

6

The set of schema nodes that
are the descendants of Source
andSource itself

Des(Source)The set of base elements
that are the descendants of
sourceandsource itself

des(source)

all the SNBasethat contribute
to the existence of vei

Sources(vei)a SNBasethat contributes
to the existence of vei in V

Source(vei)

schema tree of QSTViewschema tree of XML data
sources

STBase

All base elements that
contribute to the existence of
vei

sources(vei)a base element that
contribute to the existence
of vei

source(vei)

a view element in Vveia base element in Dbej

a node in STViewSNViewa node in STBaseSNBase

view instance defined by QVXML schema of DSchema(D)

XQueryStatement defining
the view

QXML data sourcesD

Semantic Meaning
Notations

Semantic Meaninig
Notations

Table 1.concepts and notations summary

Let us examine the view elementcourse1 in Figure 3(c) again. It exists in the view
only when the following two conditions are both satisfied:

1. In the base XML document, there exists onepre element, demonstrated asprea,
and onecourse element, denoted ascourseb.

2. Thecourseb element is a descendant of theprea element.

course1 in Figure 3(c) exists because ofprea andcourseb in base XML Document.
Deleting any one of these base elements will lead to deletingcourse1. Therefore, these
base elements are considered as candidates for deletingcourse1. Let us now define
those candidates4.

Given aSNV iew(vei) in STV iew , every XPath expression that appears on the path
from the root tillSNV iew(vei) in STV iew corresponds to a base schema node, which
is called aSource and denoted asSource(vei). The name indicates that it is a way to
delete the view element. The set of all such XPath expressions is denoted asSources(vei).

For example, in Figure 7(c), let us consider the view elementname1. According
to Figure 7(b), There are four path expressions from theroot till name1, which are
Document(”base.xml”)//department, $dept//professor, $prof/student,
$student/name. Therefore,Sources(name1) = {department, professor, student,
namestudent}.

For eachSource(vei), there exists a set of base elementsI(Source(vei)) in D
corresponding to it. InI(Source(vei)), there exists one base element contributing to
the existence ofvei and we call this asource, denoted assource(vei). For example, in
Figure 7(c),sources(name1) is {department, professor, studenta, namea}.

Note while we can delete a source to delete its correspondingview element, it is
possible that some other view elements got unexpectedly affected because of this up-
date, which are normally called side-effects. There are twokinds of side-effects. The
first kind of side-effects is a descendant ofsource(vei) is a source of another view
element. For example, we may want to deletecoursea in Figure 1 to deletecourse1

4 In fact, deleting an ancestor of any of these base elements can be considered as a candidate
for deletingcourse1 also. Doing this, however, will delete some base elements that are not
required to get updated. Further this does not affect translatability. Therefore, we do not include
them in our candidates.

7

root

institute

name
department

name
professor

course

student
name

namestudent

name

*

+

+
+

*

*

Fig. 6.base schema ofD

<result>
FOR $dept IN

$prof IN $dept//professor
RETURN <professor>

$prof/name,
FOR $student IN $prof/student
RETURN <student>

$student/name
</student>

</professor>
</result>

result

professor

$prof /name
student

$student/name

*

result

professor

Henry student1 student2

John Joe

*

(a) view query
(b) view schema tree STView

(c) view instance tree

Document(“base.xml”)//department,

name1 name2

(a)

(b)

(c)

Fig. 7. Query Q4 and correspond-
ing view

in Figure 3(c), ascoursea is a source ofcourse1. However,courseb, which is a de-
scendant ofcoursea, is the source ofcourse2 in Figure 2(c). Therefore, such update
will cause side-effects over view elementcourse2,as one of its sources get deleted.
The second kind issource(vei) is also a source of another view element. For example,
courseb in Figure 1 is the source ofcourse2 in Figure 3(c). However, it is also a source
of course3. If we want to deletecourseb to deletecourse2, there will be side-effects
overcourse3, as one of its sources get deleted.

