
Optimization of Query Plans
in the presence of Access Limitations

Andrea Cal̀ı, Diego Calvanese, and Davide Martinenghi

Free University of Bozen-Bolzano
Faculty of Computer Science

Piazza Domenicani, 3
I-39100 Bolzano, Italy

lastname @inf.unibz.it

Abstract. We consider the problem of querying data sources that have
limited capabilities and can thus only be accessed by complying with
certain binding patterns for their attributes. This is often the case, e.g.,
in the context of data on the web queryable via web forms as well as
in legacy data wrapped in relational tables. In such contexts, computing
the answer to a user query cannot be done as in a traditional database;
instead, a query plan is needed that takes the access limitations into
account.
In this paper, we develop a technique for producing a (possibly recur-
sive) Datalog program that retrieves all obtainable answers for a query
with limited source capabilities. In particular, we improve with respect
to a previously published algorithm for optimizing query answering for
conjunctive queries. Furthermore, we extend it to the context of unions
of conjunctive queries. The algorithm exploits the structure of the query
together with the binding patterns present in the source schema in order
to compute an optimized query plan. The optimization excludes from the
query plan the sources that are not relevant for the answer thus reducing
the number of accesses to the sources.

1 Introduction

In the context of integration of data over the Web [3], data are often accessible
only via forms, where typically certain fields are required to be filled in by the
user in order to obtain a result. Consider for example the web site of an online
bookstore, where, in order to obtain a list of publications extracted from an
underlying database, either an author or a title has to be specified, while it is
not possible to ask directly, e.g., for all books of a certain publisher. Similarly,
in legacy systems where data are scattered over several files, such data may be
wrapped and masked as relational tables; however, such tables typically cannot
be queried freely, since there may be access limitations due to the way the data
are organized in the files.

Limitations on how sources can be accessed significantly complicate query
processing [11, 7, 4, 2], since in this case the query plan may fail to comply with



the access limitations. As shown in [11, 7, 9, 8], query answering in the presence
of access limitations in general requires the evaluation of a recursive query plan,
which can be suitably expressed in Datalog. The related problem of query con-
tainment in the presence of access limitations is addressed in [10].

Since source accesses are costly, an important issue is how to reduce the
number of accesses to the sources while still obtaining all possible answers to
a query. Several optimizations that can be made at compile time, during query
plan generation, are discussed in [7, 9, 8]. However, the presented techniques are
not applicable in the case where user queries and view definitions are arbitrary
conjunctive queries. In particular, in [8], the presented optimization only consid-
ers a class of queries that is a proper subset of the class of union of conjunctive
queries and that is not comparable with the class of conjunctive queries; there,
the problem of optimizing query answering when the query over the sources is
an arbitrary conjunctive query is left open.

In [6], the author addresses the issue of stability, i.e., determining whether
the complete answer to a query (the one that would be obtained with no access
limitations) can always be computed despite the access limitations.

Another relevant topic tightly connected with this research is the problem
of run-time query plan optimization in the case where constraints over sources
are asserted. In [1], functional and simple full-width inclusion dependencies have
been addressed, and it is shown that the implication problem for such dependen-
cies is decidable in polynomial time. There, a necessary and sufficient condition
is presented that determines, given the dependencies, whether during query eval-
uation a planned access to a source is necessary for computing the answer.

In this paper we address the problem of query plan optimization for sources
with limited capabilities for conjunctive queries and for unions of conjunctive
queries. We present a technique to optimize a query plan at the time of its
generation. Such an optimization technique exploits the knowledge about the
structure of the query and the binding patterns of the sources to compute a query
plan that eliminates dependencies between sources and thus avoids unnecessary
accesses that may be performed at query plan execution time. Moreover, this
allows one to exclude from the query plan those sources that cannot contribute
to the result of the query.

The rest of the paper is organized as follows. In Section 2 we introduce
the technical preliminaries. In Section 3 we present a technique to construct
an optimized query plan for answering conjunctive queries in the presence of
access limitations. We extend this technique to unions of conjunctive queries
in Section 4. We conclude in Section 5, where we also indicate possible future
directions of research.

