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Abstract. A novel approach to semantic classification for generic home photos 
is proposed. The proposed method consists of two-layered SVM classifiers. The 
first layer aims to predict the likelihood of pre-defined local photo semantics 
based on camera metadata and regional low-level visual features. In the second 
layer, one or more global photo semantics are detected based on the likelihood 
ratio. To construct classifiers in the first layer producing a posterior probability, 
we use parametric model to fit the output confidence value of SVM classifiers 
to posterior probability. We also exploit concept merging process based on a set 
of semantic-confidence map in order to cope with selecting the more likelihood 
photo semantics on overlapping local photo regions. 
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1   Introduction 

Recently, it is affordable to keep a complete digital record of one’s whole life. One 
main issue is to minimize user’s manual tasks in organizing and managing a large 
number of photo collections. Semantic classification of arbitrary image has been a 
challenge in recent years. The goal of semantic classification is to discover image 
semantics from given pre-defined semantic concepts. The need for semantic 
classification has been rightly raised in digital home photo area.  

One state-of-art classification approach is to use support vector machine (SVM) 
[13]. So far, many classification methods have employed empirical risk minimization 
(ERM) for learning classifier. ERM only utilizes the loss function defined for 
classifier and is equivalent to Bayesian decision theory with a particular choice of 
prior. Thus, ERM approaches often lead a classifier to be over-fitted, i.e., classifier is 
usually too much fitted to only training data. Unlike ERM, structural risk 
minimization (SRM) aims to minimize generalization error. SVM is based on the idea 
of SRM. The generalization error is bounded by the sum of the training set error and a 
term depending on the VC dimension of the learning machine. By minimizing the 
upper bound, high generalization can be archived. The generalization error of SVM is 
related not to the input dimensionality of the problem, but to the margin with 
separating the data. This explains why SVM can have good performance even in 
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problems with a large number of inputs. To date, SVM has been applied successfully 
to a wide range of problems. 

In particular, the semantic classification problem can be usually simpler and thus 
easier by using multi-layered approach. Multi-layered classification approach aims to 
solve a classical image understanding problem that requires the effective interaction 
of high-level image semantics and low-level image features. Many researchers have 
successfully employed the multi-layered approach to semantic classification. 
Unfortunately, naïve SVM is inappropriate for multi-layered classifier because the 
output of the SVM should be a calibrated posterior probability to enable post-
processing. Basically, SVM is a discriminative classifier, not based on any generative 
model. So, the output confidence of any classifier in a certain layer should be 
probabilistically modeled before being used as the probabilistic input of any classifier 
in the next layer. A few studies have been pressed to solve this problem [1], [2]. Platt 
proposed a good parametric model to fit the SVM output to the posterior probability, 
instead of estimating the class-conditional density. The parameters of the model are 
adapted to give the best probability output [1]. Lin et al. improved implementation of 
Platt’s model [2]. They solved the problem that Platt’s implementation may not 
converge to the minimum solution. Although Lin’s method increases complexity, it 
gives better convergence properties.  

Nevertheless, capturing high-level image semantics with low-level features remain 
a challenge to real application due to low performance. Unlike image, photo usually 
includes its camera metadata as well as pixel data itself. The metadata is obtained 
from Exif header from photo file [3]. Camera metadata is of great benefit to semantic 
photo classification in that it provides several useful cues. In particular, taken 
date/time stamp has been successfully employed to cluster a sequence of unlabeled 
photos by meaningful event or situation groups [4], [5], [6]. Especially in [4] and [5], 
taken date/time stamp and color features have been combined together to cluster 
photos by events in an automatic manner. In general, user demand for event clustering 
tends to exhibit little coherence in terms of low-level features, though syntactic 
information, such as camera metadata, could help to organize event clusters in more 
semantically meaningful groups. In our previous studies [7], [8], we also developed 
an unsupervised photo clustering scheme based on situation – that presents similar 
background scenery taken in a close proximity of time – as associating camera 
metadata and low-level features.  