Our goal is to find, given a view elementvei, whether there exists a non-empty
subset ofsources(vei) such that deleting any sourcesource(vei) in this subset will
deletevei without affecting any other non-descendant view element ofvei. Deleting
source(vei) does not affectvej if des(source(vei)) ∩ sources(vej) = ∅. Based on
the above concepts, the definition of correctly translatingthe deletion of a view element
problem can be refined as:

Problem Statement:LetSchema(D) be an XML schema andQ a view query over
it. Given a view schema noden, does the following condition hold for every instance
of Schema(D) whose corresponding view instance isV : For any elementvei, whose
schema node isn, does there existsource(vei) such that∀ vej ∈ V , vei 6= vej andvej

is not descendant ofvei, where des(source(vei)) ∩ sources(vej) = ∅.

5 Algorithm Analysis
5.1 A Naive Algorithm
Using the above concepts, we can observe the following. Consider deleting a view ele-
mentvei by deleting a certain base elementsource(vei). Let this element correspond
to the base schema nodeSource(vei). Consider all base schema nodes that could be
descendants ofSource(vei), basicallyDes(Source(vei)). If none of these nodes form
aSource(vej), then deletingsource(vei) will not affectvej . This is stated below.

Lemma 1. Deleting asource(vei) will not affect view elementvej , if Des(Source(vei))
∩ Sources(vej) = ∅.

For example, considercourse2 andcourse3 in Figure 3(c). Suppose we want to
deletecourse2. Ascourse in Figure 1 is aSource(course2), Des(course) ∩ Sources
(course3) = {course, pre} which is not empty. This implies if we deletecourse2,
some base elements contributing to the existence ofcourse3 may also get deleted and
therefore there may exist side-effects oncourse3, which gives the same result as in our
previous analysis.

8

Using Lemma 1, we can come up with a naive algorithm. Letsum be the union
of Sources of every non-descendant view elementvej of vei, vej 6= vei. If there
existsSource(vei), such thatDes(Source(vei)) ∩ sum = ∅, Source(vei) is a correct
translation of deletingvei.

However, this algorithm cannot be applied for all view elements. Consider view
elements whose view schema nodes are the same.SNV iew(vei), such asstudent1 and
student2 in Figure 7(c). If we want to deletestudent1, it is easy to observe that we can
delete thestudenta element in the base document, corresponding to the base schema
nodestudent in Figure 1. However, according to the above lemma,Des(student) ∩
Sources (student2) 6= ∅ and thusstudent1 cannot be updated.

Also, Lemma 1 cannot be applied to detect side-effects on view elements whose
schema nodes are descendants ofSNV iew(vei). Because for such a view elementvej ,
we haveSources(vei) ⊆ Sources(vej), as all the base schema nodes that contribute
to the existence ofvei, also contribute to the existence of every view element thatis the
descendant ofvei. For the above two cases, we need other strategies.

Though Lemma 1 cannot be applied to the above two types of viewelements, it can
still be applied to detect side-effects on nodes whose schema nodes are non-descendants
of Source(vei).

1

2

3

Fig. 8.Schema Tree Structure
We therefore partition the view schema tree into three parts, as shown in Figure 8.

Let n = SNV iew(vei) be the view schema node forvei. The first group, marked as 1,
is view schema nodes that are non-descendant ofn. We can apply Lemma 1 to detect
side-effects on view elements whose schema nodes are in thisgroup. The second group,
marked as 2, is view schema noden itself. We discuss how to detect side-effects on view
elements whose schema node is in this group in Section 5.2. The third group, marked as
3, is schema nodes that are descendants ofn. We discuss how to detect side-effects on
view elements whose schema nodes are in this group in Section5.3. Also, these three
groups cover all schema nodes without any overlap. Thus we check all view elements
for side-effects effectively, and a correct translation isreturned if there exists one.

5.2 Detecting Side-Effects in Group 2
Here we check view elements that share the same view schema node asvei, the view
element to be updated. This is similar to the relational viewupdate problem, and we
can utilize the solutions from the relational scenario.

Updating Relational Views In [9], Keller proposes an algorithm to check whether
there is a 1-1 mapping between the set of tuples in the relational view and the set of
tuples in a base relation. This algorithm can be used to checkwhether we can delete a
tuple in the view without side-effects in the relational scenario. We use Keller’s algo-
rithm as the basis for studying view updates in XML scenario as well. Therefore, in this
section, we will introduce and discuss this algorithm.