2 Preliminaries

We consider relations as sets of tuples of constants belonging to given domains
and accessible via given binding patterns. Instead of using concrete domains,
such as Integer or String, we deal with abstract domains, which have an un-



derlying concrete domain, but represent information at a higher level of abstrac-
tion, which distinguishes, e.g., strings representing person names from strings
representing plate numbers. A relational schema is a signature of the form
r(A(b|f)

1 , . . . , A
(b|f)
n ), where r is the relation name, n is called the arity of the

relation, each Ai is an abstract domain1, and the superscript, called the binding,
indicates that the corresponding position in the relation is bound, if the bind-
ing is b, or free, if it is f ; the sequence of bindings for positions 1, . . . , n in the
schema is called the binding pattern for r. In the following we will only indicate
b bindings and will consider f as the default. A relation over a relational schema
r(A[b]

1 , . . . , A
[b]
n ) is a set of tuples 〈c1, . . . , cn〉 such that each ci is a constant be-

longing to abstract domain Ai. The binding pattern for a relation specifies which
of the arguments of the relation must be bound by a constant in order to query
the relation. For example, in relation r with schema r(A1, A2,Ab

3), the first two
arguments, corresponding resp. to abstract domains A1 and A2, are free, while
the third argument, corresponding to A3, is bound.

A conjunctive query (CQ) q of arity n over a set R of relational schemata is
written in the form

q(X1, . . . , Xn) ← conj (X1, . . . , Xn, Y1, . . . , Ym)

where q(X1, . . . , Xn) is called the head of q, and conj (X1, . . . , Xn, Y1, . . . , Ym) is
called the body of q. The body of q is a conjunction of atoms whose predicate
symbols are inR, and that involve variables X1, . . . , Xn, Y1, . . . , Ym, and possibly
some constants. We assume that the query is safe, i.e., that each variable Xj

appears in at least one atom in the body.
Given a database DB , the answer qDB of q over DB is the set of tuples

〈c1, . . . , cn〉 of constants in DB such that there are constants d1, . . . , dm for
which each atom in conj (c1, . . . , cn, d1, . . . , dm) holds in DB .

A union of conjunctive queries (UoCQ) q of arity n over a set R of relational
schemata is a set {q1, . . . , qk} of CQs, each with head predicate q and arity n.
Given a database DB , the answer qDB of q over DB is the union of the answers
to each conjunctive query qi in q.

In the presence of access limitations on the relations, we say that a tuple is
obtainable in the answer to a query if there exists a query plan that retrieves it.
A query plan is a sequence of valid accesses to the relations. By access we mean
a request, sent to a relation, imposing a single specific value for some (possibly
no) argument in the relation. An access is valid if the request imposes a value for
each bound arguments; the response to a valid access is the (possibly empty) set
of tuples in the relation that matches the request. We observe that, in order to
retrieve all obtainable tuples, relations may need to be accessed in a particular
order, as shown in the following example, adapted from [5].

Example 1. Suppose we have two relations: r1(Artistb,Nation), which stores
artists with their nationality, and r2(Title,Year b,Artist), which stores data
1 Note that we use a positional notation for relations, and that the Ais do not denote

attributes.



about songs. The query

q(T ) ← r1(A, italian), r2(T, 1998, A)

asks for titles of songs interpreted by an Italian artist and produced in year 1998.
Since r1 requires the first position to be bound to a constant, accessing it first
would not be valid. However, we could use artist names extracted from r2 to
access r1 and extract tuples that may contribute to the answer.

In [7] an algorithm is presented that, given a query over the relations, retrieves
all the obtainable tuples in the answer to the query. Such an algorithm consists
in the evaluation of a suitable Datalog program that extracts all obtainable
tuples starting from a set of initial values. The Datalog program is constructed
by encoding in Datalog clauses the limitations on the relations that must be
respected during query evaluation. It is assumed that the strategy of enumerating
all possible elements of a given domain to access a relation is not feasible and
that, rather, the values for the bound positions of a relation are obtained either
from constants in the query or from tuples retrieved from other relations. The
evaluation of the Datalog program makes use of a set storing the values extracted
from the relations (together with the constants appearing in the query) at a
certain step, and of a cache that stores a partial copy of the relations, populated
with the tuples extracted from the relations at a certain step.

1. Initialize B with the set of constants in the query
2. while there is a way of doing valid accesses with new constants

(a) Access as many relations as possible, according to their binding patterns,
using constants in B

(b) Put the obtained tuples in the cache
(c) Put the obtained constants in B

3. Evaluate the query over the cache

We call binding values the constants used to access a relation with access
limitations; a binding tuple is a tuple, of the same arity as the number of bound
arguments of a relation, whose values are binding values of the appropriate
abstract domain that are used to access the same tuple. The algorithm extracts
all tuples obtainable while respecting the binding patterns, performing a finite
number of iterations of Step 2. Observe that there may be tuples in the relations
that cannot be retrieved. We illustrate the extraction strategy by means of the
following example.