Especially for semantic photo classification, Boutell et al. proposed a probabilistic 
approach to incorporate camera metadata with content-based visual features in scene 
classification [9]. They exploited a useful set of camera metadata, which is related to 
scene brightness, flash, subject distance and focal length and verified it in some global 
visual semantics such as indoor/outdoor, sunset, and man-made/natural scenes. 
However, Boutell’s method has one major disadvantage on the applications to generic 
scene classification. One is that, as assumed in his study, Boutell’s method has limited 
application to a few global scenes since it used only global features, such as camera 
metadata and global visual features. A photo usually contains many local semantics. 
So, to extend the use of camera metadata to the classification of many other local and 
global visual semantics, the camera metadata probably need to be incorporated with 
visual features of local photo region. For example, let see a photo that contains human 
face in foreground behind background scenery. If its camera focus is on the person, 
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subject distance and focal length will be short. Given this knowledge, Boutell’s 
classifier may have a difficulty of detecting background scenery in spite of using low-
level visual features.  

In this paper, a semantic classification scheme for generic home photos is proposed. 
The proposed method consists of two-layered SVM classifiers. The first layer aims to 
predict the likelihood of pre-defined local photo semantics based on camera metadata 
and regional low-level visual features. In the second layer, we determine one or more 
global photo semantics based on the likelihood ratio. To construct classifiers in the 
first layer producing a posterior probability, we use parametric model to fit the output 
confidence value of SVM classifiers to posterior probability. Local photo semantics 
provide an intermediate level of photo semantics by bridging the semantic gap of low-
level features and high-level photo semantics. We also exploit concept merging based 
on a set of semantic-confidence map so as to cope with selecting the more likelihood 
photo semantics on overlapping local photo regions. For multi-class determination in 
global photo semantics, we propose to use three different criterions. 

2   Method 

2.1 Local Semantic Classification    

2.1.1 Regional Division for Local Semantics 
Most of the current digital cameras support auto-focusing (AF) system that works as 
moving the camera lens in and out until the sharpest possible image of the subjects is 
projected onto the image receptor such as CCD and CMOS. All AF systems provide a 
certain number of censoring regions. A censoring region usually forms rectangle. This 
means that photographer’s intension can be found in the rectangle censoring regions.  

Indeed, the best representation of local visual semantics in photo is given by object 
segmentation, which could produce elaborate object contours. So far, however, there 
seems no almighty method for object segmentation. Rather, the object segmentation is 
usually expensive in computation and even sometimes produces incomplete results in 
complex natural images. So, instead, we approach a simple block segmentation to 
capture visual semantics that appear on local photo regions. The block segmentation 
is relatively inexpensive. But, to boost its low segmentation performance, we employ 
a set of region template, denoted as photographic region template (PRT), whose idea 
originates from the rectangle censoring system of digital camera. Thus, although PRT 
is used in a block tessellation with a fixed number of blocks, it could be fast and good 
enough to detect what the photographer intended to capture when taking the picture. 
The basic observation behind the PRT is that mainly-concerned subjects would be 
usually focused, taking larger portion and being sharpener than other un-concerned 
subjects. Thus, many other most likely small, blurred subjects would be often out of 
concern in the photo.  
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In order to build meaningful region templates, three conditions are considered: the 
region template should be large enough to detect semantics in the local photo region, 
simultaneously be small enough not to be time-consuming in feature extraction and 
similarity measure, and support spatial scalability to detect photo semantics over 
various scale subjects. From this observation, we propose a photographic region 
template as shown in Fig. 1. The region template is composed of ten local regions: 
one center region (R1 in Fig. 1), four corner regions (R 2, R 3, R 4, and R 5 in Fig. 1), 
two horizontal regions (R 6 and R 7 in Fig. 1), two vertical regions (R 8 and R 9 in Fig. 
1), and a whole photo region (R 10 in Fig. 1). The four corner regions are parts of the 
vertical, horizontal, and whole regions. Note that one center and four corner regions 
are referred to as basis regions. The use of basis region set will be presented in local 
semantic classification. The center region overlaps partially with the corner, vertical 
and horizontal regions, and entirely with the whole photo region.  
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Center Corner