9

Keller’s Algorithm : Given a relational databaseD and a relational viewV , in order to
find all possible relationsr1, r2, . . . , ri such that there is a 1-1 mapping between the set
of tuples inV and the set of tuples in everyrp, 1 ≤ p ≤ i, construct a directed graph,
also called as atrace graph, as:

1. every relation used by the view forms a node in the graph. Suppose there are nodes
r1, r2, . . . , rn in the graph.

2. let ri, rj be two nodes (ri 6= rj). There is an edgeri → rj iff there is a join
condition of the formri.a =rj .k (rj .k is the key forrj . If there is ari.k = rj .k join,
then there are two edgesri → rj and alsorj → ri.).

If there is any noder which can reach all other nodes, then there is a 1-1 mapping
from tuples inV to tuples in the relation which is denoted by noder. 2

Adapting Keller’s Algorithm to XML scenario In Keller’s Algorithm, an edgeri →
rj represents that a tuple inri joins with at most one tuple inrj . The same intuition can
be applied to XML scenario. Given view elementvei, its trace graph has aroot element
and one node for everySource(vei). LetSourcei, Sourcej ∈ Sources(vei). We draw
an edge fromSourcei to Sourcej if the XPath expression ofSourcei starts with the
variable representingSourcej . We draw an edge fromSourcei to root if the XPath
expression ofSourcei starts withDocument(”base.xml”). Let us consider element
student in Figure 7(b);Sources(student) = {department, professor, student}.
The corresponding XPath expressions areDocument(”base”)//department, $dept
//professor, $prof/student respectively. Everyprofessor will join with at most
one department. Similarly, everystudent is guaranteed to join with at most one
professor. According to Keller’s algorithm, there are four nodes in the trace graph:
root, department, professor and student. We can draw an edge fromstudent to
professor, one fromprofessor to department and one fromdepartment to root.
student can reach all the other nodes. This implies we can delete viewelementstudent1
by deleting base elementstudent1 in D, as analyzed before.

However there are differences between relational and XML scenarios. For instance,
a node in the trace graph that does not reach all other nodes can still be a correct trans-
lation. Consider view schema nodeprof -student in Figure 4(b). A view element of
prof -student hasSources = {professor, student}, without any edge between them
in the trace graph. However, as base schema in Figure 4(a) implies that there is only one
professor element in the base, any view element whose schema node isprof -student
can be deleted by deleting a base element whose schema node isstudent. So cardinal-
ity constraints should be considered to determine whether aSource can be a correct
translation.

On the other hand, a node in the trace graph that reaches othernodes might not be a
correct translation. Considercourse1 in Figure 3(c),Sources(course1) = {pre, course}.
In the trace graph there is an edge fromcourse to pre. However,course1 cannot be
deleted by deletingcourseb in Figure 1. This is becausecoursec is a descendant of
courseb and issource of both course2 and course3. Also course2 in Figure 3(c)
cannot be deleted because it shares the same source ascourse3. Both of these occur
because of recursive types in XML.

In the rest of the section, we study how we can extend Keller’salgorithm to handle
cardinality constraints and recursive types in XML.

10

t1
t2

……

……

……

……

t1

t2
……

……

……

……

t1 ……

t1

t2
……

……

……

……

ri.t1

ri.t1

ri.t2

ri.t2

rj.t1

rj.t2

rj.t1

rj.t2

……

……

……

……

…… …… ……

ri.t1

ri.t1

rj.t1

rj.t2
…… ……

……

……

……

ri�rj

ri�rj

ri.t1

ri.t2

rj.t1

rj.t2

ri.t1

rj.t1

rj.t2

ri

rj

(b) situation when cardinality information
for each table is not revealed

(c)

(a) trace graph generated from
Keller’s Algorithm

(c) situation when cardinality for each
table is revealed

ri

ri

rj

rj

Fig. 9.Keller’s algorithm and cardinality constraints

Handling Cardinality Constraints How cardinality information impacts the trans-
latability of view updates in relational scenario is illustrated in Figure 9, whereri and
rj can reach all other nodes except each other. Without any cardinality information, a
view tuple cannot be deleted either fromri or rj , as there can be side-effects shown
in Figure 9(b). However, if we know the cardinality information that there is only one
tuple inri