Example 2. Consider the following set R of relational schemata

R = { r1(Ab,C ),
r2(C ,Bb),
r3(B ,C b) }

Suppose we have the following conjunctive query over R:

q(B)← r1(a1, C), r2(C,B)



r1 :

a1 c1

a1 c3

a3 c3

r2 :

c1 b1

c2 b2

c3 b3

r3 :
b2 c1

b1 c2

Fig. 1. Extension of relations of Example 2

Now, assume a database in which the relations have the extension shown in
Figure 1. Starting from a1, the only constant in the query, we access r1 getting the
tuples 〈a1, c1〉 and 〈a1, c3〉, whereas 〈c1, b1〉 in r2 is not (yet) accessible because
of the binding patterns. But now we have c1 with which we can access r3 and
retrieve 〈b2, c1〉. With b2 we extract 〈c2, b2〉 from r2; then, with c2 we retrieve
〈b1, c2〉 from r3. Finally with b1 we extract 〈c1, b1〉 from r2 and obtain 〈b1〉 as
the answer to q. Observe that 〈a3, c3〉 and 〈c3, b3〉 could not be extracted from
r1 and r2 respectively and that answer 〈b3〉 is not obtainable.

3 Query Planning for Conjunctive Queries

Given a query q over a set of relations R, we want to construct a query plan that
allows us to retrieve all obtainable answers to q. In this section we show how to
generate an optimized query plan that avoids accesses that are not necessary for
extracting all obtainable answers.

This problem has already been addressed for a subclass of UoCQs not cover-
ing CQs in [7, 8]. Building on a previous attempt to solve the problem for the full
class of CQs [1], we improve on the techniques presented in [7] in two relevant
directions.

– We consider queries that are in the full class of unions of conjunctive queries.
– We exploit the knowledge about the structure of the query to exclude ac-

cesses that are unnecessary to answer the query.

With regard to the second issue, we observe that, having extracted a number
of values at a certain point of the query answering process, and given a relation
r to be accessed using the values extracted so far as binding values, some of the
possible accesses to r may not be necessary in order to calculate the answer to
the query. This is illustrated in the following example.

Example 3. Consider the following set R of relational schemata

R = { r1(Ab,B),
r2(Bb,C ),
r3(C b,B) }

and the following CQ over R:

q(C) ← r1(a0, B), r2(B,C)



We observe that r3 is not useful to answer the query. Using the values obtained
from r2 to access r3 in order to obtain new values of domain B with which
to access r2 again is pointless. Indeed, to the join condition between r1 and r2

guarantees that the only tuples extracted from r2 which can be used to construct
a tuple of the answer to q are those obtained by binding the first argument of
r2 with a value extracted from r1.

3.1 Queryable relations

We want to be able to restrict our attention to queryable relations, i.e., the
relations that can be accessed at least once for at least one database instance,
starting from the values in the query.

Definition 1. Given a set R of relational schemata and a query q over R, a
relation r in R is said to be queryable if there exist a database DB such that,
starting from the constants in the query, there is a sequence of valid accesses to
the relations in R such that r is eventually accessed.

Example 4. Let R be the following set of relational schemata:

R = { r1(Ab, B),
r2(Bb, C),
r3(B,B,C b) }

Given the query
q() ← r3(X, Y, c1)

we show that r2 and r3 are queryable. To do so, we exhibit a database in which
the extensions of the relations is as follows.

r1 : a1 b1 r2 : b1 c2 r3 : b1 b2 c1

Note that in the extraction process we start with the constant c1 and we are
able to access r3, obtaining the tuple 〈b1, b2, c1〉; then, with the constants b1 and
b2 we access r2. This proves that r3 and r2 are queryable. Observe also that r1

is not queryable: whatever are the tuples in r2 and r3, we cannot extract in any
way from r2 and r3 values that belong to the abstract domain of A, which would
be necessary to access r1.

A correct and complete algorithm to calculate the queryable relations has
been given in [7].

3.2 Dependency graphs and optimization thereof

We show now how to construct an optimized query plan for a CQ over some
relations. We exclude a priori all non-queryable relations and therefore assume
in the following that all the relations are queryable.



For our purposes, we define the dependency graph (or d-graph) of a CQ q
with respect to a set R of relational schemata, denoted by GR

q . A d-graph is the
structure on which we operate in order to eliminate unnecessary accesses to the
sources; then, an “optimized” version of the d-graph will be used to generate the
query plan for q.