Horizontal Vertical Whole

 
Fig. 1. Photographic region templates 

2.1.3 Local Semantic Learning 
SVM is employed as local semantic classifiers in the first layer. It gives a good binary 
classifier that is used to find the decision function of optimal linear hyper-plane given 
labeled training data. SVM is a constructive learning procedure rooted in statistical 
learning theory [13]. It is based on the principle of structural risk minimization, which 
aims at minimizing the bound on the generalization error rather than minimizing the 
mean square error over the data set. As a result, an SVM tends to perform well when 
applied to data outside the training set. The hyper-plane can be linearly separable in 
high-dimensional feature space ( h ). Input feature in the space ( F ) is mapped onto 
the feature space via a nonlinear mapping ( h→F:ϕ ), allowing one to perform 
nonlinear analysis of the input features using a linear method. In generic SVM, a 
kernel is designed to map the input data space to the feature space. With the ‘kernel 
trick’ property [10], the kernel can be considered as similarity measures between two 
feature vectors without explicit computation of the map ϕ . Using kernel function, 
SVM classifier can be trained with features of training data. For this, an optimal 
hyper-plane is found to correctly classify the training data. By the optimization 
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theorem of SVM, the decision function ( local
nΦ ) to predict the local concept ( local

nx ) of 
unseen feature vector ( F ) is formed as follows, 

( ) ( )∑ +=Φ
t

n
t
n

t
n

t
n

local
n bKza FFF , , (1) 

where K  is a kernel function that can be a linear function, radial-basis function 
(RBF), polynomial function, sigmoid function, etc., and, in this paper, RBF kernel 
fuction that is the most popular choice of kernel types is selected. t

nF  is the tth support 

vector of the hyper-plane for the local concept ( local
nx ), na  is the vector of 

corresponding weighting values of the support vector, nz  is the corresponding class 

vector of the support vector, and nb  is the threshold optimized for the local concept 

( local
nx ).  
Constructing the SVM classifier to produce a posterior probability, the output 

confidence value of the SVM is fitted to a parametric sigmoid model [1, 2]. The form 
of parametric sigmoid fitting model for the classifier of a local photo semantic local

nx  is 
as follows, 

( )( ) ( )( )BA
yP

local
n

local
nn +Φ⋅+

=Φ=
F

F
exp1

1|1 , 
(2) 

where A  and B  are parameters to determine the shape of the sigmoid model. So, the 
SVM output ranged from −∞  to ∞  is fitted to the probabilistic output ranged from 0 
to 1. 

The best parameters ( )BA,  are estimated by solving the following regularized 
maximum likelihood problem with a set of labeled training example. Given a training 
set ( )( )ii

local
n y,FΦ , let us define a new training set ( )( )ii

local
n y',FΦ , where the iy'  is 

target probability value. The new target value is used instead of (0, 1) for all of the 
training data in the sigmoid fit. This aims at making the new target value converge to 
(0, 1) when the training set size approaches infinity. The new target value iy'  is 
defined as follows, 
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(3) 

where +N  is the number of positive samples and −N  is the number of negative 
samples. Then, the best parameters for a local photo semantic are obtained as 
minimizing the following cross-entropy error function. 

( )
( ) ( ){ }∑ −−+⋅−

i
iiii

BA
pypy 1log'1log'minarg

,
, (4) 
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where ip  denotes ( )( )Flocal
nin yP Φ| . We adopt Lin’s method [2] to find the optimized 

parameters minimizing the above error function.   

2.1.3 Integration of Camera Metadata and Local Visual Features 
To integrate camera metadata with low-level visual features in the proposed photo 
classification, we first generalize the following probabilistic combination scheme. Let 

{ }Ixxx ,,, 21 L=X  be a set of I  photo semantic classes that frequently appear in home 

photos. And, let { }J
camcamcamcam fff ,,, 21 L=F  be a useful set of J  camera metadata, and 

{ }K
lowlowlowlow fff ,,, 21 L=F  be a set of K  low-level visual features. Then, the likelihood 

of a semantic class, X∈ix , on the given features, { }lowcam FFF ,= , can be represented 
by the joint conditional probability as follows,  

( ) ( )lowcamii xPxP FFF ,= , (5) 

By the Bayesian theorem, the joint conditional probability can be decomposed as 
follows, 

( ) ( ) ( ) ( )
( )lowcam

ilowcami
lowcamii P

xPxP
xPxP

FF
FF

FFF
,

,
, == , 

(6) 

Let us embody (1) to local semantics. For this, let { }local
N

locallocallocal xxx ,,, 21 L=X  be a 
set of N  local semantics. Then, the joint conditional probability of a local semantic 

locallocal
nx X∈  given an input feature set { }local

lowcam
local FFF ,=  – where camera metadata is 

not local, but global – for the local photo regions can be written as follows, 

( ) ( ) ( ) ( )
( )local

lowcam

local
n

local
lowcam

local
nlocal

lowcam
local
n

locallocal
n P

xPxP
xPxP

FF
FF

FFF
,

,
, == , 

(7) 