5, then view tuples can be deleted fromrj , shown in Figure 9(c).
While such cardinality information cannot be specified easily in relational schema,

it does exist in XML schema, as we mentioned in section 3.2. Weonly capture cardi-
nality constraints *, 1 and 0. Note XML schema can specify more complex cardinality
constraints such as MaxOccurs and MinOccurs. However they do not affect whether a
view element can be updated or not. So we ignore them in this paper.

Given two base schema nodest andtn which are of ancestor-descendant relation-
ship, however, what is the cardinality between them? Here wegive the formal definition:

Definition 2. Let t/a1 :: t1/a2 :: t2/ . . . /an :: tn be a path expression between two
nodest and tn in the base schema, where∀ai, 1 ≤ i ≤ n, can be child, descendant-
or-self, or attribute. The cardinalitycard(t, tn) betweent and tn, which can also be
denoted ascard(t, /a1 :: t1/a2 :: t2/ . . . /an :: tn), is defined as:

1. if n>1,card(t, /a1 :: t1/a2 :: t2/ . . . /an :: tn) = card(t, /a1 :: t1)×card(t1, /a2 ::
t2)× . . .× card(tn−1, /an :: tn). For the multiplication, please refer to Figure 10.

2. if n=1:
(a) if a1 is descendant-or-self,card(t, /a1 :: t1) = *.
(b) if a1 is attribute,card(t, /a1 :: t1) = 1.
(c) if a1 is child, and the content model oft is re. Thencard(t, /a1 :: t1) =

cardRE(t1, re). cardRE(t1, re) is defined as follows:
i. if re = (re1, re2), cardRE(t, re) = cardRE(t1, re1)+ cardRE(t1, re2).
ii. if re = (re1 | re2), cardRE(t1, re) = max{

cardRE(t1, re1), cardRE(t1, re2)}.
iii. if re = (re1)∗, cardRE(t, re) = cardRE(t1, re1) × ∗.
iv. if re = ti:

A. if ti = t1, thencardRE(t1, re) = 1.
B. if ti 6= t1, thencardRE(t1, re) = 0.

11

*0**

0000

*011

*01x

*010

*1*1

*01+

Cardinality Multiplication

Table

Cardinality Addition

Table

Fig. 10.cardinality tables

root

$prof

$student

*

1

Fig. 11. trace graph of prof -
student in Figure 4(b) with
cardinalities

Consider Figure 6, cardinality betweenroot anddepartment can be computed as
card(root, /child :: institute/child :: department) = card(root, /child :: institute)
×card(institute, /child :: department) = ∗.

Our proposition below uses the cardinality information in the base schema for de-
ciding whether a base element is a correct translation of deleting the required view
element.
Proposition 1. GivenSources(vei), draw the trace graph according to Keller’s al-
gorithm. Suppose there are n 0-indegree nodes in the trace graph, sayr1, r2, . . . , rn.
AmongSources(vei), find one that is the lowest common ancestor of all 0-indegree
nodes, denoted asSNancestor. For eachri, card(SNancestor , ri) is called the relative
cardinality ofri. Let the number of relative cardinalities whose value is 1 bel.

1. if l = n, we can deletevei from anysource(vei) whose corresponding node in
trace graph has 0-indegree.

2. if l = n − 1, we can deletevei by deleting thesource whose base schema node is
the 0-indegree node with cardinality as ”*”.

3. if l ≤ n − 2, there is no correct translation.

Let us consider the query in Figure 4 again. Figure 11 is the trace graph ofprof -
student in Figure 4(b). With Definition 1, card(result,
professor)= 1,card(result, student) = *. Therefore, to delete the view element whose
view schema node isprof -student, we can delete from Sourcestudent.

Handling Recursive Type Let us first consider the side-effects wheresource(vej) ∈
des(source(vei)), vei andvej share the same view schema node. Considercourse1 in
Figure 2(c). Deleting it will have side-effects because some descendants of its source,
sourcea, also contribute to the existence of other view elements, such ascourse2. To
identify such side-effects, we definerecursive Sourceas below.

