
A Comparison of (e)EPCs and UML 2 Activity Diagrams

Harald Sẗorrle
Universiẗat Innsbruck, Institut f̈ur Informatik

Technikerstrasse 21a, A-6020 Innsbruck,Österreich
Harald.Stoerrle@uibk.ac.at

Abstract: In this paper, Event Process Chains (EPCs) and activity diagrams (ADs) of
the Unified Modeling Language (UML) are compared with respect to (1) their syntax
and its expressiveness, (2) their semantic domains and problems, and (3) their prag-
matics and application conditions. The comparison is based on industrial experience
and a survey of the research literature. Our conclusion is that while earlier versions of
the UML did not provide sufficient means for modeling of business processes, the cur-
rent version does. Since UML provides additional benefits over EPCs when it comes
to software development as a consequence of business process modeling, we predict
that for these applications, UML ADs will prevail over EPCs.

1 Introduction

1.1 Motivation

In the Unified Modeling Language version 1.x (UML 1.x, [OMG03]), Activity diagrams
(ADs) have played a very limited role, since they were only an alternative notation for
the same concepts already defined for the state machine notation. With the recent version
2.0 of UML (UML 2, [OMG05, Sẗo05]) this has changed. The concept (i. e., meta class)
of Activity has been introduced as a substrate for the semantics. The expressiveness of
ADs has been strongly increased, and their semantics has been upgraded from the run-to-
completion interleaving semantics of UML state machines to a ”‘Petri-like”’ approach.

This change of the UML specification is motivated by the strong need for a notation within
the UML framework that allows the modeling of business processes. This, however, is the
main domain of Event Process Chains (EPCs, [Sch98, Sch95]), and one wonders how the
two notations actually compare—can ADs take the place of EPCs in real world applica-
tions?

1.2 Approach

To answer this question, the syntax and its expressiveness, the semantic domains and prob-
lems, and the pragmatics and application conditions are examined for both notations. We

177



have not taken into account methodological aspects, in particular, the general approaches,
that is, the methodology of ARIS and the associated tool support by the ARIS toolset are

1.3 Related Work

To our knowledge, there is no systematic in-depth comparison of EPCs and UML 2 ADs
so far. Since UML 1.x is now obsolete, so are comparisons between EPCs and UML 1.x
ADs. There are superficial comparisons like [Stö05, p. 252], and there might be internal
concept papers in commercial organisations.

2 Syntax

EPCs are often considered an integral part of the ARIS method and toolset. The UML,
on the other hand, is just a notation, not a method (as it was the case for UML prede-
cessors like OMT and OOSE). By definition, methodological concerns are excluded from
the subject domain belonging to UML. This separation of concerns is considered a major
milestone in the UML community, since it allowed the standardized of the language inde-
pendent of other, more complex issues. These need to be addressed in real life work too,
of course, but focusing on one issue first has been helpful, as the tremendous success of
UML over the last decade underlines.

In this paper, thus, we disregard methodological aspects. In this section, we start by com-
paring ADs and EPCs by their respective notational elements. This section is structured
into basic syntax, data flow, exceptions, and complex nodes.

2.1 Basic Syntax

Both ADs and EPCs provide elementary actions, events, and parallel and optional control
flows. Both notations allow procedure-call-like refinements. See Figure 1 and 2 for a
tabular comparison of the basic syntax of ADs and EPCs.

Figures 1 and 2 makes it obvious, that ADs allow many more notational variants than
EPCs. For instance, AD forks/joins have not only the basic logical operators and, or,
xor, but arbitrary logical formulas. Similarly, arbitrary conditions may be imposed on
case distinctions (decision nodes). ADs distinguish between the opening and closing of
alternative and concurrent branches (though, unfortunately, the notation allows mixing the
two), which facilitates the definition of well-nestedness of operators, a notorious problem
for EPCs. In ADs, it is possible to distinguish between different kinds of final nodes
(terminating the whole action vs. terminating only on concurrent flow), and different kinds
of events (send, receive), while there is only the event-notion for start, stop, and all kinds
of events in EPCs.

178



Elements of UML 2 
Activity Diagrams

Elements of 
Event Process Chains

Action function

eventSendEventAction ReceiveEventAction

and or
connectorsϕ : any logical formula

ϕϕ

join nodefork node

decision node merge node

[ γ ] [ γ ' ]

γ, γ ' : any logical condition 

xor
connector

InitialNode FinalNode FlowFinalNode process interface

CallAction function

Figure 1: Comparing elementary ADs and EPCs: actions, events, and basic control nodes.

179



Actor

application system
(resource)

Name

role

Class

Class

Name

domain element

Elements of extended 
Event Process Chains

matching Elements of UML 2

Figure 2: Comparing elementary ADs and eEPCs: actors, classes, and systems.

180



2.2 Data Flow

Regular EPCs do not provide facilities to model data flow, but extended EPCs (eEPCs)
do, though only for the inputs and outputs of individual functions, not the flow as such.
In ADs, on the other hand, a confusing variety of alternative notations with identical se-
mantics is available (see Figure 3). Additionally, ADs provide means to model buffering
strategies, weights, selection criteria and transformation actions for the edges connecting
data and functions.

lookup Passenger

lookup Account

Passenger

lookup Passenger

lookup Account

Passenger

lookup Passenger

lookup Account

Passenger

Passenger

Figure 3: Notational variants fr data flow in UML 2 ADs: all three notations mean the same.

2.3 Exceptions

Probably the most novel feature of ADs are exceptions (see Figure 4), which are rather
similar to the programming language concept. In practice, there are sometimes ill formed
EPCs that misuse calls/refinements as a kind of GoTos (see Figure 5). This can and has
been used to simulate exception-like behavior in an unstructured way. Of course, such
models are very error-prone, and this kind of notational abuse should be prohibited.