We will construct the graph starting from a query that contains no constant.
We therefore first illustrate a preprocessing step that eliminates constants from
the query as follows. For each constant a appearing in q in the position of a
domain A, we introduce a new relation ra with a single free attribute, whose
domain is that of A; the content of ra is the single tuple 〈a〉. We then replace
all occurrences of a appearing in the query in a position of domain A with a
fresh new variable Xa, and we add the conjunct ra(Xa) to the body of q. The
intuition is that a value acts as a relation whose content is completely known
and accessible, and amounts only to the value itself.

The set GR
q of nodes of the d-graph is determined as follows. For each atom

in q, we have a set of nodes (called a source) in GR
q , one for each argument of

the corresponding relation. We call such nodes black. Moreover, for each relation
not appearing in q, we have a set of nodes (also called a source), one for each
argument of the relation. We call such nodes white. Both types of nodes have
two labels:

– The binding (“b” or “f”) of the corresponding argument in the relation.
– The abstract domain of the corresponding argument in the relation.

As for the arcs, GR
q has an arc from a node u to a node v whenever the following

three conditions hold:

– u and v have the same abstract domain.
– u is free.
– v is bound.

Intuitively, the arcs denote dependencies between relation arguments, indi-
cating that a relation with limited capabilities needs values which can be re-
trieved from other relations (or from constants in the query).

Our aim here is to optimize the set of arcs in GR
q by removing dependencies

that are actually not needed to retrieve all obtainable tuples.
For this purpose, let us indicate with outArcs(u, GR

q ) the set of outgoing arcs
from a node in the same source as node u, for a d-graph GR

q ; we omit the second
argument wherever the d-graph is understood. A sequence u1

yv1, . . . , un
yvn of

arcs in GR
q is called a dependency path (or d-path) for GR

q if, for 2 ≤ i ≤ n,
ui

yvi ∈ outArcs(vi−1); to emphasize the first and last nodes in the sequence,
the d-path can also be denoted u1

y+
vn. Then, we can eliminate the arcs for

which no d-path exists that reaches a black node, i.e., we must avoid accesses to
relations that cannot provide values that can contribute to the answer.

Moreover, we may eliminate some arcs thanks to the presence of joins in the
query. We say that an arc uyv is strong whenever (i) both u and v are black,
(ii) u and v correspond to two variables which are joined in the query, and



(iii) v’s source is not needed to provide arbitrary values to other relations used
in the query; all other arcs are called weak arcs. Now, in the presence of a strong
arc, the join indicates that all the useful tuples that can be retrieved from v’s
relation are extracted using only values coming from u. Therefore, whenever a
node has an incoming strong arc, all the incoming weak arcs must be deleted,
provided that this does not affect queryability of the relation as made precise
below. We say that such weak arcs are dominated by the strong arc(s).

We say that a relation is free if all of its attributes are free; a source is free
if all of its nodes correspond to free attributes. A bound node v in a d-graph
is inductively defined as free-reachable, denoted as isFreeReachable(v), if either
(i) there is a weak arc uyv such that all bound nodes in u’s source are free-
reachable or (ii) all strong arcs u1

yv, . . ., un
yv are such that all bound nodes

in ui’s source are free-reachable, for 1 ≤ i ≤ n. Clearly, whenever the query is
constant-free (like after the pre-processing step), a relation is queryable only if
all of its bound nodes are free-reachable.

Let isBlack be a function that takes a node and returns true if and only if
the node is black, and let joined be a function that takes two nodes and returns
true if and only if the corresponding variables are joined in the query. Based
on the above observations, we characterize strong arcs and deleted arcs by the
following equations (1) and (2).

isStrong(uyv) = ¬isDeleted(uyv) ∧
isBlack(u) ∧ isBlack(v) ∧ joined(u, v) ∧
∀γ ∈ outArcs(v)(isStrong(γ) ∨ isDeleted(γ)) ∧
isFreeReachable(v)

(1)

isDeleted(uyv) = ¬isStrong(uyv) ∧
[isBlack(v) ∧ ∃(u′ 6= u)(isStrong(u′yv)) ∨
¬isBlack(v) ∧ ∀γ ∈ outArcs(v)(isDeleted(γ))]

(2)

Ideally, for a given d-graph, we aim to determine two maximal sets respec-
tively of deleted arcs and strong arcs that satisfy the above equations. Let us
call candidate strong arc any arc whose nodes are black and whose corresponding
variables are joined in the query; let us indicate with arcs(GR

q ) the set of all arcs
in GR

q and with cand(GR
q ) the set of all candidate strong arcs in GR

q . Clearly,
(i) only candidate strong arcs have the potential to become strong arcs and
(ii) no candidate strong arc can ever be deleted, since, by definition, it reaches
a black node and is never dominated by another strong arc (for any given node
in GR

q , its incoming arcs, if any, are either all strong or all weak). Therefore the
set of strong arcs and the set of deleted arcs must be disjoint; this is reflected
in the first conjunct of equation (1) and equation (2). Note also that only those
candidate strong arcs that do not destroy free-reachability can actually become
strong. In particular, we say that a candidate strong arc uyv is circular if it
is contained in a d-path uy+

u such that all arcs in it are candidate strong; we
indicate by circ(GR

q ) the set of circular candidate strong arcs in GR
q .