The camera metadata ( camF ) is independent of the low-level features ( local
lowF ), so 

that (3) can be written again as follows, 

( ) ( )
( )

( ) ( ) ( )
( ) ( )local

lowcam

local
ncam

local
lowcam

local
n

local
lowcam

local
n

local
lowcam

local
n

PP
xPxPxP

P
xPxP

FF
FF

FF
FF

=
,

,
, 

(8) 

2.1.4. Local Semantic Classification 
As mentioned above, the input photo to be classified is divided into ten local regions 
by the photographic region template. Multiple low-level visual features are extracted 
from each local region and fed into the local concept detectors. For the local photo 
semantic classification, let { }1021 ,,, RRR L=R  be a set of the local regions. Then, the 

feature vector of a local region ( R∈R ) is denoted as { }R
lowcam

R FFF ,= . Equations (7) 
and (8) can be specified for the local region as follows, 
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( ) ( ) ( ) ( ) ( )
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where the camera metadata ( camF ) and corresponding probability ( )local
ncam xP F  is the 

same over all local regions given an input photo. The ( )local
n

R
low xP F  is regarded as the 

probability of the local region feature ( R
lowF ) about the SVM model of the local 

concept ( local
nx ). So, it is estimated by the sigmoid model as follows, 

( ) ( )( )BA
xP
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R
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≈
F

F
exp1

1
. 

(10) 

Similarly, the ( )local
ncam xP F  is regarded as the probability of the camera metadata 

feature ( camF ) about the SVM model of the local concept ( local
nx ).So, it is also 

estimated by a sigmoid function as follows, 

( ) ( )( )BA
xP

camn
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ncam +Φ⋅+

≈
F

F
exp1

1
. 

(11) 

Over all local regions ( R ), the probability set of the local concept ( local
nx ) can be 

written as follows, 

( ) ( ) ( ) ( ){ }1021 ,,, R
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R
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R
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nlow
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n xPxPxPxP FFFFR L= . (12) 

Given { }local
N

locallocallocal xxx ,,, 21 L=X , the probability set of the local concept set 

( localX ) can be written as follows,  
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(13) 

If ( )R
low

local
n

local
Rn xPv F=, , (12) can be written again as follows, 

{ }local
n

locallocallocal
n

locallocallocal
n

locallocallocal vvvvvvvvv 10,10,210,12,2,22,11,1,21,1 ,,,,,,,,,,,, LLLL=V  (14) 

where local
Rnv ,  stands for the degree of likelihood of the n  local concept set about the R  

local regions feature. Table 1 shows the probability of the local concept for each local 
region. 
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2.2 Global Semantic Classification    

2.2.1 Association of Local Semantics with Global Semantics 
We express the degree of strength of the semantic link between local semantics and 

global semantics. The higher value stands for a stronger connection between concepts. 
This approach could bridge the semantic gap between low-level features and high-
level concepts. Thus, the global concepts are trained based on the confidence vectors 
of the local SVM models. Similar to the local concepts, the decision function ( global

mΦ ) 

to predict the local concept ( global
mx ) of unseen confidence feature vector ( local

RV ) given 
local regions ( R ) is formed as follows, 

( ) ( )∑ +=Φ
t

m
localt

m
t
m

t
m

localglobal
m bKza VVV , , (15) 

where t
mV  is support vector of the hyper-plane for the global concept ( global

mx ).  
To find more likelihood semantics on the overlapping local regions, a concept 

merging is performed by keeping the most confident concepts for the five basis local 
regions ( basisR ) that consists of one center and four corner regions, that is, the region 
set can be defined as { }54321 ,,,, RRRRRbasis =R , where rightly RR ⊂basis . The concept 
merging is performed with semantic confidence map used to keep the most confident 
concept for the basis local regions set.  