Definition 3. Let Schema be an XML schema andQ a view query defined over this
schema. LetS be aSource for a view element whose view schema node isn. S is said
to be a recursive Source if∃D, an XML Document confirming toSchema, where the
conditions below are all satisfied:

1. there exist two view elements inQ(D), vei andvej , such thati 6= j butSNV iew(vei)
= SNV iew(vej) = n.

2. I(S) containsbei andbej, bei andbej is source of vei andvej respectively, and
they have ancestor-descendant relationship.

5 This is a quite strict requirement, which will be relaxed in later discussions.

12

One might think that if a path expression for a Source has ”//”operation, then the
Source is recursive. However, this need not be the case, suchas in the XPath expression
Document(”base.xml”)//department/course. To identifyrecursive Source, we de-
fineAbsoluteXPath below.
Definition 4. The path in the trace graph fromSource to root is called a branch, de-
noted asbranchSource. The XPath expression obtained by concatenating all the XPath
expressions inbranchSource is called the absolute XPath ofSource.

To identify whether a Source is recursive, we check its absolute XPath. If the abso-
lute XPath retrieves two base elements that have ancestor-descendant relationship, then
the Source is recursive.
Proposition 2. LetP be the absolute XPath of aSource(vei) for view elementvei. We
call Source(vei) as recursive iff the following two conditions are both satisfied:
1. P is of the form/P1//bere/P2/bel, whereP1, P2 are path expressions andbere,

bel are base schema nodes.
2. the last base elementbel in P can havebere as its descendant.

Proposition 2 is illustrated in Figure 13(a). Here both thebel’s satisfyP and have
ancestor-descendant relationship. TheSource, student, for astudent view element in
Figure 7 has the absolute XPathDocument(”base.xml”)//department//professor
/student, which does not match Proposition 2, thereforestudent is not recursive.
However theSource, course, for a course view element in Figure 2 has the abso-
lute XPathDocument(”base.xml”)//course. This matches Proposition 2 whereP1

is Document(”base.xml”), P2 is empty andbere = bel = course, andcourse has
course as descendant.

<root>
FOR $a IN Document(“base1.xml”)//a
RETURN <a>

FOR $c IN $a/c,
$b IN $c//b

RETURN $b

</root>

a1

c1

b1
a2

b2

c2

*

a

c b

a1

b1 b2 b2

a2

(a) base schema tree
STBase

(b) base instance

(c) view query

(d) view instance tree
(a)

(b)

(c)
(d)

root

Fig. 12.ST ′

Base, QueryQ4

(a) Proposition 2

P1

bere

P2

bel

bere

bel

P2

P1

P2

z

y

P3

x

P4
P2

y
P3

x
P4

z

(b) Proposition 3

Fig. 13. Illustrating Proposition 2
and Proposition 3

Now let us consider the second type of side-effects, wheresource(vei) is also
source(vej). Consider the query in Figure 3(a).coursec in Figure 1 contributes to
two view elements,course2 andcourse3, in Figure 3(c). A more general example is
shown in Figure 12. Figure 12(a) is the base schema and Figure12(b) is one possible
instance. Based on the query in Figure 12(c), we have the viewinstance tree shown in
Figure 12(d). Specified by the query,b2 joins witha1 anda2 and thus appears multiple
times in the view. Deleting any of them may cause side-effects over other appearances
of b2. For such situations we have the following proposition:

13

Proposition 3. Consider the trace graph of a view element whose view schema node
is n. LetSource1 andSource2 be two Sources in this trace graph, with an edge from
Source2 to Source1. I(Source2) may contain a base element that is the source of two
view elements,ve1 andve2, iff all the following conditions below are satisfied:

1. The absolute XPath ofSource1 is of the formP1//z/P2/y. Let y be the variable
thatSource1 binds to andSource1 is marked as recursive using Proposition 2.