We call the pair (S,D) a solution for equations (1) and (2) if S and D are
respectively sets of strong arcs and deleted arcs (among the arcs of a given
dependency graph) that satisfy the conditions of the equations; the solution
is maximal if no other solution (S ′,D′) exists such that S ′ ⊃ S or D′ ⊃ D.
A solution (S,D) can be used to produce a new d-graph GR

q
(S,D), that we call

optimized d-graph, by removing from GR
q all arcs in D and by labeling as “strong”

all arcs in S, by labeling as “weak” all remaining arcs (note that the input d-
graph GR

q had no explicit arc labeling), and, finally, by removing all nodes with
no incoming or outgoing arcs and all sources with no nodes. It turns out that
there always exists a unique maximal solution for equations (1) and (2).

Lemma 1. Let (S,D) be a solution for (1’) and (2) for a d-graph G, where
(1’) is as (1), but without the last conjunct. A bound node u is free-reachable in
G(S,D) iff there is no d-path uy+

u in G(S,D) consisting only of strong arcs.

Theorem 1. Equations (1) and (2) admit a unique maximal solution for any
d-graph G.

Proof. We first prove that a solution exists. Consider equations (3) and (4).

isStrong(uyv) ≡ isBlack(u) ∧ isBlack(v) ∧ joined(u, v)∧
∀γ ∈ outArcs(v)(isStrong(γ) ∨ isDeleted(γ)) (3)

isDeleted(uyv) ≡ [isBlack(v) ∧ ∃u′(isStrong(u′yv))∨
¬isBlack(v) ∧ ∀γ ∈ outArcs(v)(isDeleted(γ))] (4)

They induce the definition of two corresponding monotonic fixpoint operators
TS and TD. This in turn guarantees the existence of the greatest fixpoint for (3)
and (4) (the one that maximizes the number of strong arcs and deleted arcs),
for any given initial sets of strong arcs and of deleted arcs.

By Lemma 1, the largest set of strong arcs one can hope for is S0 = cand(G)\
circ(G), whereas the largest achievable set of deleted arcs is its complement
D0 = arcs(G) \ S0; clearly, S0 and D0 are disjoint. It now suffices to observe
that the fixpoint (Sω,Dω) for equations (3) and (4) obtained via TS ◦TD starting
from (S0,D0) is necessarily also a solution for equations (1) and (2), since, by
monotonicity, S0 ∩ D0 = ∅ entails that Sω ∩ Dω = ∅, so all conditions in (1)
and (2) are satisfied, including free-reachability by Lemma 1.

To see that the maximal solution for (1) and (2) is unique and coincides
with (Sω,Dω), let us assume, by contradiction, that there is another solution
(S ′,D′) such that S ′ ⊃ Sω or D′ ⊃ Dω. However, since (S ′,D′) is a solution,
we have S ′ ∩ D′ = ∅. Besides, S ′ ⊆ S0, since only non-circular candidate strong
arcs can be strong arcs, and D′ ⊆ D0, since no candidate strong arc can be
deleted, as was argued before. This means that (S ′,D′) would also be a solution
for equations (3) and (4), contradicting the fact that (3) and (4) are guaranteed
to have a unique greatest fixpoint.



Theorem 1 indicates that we can always find the largest sets of strong arcs and
of deleted arcs possible for a given dependency graph. We present in Figure 2
an algorithm that determines such sets according to the above criteria. The
algorithm calculates the initial sets of strong arcs (the non-circular candidate
strong arcs) and deleted arcs (its complement) and then implements the TS and
TD monotonic fixpoint operators used in the proof of Theorem 1 and applies
them to the sets until a fixpoint is reached. This is stated below in Theorem 2,
which trivially holds.

Theorem 2. The function calculateGFP(G) shown in Figure 2 computes the
maximal solution for equations (1) and (2) with respect to d-graph G.