The semantic confidence map gives five different combinations of overlapping 
local regions as shown in Fig. 3. Then, the confidence value of a local concept ( local

nx ) 

of the a basis region ( basis
bR R∈ ) is calculated as follows,  

( )map
b

local
tn

local
bn tvv R∈= ,, max , (16) 

where, for example, if the basis region is R2, { }( )10,8,6,2max ,2, ∈= tvv local
tn

local
n . 
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Fig. 2. Semantic confidence map 

2.2.2 Global Semantic Classification 
Given a basis local region, the merged confidence values for all local concepts are 
used to classify the local regions into the target classes. In this paper, one of the main 
targets is to detect multi-classes, meaning that an input photo can be labeled by one or 
more classes. For this, we propose three criterions for multi-class categorization. 
Given the probability values for the five basis local regions of an input photo, the 
three categorization criterions are as follows: 
1) α  criterion: In this case, every basis local regions can have only one class whose 
probability value is the top-most over all global concept classes given each basis local 
region.  
2) β  criterion: In this case, every basis local regions can have only one or no class. 
That is, a basis local region can have a single class whose probability value is close 
enough, i.e., higher than a threshold. 
3) γ  criterion: In this case, first of all, the probability values for all basis local region 
are aligned in ascending order. Then, the top-N classes with respect to the probability 
value are assigned to classes of the input photo, whose probability values should be 
close enough, i.e., higher than a threshold. 

In the case of α  criterion, the classifier assigns the class of a basis local regions 
( bR ) to a concept satisfying the following MAP condition, given by, 
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(17) 

where αc  is one predicted class of the basis local regions. Accordingly, the classifier 
by α  criterion generates five predicted classes for an input photo.  

In the case of β  criterion, the classifier assigns the class of a basis local regions 

( bR ) to one concept or none satisfying the following condition, given by, 

( ) ( )
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bt
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1
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β , 

(18) 

where βc  is the predicted class of the basis local regions, and thP  is the threshold 

value for categorization criterion. Accordingly, the classifier by β  criterion generates 
five or less than five predicted classes for input photos.  

In the case of γ  criterion, the classifier assigns the class of an input photo to 
multiple concepts satisfying the following condition, given by, 

( ) ( ) region basisany  and classany for   if ,
1

, th

N

t

global
c

local
bt

global
c PxvPxPcc ≥= ∏

=
γ , 

(19) 

where γc  is the predicted class of the input photo.  

3   Experiments 

To demonstrate the proposed photo classification, experiments were performed with 
the official database of the MPEG-7 visual core experiment 2 (VCE-2) test data set 
that comprises 3086 real home photos. The goal of the MPEG-7 VCE-2 is to verify 
the usefulness of the MPEG-7 visual descriptors for photo classification. All of the 
photos in the database were contributed by several participants in the MPEG-7 VCE-2. 
The MPEG-7 VCE-2 also provides corresponding ground truth (GT) set for the 
databases.  

The official GT set is given by seven semantic classes that would popularly appear 
in home photos. It was cross-verified by several participants in the MPEG-7 VCE-2 
who are experts in content-based image analysis. The seven semantic classes includes 
‘architecture’, ‘indoor’, terrain’, ‘night’, ‘snowscape’, ‘waterside’, and ‘sunset’. Note 
that the GT set was strictly made to avoid missing any human visual preference in 
browsing photos. That is, an important rule in the GT decision was that a photo could 
be labeled with one or more semantic classes of which a scene could be detectable by  
the human eye. Therefore, many of the photos were labeled by multiple classes.  

As totally independent of the test data set, 1597 photos were used for training data. 
They were also from the MPEG-7 VCE-2 official training data set. Of the training set, 
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800 were from general home photos, and 797 were from the Corel photo collection. 
For training local semantic classifier, we patched the training photos to local regions 
and then manually selected positive and negative samples for each class from the sub-
photo collection by human visual perception. The negative samples for each concept 
were randomly selected from the positive samples of other all concepts.  

For learning local semantics, multiple low-level visual features are extracted from 
the patched photo database. For this, five MPEG-7 descriptors are employed for color 
and texture features [11], [12]: color structure (CS), color layout (CL), and scalable 
color (SC) descriptors are used for color features; and homogeneous texture (HT) and 
edge histogram (EH) descriptors are used for texture features.  