2. The absolute XPath ofSource2 is of the form$y/P3//x//P4.
3. z ∈ Des(x).

Figure 13(b) illustrates Proposition 3. Here, there are twoview elements where
Source2 binds to the rightmostP4, and whereSource1 binds to the two differenty’s.

Actually this scenario implies a much stronger condition: there exists no correct
translation for deleting the view element. Let us examine this. First of all, noSourcei

that can reachSource2 can be a correct translation, as an instance ofSourcei can
be the source of two different view elements. Now, consider aSourcei that cannot
reachSource2. Since this node cannot reachSource2, we must consider cardinality
constraints. LetSource21 be a 0-indegree that reachSource2. As the lowest common
ancestor of all 0-indegree nodes,SNancestor, must be a node in the path from root
to Source1, card(SNancestor, Source21) = *. Thus Sourcei can never be a correct
translation. This is stated in the corollary below:
Corollary 1. Consider the trace graph of view elementvei. If ∃Source1, Source2 in
this graph that satisfy Proposition 3, there is no correct translation for deletingvei.

With Proposition 1, Proposition 2 and Proposition 3, we can detect all the possi-
ble side-effects on view elements whose schema node is in Group 2 when deleting
Source(vei). Please refer to Section 6 for how to integrate them.

5.3 Detecting Side-Effects in Group 3
In this section, we will discuss how to detect side-effects on view elements whose
schema nodes are descendants ofn. Note view elements that are descendants ofvei

will get deleted withvei, according to the hierarchial structure of XML view. There-
fore, we focus on whether any view element,vej , that are descendants of siblings of
vei, gets affected when deletingsource(vei).

<root>
FOR $a IN Document(“base1.xml”)//a
RETURN <a>

Document(“base1.xml”)//b,
Document(“base1.xml”)//c

</root>

aa
ccab

a
c

b

a1

ba1 bb1 ba2

a2

(a) base schema tree
STBase

(b) base instance

(c) view query

(d) view instance tree(a)

(b)

(c)(d)
root

ba
bb

cc1 bb2
cc2

Fig. 14.ST ′

Base, Query Q5

Figure 14 illustrates side-effects on Group 3. If we deletea1 in Figure 14(d) by
deletingaa in Figure 14(b), then the view elementba2, the descendant ofa2 in Fig-
ure 14(d) is deleted. This is a side-effect. This happens because view elementba2 has

14

a source, ba, which is the descendant ofsource(a1). On the other hand, there is no
side-effects on view elementcc2.

We identify such side-effects as follows. Letvej be a descendant of sibling view
element ofvei. If Source(vej) is not a descendant ofSource(vei), we need not con-
sider it as it will never get affected. Considercc2 in Figure 14(d) asvej anda1 asvei.
As c is Source(vej) /∈ Sources(vei) and alsoc is not a descendant ofSource(vei),
a, no side-effect on view elementcc2 will appear.

On the other hand, ifSource(vej) is descendant ofSource (vei) or itself,source
(vej) must contribute to at most one view element that must be a descendant ofvei.
This implies there should need an edge fromSource(vej) to Source(vei) in the trace
graph ofvej . Considerba2 asvej anda1 asvei. As Source(vej), b, is a descendant of
Source(a1), there needs to be an edge fromb to a in the trace graph ofvej , which actu-
ally does not exist. Therefore, there may be side-effects onba2. The above conclusions
are formalized in the following lemma:
Lemma 2. For every descendant elementved ofSNV iew(vei), get its trace graph. Sup-
pose there are n 0-indegree nodes that cannot reachSource(vei), sayr1, r2, . . . , rn.
For someved, if ∃ ri such thatSNBase(ri) ∈ Des(SNBase(Source(vei))), Source
(vei) cannot be the correct translation of deletingvei.
6 Algorithm for Correctly Deleting Single View Element in XM L

Scenario
In this section, we will present the three-step algorithm for finding the correct transla-
tion of deleting a view elementvei.

Step 0:
0. Candidates = Sources(vei)

Step 1:
1. LetSources′ be the union ofSources of all non-descendant view elements ofvei.
2. For everySource(vei) ∈ Candidates, if Des(Source(vei)) ∩ Sources′ 6= ∅,

Candidates = Candidates − Source(vei).
3. If Candidates = ∅, the algorithm terminates; else go to Step 2.