Termination of the algorithm is guaranteed by the monotonicity of the fixpoint
operators induced by equations (3) and (4), which are implemented by the func-
tions unmarkStrong and unmarkDeleted respectively. The monotonicity also en-
sures that the algorithm runs in polynomial time in the size of the d-graph.

Theorem 3. calculateGFP(G) runs in polynomial time in the size of G.

An optimized d-graph generated via the result of the function calculateGFP
trivially has the properties stated in Proposition 1 below.

Proposition 1. Consider an optimized d-graph GR
q for a query q over a set R

of relational schemata. We have that GR
q has the following properties.

1. From each node in GR
q it is possible to reach a black node through a d-path.

2. For each node u, its incoming arcs, if any, are either all strong or all weak.
3. There is no d-path that traverses a strong arc and successively a weak arc.
4. From every node of GR

q , a free source is reachable through a d-path in reverse
direction.

Example 5. Let R = {r1(Ab, B), r2(A,Bb)} be a set of relational schemata and
q(X) ← r1(a,X) a query over R. The d-graph GR

q for q is shown in Figure 3,
where we have named the sources as the corresponding relations, with a super-
script indicating the occurrence number of that relation in the query. We first
eliminate the constant a occurring in q by introducing a new relation ra with
domain A and populated by the single tuple 〈a〉 and by rewriting q as follows:

q(X) ← ra(Y ), r1(Y, X).

Arc e1 is the only (non-circular) candidate strong arc and is, thus, in the initial
set of strong arcs; arcs e2 and e3 are therefore in the initial set of deleted arcs.
This is already the greatest fixpoint we were looking for, since equations (3)
and (4) are satisfied. In particular, arc e3 remains deleted, since it is dominated
by e1, which is strong, and then e2 is deleted as well, since no black node is
reachable by a d-path starting with e2. The intuition is that relation r1 does not
have to provide arbitrary values to r2; indeed, due to the join condition in q,
accessing r1 with values provided by r2 would not provide tuples that could be
used to answer the query q. The optimized d-graph, without deleted arcs, and
without source r2, is shown in Figure 4; the strong arc e1 is denoted by a solid
line.



calculateGFP(G : d-graph) : arc set × arc set
S := cand(G) \ circ(G)
D := arcs(G) \ S
do {

(S ′,D′) := (S,D)
S := unmarkStrong(S ′,D′,G)
D := unmarkDeleted(S ′,D′,G)

} while (S,D) 6= (S ′,D′)
return (S ′,D′)

unmarkStrong(S : arc set, D : arc set, G : d-graph) : arc set
S ′ := S
for each arc uyv ∈ S

for each arc γ ∈ outArcs(v, G)
if (γ 6∈ S ∪ D) S ′ := S ′ \ {uyv}; break

return S ′

unmarkDeleted(S : arc set, D : arc set, G : d-graph) : arc set
D′ := D
for each arc uyv ∈ D

if (isBlack(v)) then
bool strongExists := false
for each arc u′yv′ ∈ S

if (v = v′) then strongExists := true ; break
if (not strongExists) then D′ := D′ \ {uyv}

else (v is white)
if (outArcs(v, G) \ D 6= ∅) then D′ := D′ \ {uyv}

return D′

Fig. 2. Algorithm determining the maximal sets of strong arcs and deleted arcs

3.3 Generation of a query plan

Now we come to the construction of the query plan. From the resulting optimized
d-graph we construct the optimized query plan, expressed in Datalog notation, as
shown in the algorithm of Figure 5. The Datalog program is evaluated according
to the usual least fixpoint semantics; it is guaranteed by construction that the
least fixpoint can be calculated by only making valid accesses.

The algorithm rewrites the original query over new versions of the relations
in the body. For each predicate r in the body of the query, we introduce a new
predicate with the same arity as r that acts as a sort of cache in which we store,
during the query answering process, all the tuples extracted from r. This is done
in step 1.2 of the algorithm of Figure 5. Note that different occurrences of the
same predicate give rise to different names; in the examples we choose, e.g., to
add a hat symbol to the predicate name as well as an occurrence number.

Each cache relation is defined in step 2 of the algorithm as the corresponding
original relation, but where each bound variable receives its binding values from
another new relation created for that purpose in step 2.3. Such relation takes



3

1
(1)

1

2

(1)
a

2rr

B

AA

B

A
e

e

e

r

Fig. 3. Dependency graph for Example 5

into account the arcs in the d-graph: if the corresponding incoming arcs are weak
(resp., strong), then in step 2.3.2 (resp., step 2.3.3) the relation is defined as a
disjunction (resp., conjunction) of the cache relations corresponding to the origin
nodes, since any of them (resp., only their join) can provide binding values.