In this paper, we build nine important families of concepts that would frequently 
appear in local regions of general home photos. The families of the local concepts 
consists of ‘ground’, ‘human’, ‘indoor’, ‘mountain’, ‘night’, ‘plant’, ‘sky’, ‘structure’, 
and ‘water’. The concept families are sub-divided to the 34 local concepts as follows: 
- Seven ‘ground’ concepts: ‘gravel’, ‘park’, ‘pavement’, ‘road’, ‘rock’, ‘sand’, and 
‘sidewalk’; 
- Two ‘human’ concepts: ‘face’ and ‘people’; 
- Two ‘indoor’ concepts: ‘indoor’ and ‘indoor-light’; 
- Three ‘mountain’ concepts: ‘field’, ‘peak’, and ‘wood’; 
- Two ‘night’ concepts: ‘night’ and ‘street-light’; 
- Three ‘plant’ concepts: ‘flowers’, ‘leaves’, and ‘trees’; 
- Four ‘sky’ concepts: ‘cloudy’, ‘sunny’, ‘sunset’, and ‘sunset-on-mountain’; 
- Five ‘structure’ concepts: ‘brick’, ‘arch’, ‘buildings’, ‘wall’, and ‘windows’; 
- Six ‘water’ concepts: ‘beach’, ‘high-wave’, ‘low-wave’, ‘still water’, ‘mirrored 
water’, and ‘ice (snow)’ 

Accuracy, recall, and precision are well-known measures to evaluate classification 
performance. As in general definition, accuracy = (TP + TN) / (total number of 
samples), recall = TP / (TP + FN), and precision = TP / (TP + FP), where TP, TN, FP, 
and FN stand for ‘true positive’ when the case is positive and predicted positive, ‘true 
negative’ when the case is negative and predicted negative, ‘false positive’ when the 
case is negative but predicted positive and ‘false negative’ when the case is positive 
but predicted negative, respectively.  
 



12      Seungji Yang, Yong Man Ro* 

 
Fig. 3. The histogram of positive and negative samples for indoor classifier 

 
Fig. 4. The best fit sigmoid for indoor classifier 

The sigmoid parameters were calculated for each local semantic classifier. Fig. 3 
shows the histogram of positive and negative samples for indoor classifier. The solid 
line is the class-conditional probability of negative samples, while the dashed line is 
that of positive samples. As shown in Fig. 3, the histogram is not Gaussian, probably 
due to the small number of training data. Fig. 4 is derived by using Bayes’ rule on the 
histogram estimates of the class-conditional densities. The sigmoid fit works well, as 
can be seen in Fig. 4. 

First, we measured classification performance without local semantic features, i.e., 
with only global low-level features. In Table 1, (a) column shows its average 
performance for each global concept. The average performance was measured with a 
threshold showing minimum difference between recall and accuracy. The results 
show that night class has the best performance at about 90% and architecture class the 
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worst at about 61%. To verify the usefulness of the two-layered classification scheme, 
we also measured classification performance with local low-level features and local 
semantic features. In Table 1, (b) column shows its average result for each global 
concept. Adding local semantic features made global semantic classification perform 
much better in indoor class, as compared with the case of using only global low-level 
features. Thus, local semantic features would be useful to catch local indoor 
semantics. In other classes, recall and accuracy slightly increased. 
 
Table 1. Comparison of average performances of classification methods with (a) global low-
level feature, and (b) with local low-level features and local semantic features 

Class (a) Average performance with global 
low-level features (recall/accuracy)

(b) Average performance with local 
low-level features and local 

semantic features (recall/accuracy) 
Architecture 61.05 (61.01/61.08) 62.37 (61.91/62.82) 

Indoor 64.10 (63.98/64.21) 74.14 (74.35/73.93) 

Terrain 67.56 (67.52/67.60) 71.36 (69.98/72.73) 

Night 89.62 (89.53/89.71) 90.70 (91.55/89.84) 

Snowscape 75.30 (75.76/74.84) 81.39 (81.21/81.56) 

Sunset 76.94 (76.47/77.41) 79.07 (77.94/80.19) 

Waterside 67.83 (67.64/68.02) 70.88 (72.12/69.94) 

 
The camera metadata includes exposure-time (refer to ET), aperture number (refer 

to AN), focal length (refer to FL), and flash-fired or not (refer to FF). It is denoted 
that the camera metadata would be considered for only indoor/outdoor and 
night/daytime classes since it would not be useful for other semantic classes.  