Step 2:
4. Draw the trace graph ofvei and letSourcesKeller be the set of 0-indegree nodes.
5. Use Proposition 1 to checkSourcesKeller . Let l be the number of nodes whose

relative cardinality is ”1”.
(a) if l = n − 1, SourcesKeller = {SNrest}, whereSNrest is the only schema

node inSourcesKeller whose relative cardinality is ”*”.
(b) if l ≤ n − 2, Candidates = ∅; the algorithm terminates.

6. Use Proposition 2 to check ifSource(vei) is recursive. If soCandidates =
Candidates − Source(vei).

7. For every branch of the trace graph, find two consecutive Sources that satisfy the
condition in Proposition 3. If there exists such two Sources, Candidates = ∅; the
algorithm terminates.

8. Candidates = Candidates ∩ SourcesKeller . If Candidates = ∅, the algorithm
terminates; otherwise go to Step 3.

Step 3:
9. For everySource ∈ Candidates, if deletingSource has side-effects on a descen-

dant according to Lemma 2,Candidates = Candidates − Source.
10. The algorithm terminates. IfCandidates = ∅, there is no correct translation of

deletingvei; otherwise eachSource ∈ Candidates is a correct translation.
Theorem 1. After the above algorithm, ifSources(vei)

′ is empty, deletingvei is un-
translatable. Otherwise deleting∀source ∈ sources′(vei) is a correct translation of
deletingvei.

15

7 Conclusion
In this paper we presented an algorithm for correctly translating the deletion of an XML
view element as deleting an element in the underlying XML base. Our algorithm uses
a schema-level analysis to efficiently find a correct translation and it is based on the
previous work for updating relational views, extending this with recursive types and
cardinality constraints in XML, and ”//” operator in XQuery. Our algorithm is sound
and complete.

This paper forms a first major step in studying view updates inXML scenario. Fu-
ture work needs to consider incorporating other update operations such as insert, replace
and XML specific operations and considering updating multiple elements. Further, we
need to consider more semantics both in XML Schema and XQuerystatements.

References

1. http://www.w3.org/xml/query/. 2006.
2. S. Abiteboul. On views and xml.PODS, 1999.
3. V. Braganholo, S. Davidson, and C. Heuser. the updatability of xml views over relational

databases, June 2003.
4. Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations. InThe

VLDB Journal, pages 471–480, 2001.
5. U. Dayal and P. A. Bernstein. On the Correct Translation ofUpdate Operations on Relational

Views. InACM Transactions on Database Systems, volume 7(3), pages 381–416, Sept 1982.
6. F. Bancilhon and N. Spyratos. Update Semantics of Relational Views.ACM Transactions on

Database Systems (TODS), pages 557–575, 1981.
7. M. Fernandez, W. Tan, and D. Suciu. SilkRoute: Trading between Relations and XML.

http://www.www9.org/w9cdrom/202/202.html, May 2000.
8. International Organization for Standardization (ISO) &American National Standards Insti-

tute (ANSI).
9. A. M. Keller. Algorithms for Translating View Updates to Database Updates for View In-

volving Selections, Projections and Joins. InFourth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 154–163, 1985.

10. H. Kozankiewicz, J. Leszczyowski, and K. Subieta. Updatable xml views. Advances in
Databases and Information Systems, pages 381–399, September 2003.

11. P. Lehti and P. Fankhauser. Towards type safe updates in xquery.
http://www.ipsi.fhg.de/ lehti/Typing

12. Oracle Technologies Network. Using XML in Oracle Database Applications.
http://technet.oracle.com/tech/xml/htdocs/aboutoracle xml products.htm, November 1999.

13. M. Rys. Bringing the Internet to Your Database: Using SQLServer 2000 and XML to Build
Loosely-Coupled Systems. InVLDB , pages 465–472, 2001.

14. R. Vercammen. Updating xml views.VLDB PhD Workshop, page 6ł10, 2005.
15. L. Wang, E. A. Rundensteiner, and M. Mani. UFilter: A Lightweight XML View Update

Checker. InICDE, poster paper, 2006.