Finally, the program generated by the algorithm of Figure 5 is completed by
adding a fact for each relation created in the preprocessing step to eliminate the
constants from the query; the fact has the form ra(a), where ra is the created
relation and a is the removed constant.

Example 6. We refer to Example 5. From the optimized dependency graph rel-
ative to q, the algorithm of Figure 5 generates the following plan:

q(X)← r̂1
a(X), r̂1

1(X, Y )
r̂1
a(X1)← ra(X1)

r̂1
1(X2, Y2)← r1(X2, Y2), sX2(X2)
sX2(X2)← r̂1

a(X2)
ra(a)←

In this example, the support relation sX2 introduced by step 2.3.3 is defined as
r1
a, since there is only one corresponding incoming strong arc. The third and

fourth rules could therefore more simply be written as the following single rule:

r̂1
1(X2, Y2)← r1(X2, Y2), r̂1

a(X2)

The Datalog program above shows that relation r2, which could in principle
provide useful values to r1, is not needed at all to answer the query because of
the join between ra and r1.

(1)
1
(1)

1

a

A
A

B
r

e

r

Fig. 4. optimized d-graph for Example 5



INPUT: optimized d-graph GR
q , query q, relations R

OUTPUT: a Datalog program corresponding to the optimized query plan

1 Rewrite q as follows:
1.1 The query head is the same
1.2 Each atom in q’s body is replaced by an atom with the same arguments but

with a fresh new relation name, henceforth used to uniquely identify the cor-
responding source

2 For each atom p of arity n in the body of the rewritten query q or in the schema of
a relation not in q with incoming or outgoing arcs, a rule is generated as follows:
2.1 The head atom is p(Y1, . . . , Yn), where the Yi’s are fresh new variables
2.2 The body has one atom r(Y1, . . . , Yn), where r is the name of the relation

corresponding to p’s source
2.3 The body also has one atom for each bound node v in q’s head with incoming

arcs:
2.3.1 The atom has a fresh new relation name that uniquely identifies v and

only 1 argument containing the variable corresponding to v in the head
2.3.2 If v’s incoming arcs are weak, create one new rule for each arc uyv as

follows:
2.3.2.1 The head is the atom created in step 2.3.1
2.3.2.2 The body has one atom. The relation name is u’s source identifier.

All positions in the atom have a new variable, except for the position
corresponding to u, which has the same variable as the one in the
head

2.3.3 If v’s incoming arcs are strong, create one new rule.
2.3.3.1 The head is the atom created in step 2.3.1
2.3.3.2 The body has one atom for each arc uyv. The relation name is u’s

source identifier. All positions in the atom have a new variable, except
for the position corresponding to u, which has the same variable as
the one in the head

Fig. 5. Algorithm producing the Datalog program corresponding to the optimized
query plan

Such a Datalog program ensures that the binding values for the bound po-
sitions of a relation r are obtained from values retrieved from the appropriate
relations and stored in the caches.

We now state that the optimized query plan generated by our approach is
both sound, i.e., it returns only tuples that are in the answer to the query, and
complete, i.e., it does not miss any obtainable tuple, taking into account the
binding patterns.

Theorem 4. Let q be a query over a set R of relational schemata, and let GR
q

be its d-graph and G = calculateGFP(GR
q ) the corresponding optimized d-graph.

Then, the Datalog program constructed from q by the algorithm in Figure 5, based



on G, computes all the answers to q obtainable from the relations in R, given
the binding patterns on them.

4 Extension to unions of conjunctive queries

In this section, we address the problem of finding a query plan for a UoCQ. Our
approach is to transform a UoCQ into an appropriate CQ, so that the technique
presented in Section 3 can be applied; the output is then adjusted so as to obtain
a query plan for the original UoCQ (assumed, w.l.o.g., to be constant-free).

Let q be a constant-free UoCQ over a set R of relational schemata defined
as follows:

{ q(X1,1, . . . , Xn,1) ← conj1 (X1,1, . . . , Xn,1, Y1,1, . . . , Yk,1),
...

q(X1,m, . . . , Xn,m) ← conjm(X1,m, . . . , Xn,m, Y1,m, . . . , Yk,m) }
We first replace each rule in q with a variant thereof so that in the end all

rules are standardized apart, as follows

{ q(X ′
1,1, . . . , X

′
n,1) ← conj1 (X ′

1,1, . . . , X
′
n,1, Y

′
1,1, . . . , Y

′
k,1),

...
q(X ′

1,m, . . . , X ′
n,m) ← conjm(X ′

1,m, . . . , X ′
n,m, Y ′

1,m, . . . , Y ′
k,m) }

where each primed variable is a fresh new variable. Clearly, the expression above
is equivalent to the original UoCQ.