So, given this constraint, in order to employ the camera metadata in local semantic 
classification, we first constructed two local semantic classifiers: indoor/outdoor and 
night/daytime classifiers. Fig. 5 shows the two local semantic classifiers with camera 
metadata. Fig. 5-(a) shows the indoor/outdoor classifier that outputs probability 
values for indoor and outdoor classes by using several useful camera metadata as 
syntactic features. Similarly, Fig. 5-(b) shows the night/daytime classifier that outputs 
probability values for night and daytime classes by using several useful camera 
metadata for syntactic features. In order to associate the two classifiers with the 34 
local concepts, we make a classification scheme as seen in Fig. 5-(c). As such, the 
first step is to classify the input camera metadata into indoor or outdoor classes. The 
indoor probability is assigned to indoor classes, and the outdoor probability is 
assigned to outdoor classes. The second step is to classify the input camera metadata 
into night and daytime classes. The night probability is assigned to night classes and 
the daytime probability is assigned to daytime classes that include ground, human, 
mountain, sky, structure, plant, and water classes. 
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(c) Combination of the two classifiers to detect local photo semantics 

Fig. 5. Local semantic classifiers with camera metadata 

Table 1 shows the performance of the proposed photo classification scheme that 
associates local semantic features with camera metadata. A few classes have been 
better classified with α  or β  criterions, but γ  criterion has been the best over 
almost all classes. The proposed method, which uses local photo semantic features 
incorporated with both local low-level features and camera metadata, has increased 
the classification performance more than the method, which uses local photo semantic 
features incorporated with only local low-level features. There is about 5% increase in 
architecture class, about 10% increase in indoor class, about 2% increase in terrain 
class, about 1% increase in night class, about 2% increase in snowscape class, and 
about 1% increase in waterside class. Fig. 6 shows classification performance in the 
case of associating camera metadata with local low-level features and local semantic 
features over possible thresholds.  
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Table 2. Classification performances with local semantic features and camera metadata 

Recall (%) Accuracy (%) 
Class 

α β γ α β γ 
Architecture 55.63 55.63 70.13 68.74 68.74 72.23 

Indoor 83.57 82.42 83.59 78.00 84.78 82.33 
Terrain 31.66 31.66 80.24 62.86 62.86 77.48 
Night 61.49 61.49 94.38 92.54 92.54 92.32 

Snowscape 93.94 83.03 83.10 71.78 82.72 84.56 
Sunset 66.18 66.18 81.67 75.39 75.39 82.54 

Waterside 53.87 53.87 74.32 72.51 72.51 72.72 
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Fig. 6. Classification performances with local semantic features and camera metadata overall 
all thresholds: γ  criterion 

The proposed method was also compared with related work using Bayesian 
network classifier with global visual features and camera metadata [9]. The main 
difference of our method from the Boutell’s one is that we provide a scheme to 
employ local semantic features especially for the two-layered SVM classifier. Our 
assumption is that the proposed method will outperform the conventional one in local 
photo semantic classification. Table 3 shows the categorization results of the two 
different methods. The training and testing data was the same as the above experiment. 
As seen in the results, almost categories except for architecture were better detected 
by the proposed method than by the conventional method. In indoor and terrain, both 
methods showed similar performance. But, the proposed method much better detected 
other categories such as night, snowscape, sunset and waterside.  
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Table 3. Classification performances with local semantic features and camera metadata 

Bayesian network Proposed two-layered SVM Performance 
Category Recall Accuracy Average Recall Accuracy Average 

Architecture 87.34 70.97 79.16 70.13 72.23 71.18 

Indoor 96.64 71.93 84.29 83.59 82.33 82.96 

Terrain 90.28 66.32 78.30 80.24 77.48 78.86 

Night 84.14 67.79 75.97 94.38 92.32 93.35 

Snowscape 87.43 41.95 64.69 83.10 84.56 83.83 

Sunset 84.29 58.59 71.44 81.67 82.54 82.11 

Waterside 73.08 55.41 64.25 74.32 72.72 73.52 

 

4   Conclusions 

This paper exploits a scheme to employ syntactic features, such as camera metadata, 
for semantic classification. We select a two-layered approach to detect local and 
global photo semantics. The camera metadata provide useful cues independent of 
photo contents, facilitating the discovery of photo semantics. Our approach is 
characterized in the following two schemes: one is the scheme that incorporates 
syntactic features to low-level visual features for detecting local photo semantics; the 
other is the scheme that uses the local photo semantics as features for detecting global 
photo semantics. Concept merging is also proposed to select more likelihood semantic 
concepts on overlapping local regions. The efficacy of the proposed categorization 
method was demonstrated with 3086 MPEG-7 VCE-2 official databases. The 
experiment results showed that the proposed method would be useful to detect 
multiple semantic meaning of generic home photos. In future, we will extend the 
application of the proposed classification scheme to other syntactic features. In 
addition, we need to compare the proposed method to other similar approaches such 
as to Boutell’s using Bayesian network.  
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