We then generate the following CQ:

q′(X ′
1,1, ..., X

′
n,1, ..., X

′
1,m, ..., X ′

n,m) ← conj1 (X ′
1,1, ..., X

′
n,1, Y

′
1,1, ..., Y

′
k,1),

. . . ,
conjm(X ′

1,m, ..., X ′
n,m, Y ′

1,m, ..., Y ′
k,m)

Now we apply to q′ the technique developed for CQs in Section 3. We obtain
as output a Datalog program Π whose first clause redefines q′ and has the
following form:

q′(X ′
1,1, ..., X

′
n,1, ..., X

′
1,m, ..., X ′

n,m) ← ˆconj 1 (X ′
1,1, ..., X

′
n,1, Y

′
1,1, ..., Y

′
k,1),

. . . ,
ˆconjm(X ′

1,m, ..., X ′
n,m, Y ′

1,m, ..., Y ′
k,m)

where the various ˆconji’s are as the conji’s, but refer to the cache relations
instead, which are defined in the remainder of Π, which we denote as Π ′.

Finally, from the rewritten query q′, we generate the following m rules.

q(X ′
1,1, ..., X

′
n,1, ..., X

′
1,m, ..., X ′

n,m) ← ˆconj 1 (X ′
1,1, ..., X

′
n,1, Y

′
1,1, ..., Y

′
k,1)

. . . ,

q(X ′
1,1, ..., X

′
n,1, ..., X

′
1,m, ..., X ′

n,m) ← ˆconjm(X ′
1,m, ..., X ′

n,m, Y ′
1,m, ..., Y ′

k,m)

The above m rules together with Π ′ constitute a Datalog program corresponding
to an optimized query plan that computes all the answers to the original UoCQ
q that are obtainable from the relations in R.



5 Discussion

We have presented a technique that can be used to find all obtainable tuples
belonging to the answer to a query formulated over relations with access limi-
tations. Based on the binding patterns of a query, we construct a d-graph that
indicates all possible ways in which bound arguments in a relation can receive
useful values from free arguments with the same domain. The d-graph is opti-
mized according to the joins included in the query and then used to generate a
Datalog program that answers the query. The technique works for CQs as well
as UoCQs.

Currently, we are working on an extension of our method to guarantee min-
imality of accesses; this requires considering the structure of the query in its
entirety, including atoms that have no variable in common with the rest of the
query. We are also aiming to cover full Datalog queries. The idea is that, before
considering weak and strong arcs in the d-graph, one should take into account
“unfolding” arcs, i.e., arcs that relate the arguments of an occurrence of an
intensional predicate with the arguments of the predicates defining it.

References

1. Andrea Cal̀ı and Diego Calvanese. Optimized querying of integrated data over the
Web. In Proc. of the IFIP WG8.1 Working Conference on Engineering Information
Systems in the Internet Context (EISIC 2002), pages 285–301. Kluwer Academic
Publishers, 2002.

2. Oliver M. Duschka and Alon Y. Levy. Recursive plans for information gathering.
In Proc. of IJCAI’97, pages 778–784, 1997.

3. Daniela Florescu, Alon Levy, and Alberto Mendelzon. Database techniques for the
World-Wide Web: A survey. SIGMOD Record, 27(3):59–74, 1998.

4. Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query opti-
mization in the presence of limited access patterns. In Proc. of ACM SIGMOD,
pages 311–322, 1999.

5. Alon Y. Levy. Answering queries using views: A survey. Technical report, Univer-
sity of Washinghton, 1999.

6. Chen Li. Computing complete answers to queries in the presence of limited access
patterns. VLDB Journal, 12(3):211–227, 2003.

7. Chen Li and Edward Chang. Query planning with limited source capabilities. In
Proc. of ICDE 2000, pages 401–412, 2000.

8. Chen Li and Edward Chang. Answering queries with useful bindings. ACM Trans.
on Database Systems, 26(3):313–343, 2001.

9. Chen Li and Edward Chang. On answering queries in the presence of limited access
patterns. In Proc. of ICDT 2001, pages 219–233, 2001.

10. Todd D. Millstein, Alon Y. Levy, and Marc Friedman. Query containment for data
integration systems. In Proc. of PODS 2000, pages 67–75, 2000.

11. Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries
using templates with binding patterns. In Proc. of PODS’95, 1995.