2.4 Complex nodes

Another new concept of UML 2 ADs are so called structured activity nodes. They com-
prise structured nodes and expansion regions. Structured nodes correspond to some con-
structs of structured programming, most notably loops, and conditional. Expansion re-
gions provide notations for different kinds of concurrent execution of actions (cf. [Stö04c]).
There are no comparable concepts in the (e)EPC notation.

181



Order cancel
request

Receive 
Order

Fill Order

Send
Invoice

Make 
Payment

Ship Order Close Order

Accept
Payment

[order
accepted]

[order rejected]
Cancel 
Order

AD OrderHandling

Invoice

raising an exceptionscope of exception

data flow

Figure 4: An AD with an exception and with data flow (taken from [OMG05]).

event 1

function 3

event 3

A B

start Bgoto target

event 2 call B

function 1 function 2

goto call

Figure 5: Abusing refinement/procedure call as goto.

182



2.5 Syntax comparison summary

All EPC concepts are available in ADs, often even in different variants. On the other hand,
many AD concepts are not available in EPCs. The same is true for the annotations on
elements. Therefore, the AD notation is much richer and thus much more expressive than
the EPC notation.

3 Semantics

Both EPCs and ADs refer to the same semantic domain, namely Petri-nets. Both notations
are defined in an informal way only, so that a formal semantics has to be defined separately.
Many such approaches have been proposed for EPCs over the years (cf. e. g. [ADK03,
DAV05]). For UML 1.x ADs, there have been some approaches, which are now obsolete,
of course. For UML 2.0 ADs, not very much work has been done so far (in particular
[Stö04b, Sẗo04a, BG04], or see e. g. the related work section in [Stö04c] for a complete
summary).

Unfortunately, both notations imply a number of semantic problems, though this number is
probably smaller for EPCs due to the smaller number of concepts and notational variants,
which result in less trouble defining a formal semantics. Interestingly, some semantic
problems occur for both notations in a very similar way (cf. the analogous findings in
[CK04] and [SH05] on non-local semantics). It might be an interesting question to find
out, whether a solution for one notation also works for the other.

In terms of formality, there is not much difference—both notations are informal. While
the number of semantical issues seems to be smaller for EPCs, the syntax of ADs is more
precisely defined due to the UML’s meta modeling approach. Unless adequate formal
semantics have been defined and generally agreed upon for both (e)EPCs and ADs, no
comparison of the semantics is complete.

4 Pragmatics

4.1 Transition from analysis to implementation

In the syntax comparison above, we have concluded that ADs are much more expressive
than EPCs. Concerning the pragmatics, notational variability is a mixed blessing, though:
on the one hand, great expressiveness certainly is helpful to capture a wide range of pro-
cesses more precisely. However, in the absence of a precise semantics, this might be a
false precision. Also, one might suspect that the plenitude of concepts and notations in
ADs make them more difficult to learn and comprehend. Whether this is an advantage
for EPCs or for ADs depends on the application area in which they are used. There are a
number of such potential application areas.

183



• analysis tasks like business process modeling

• design tasks like workflow modeling

• implementation tasks like program modeling

Business process modeling is the application domain EPCs have been created for (see
[KNS92, LSW97]), and it has also been the most important driving force behind the en-
hancement and standardization of ADs in UML 2. Both notations have been used for this
purpose in practice, though there are not very many experience reports on using UML 2
ADs yet. It is obvious though, that the notational richness is more of a hindrance for this
type of task, due to the kind of people usually involved. However, it is of course possible to
tailor ADs such that only the expressive means of EPCs are available. In fact, initial prac-
tical experience in industrial projects suggeststhat there are some notions and notations of
UML 2 ADs that are quite natural for domain experts with little computer-science know
how, such as the concept of exception. This seems to be very intuitive for many people.

Both EPCs and ADs have also been applied successfully to workflow modeling. Here,
the notational richness of ADs is already an advantage, since there are design decisions
that can not be represented in EPCs—one would have to enhance the notation or rely on a
proprietary tool to support design tasks. Enhancements, of course, are much more difficult
than restrictions.

The notational richness of ADs turns into a strong advantage when it comes to program
modeling, that is, creating models on level of detail similar to programs. This could be
done either constructively in order to create a running system or analytically in order to
visualize programming language code such as BPEL, Java, and, of course, ABAP. Regular
EPCs or extended EPCs are definitely too weak to be useful for such applications. It is of
course possible to add more and more concepts and additional information to (e)EPCs, but
then, the simplicity and ease of use that is their particular advantage would be lost, too.

Obviously, it is easier to go from analysis to design and to implementation using only one
notation and only one toolset. This is the case for ADs which are a well integrated part of
the UML. Thus it is very easy to proceed from a pure process description into other views
concerned with data, domain architecture, software architecture and so on. Also, refining
analysis level processes into design level processes is easier when the same notation is
used for both.

Recent approaches to transform (e)EPCs into languages like the Business Process Exe-
cution Language (BPEL, [ACD+03]) or workflow definition languages, suffer from the
same problem. While such approaches definitely improve the viability of using (e)EPCs
as a front end to implementing service oriented architectures, they also imply another lan-
guage interface with more opportunities for errors and more difficult traceability.

As a direct consequence of the previous considerations, it follows that ADs are better
suited for software development projects than (e)EPCs. For business process reengineering
purposes, on the other hand, using (e)EPCs has a small advantage in that no tailoring is
required. This section is summarized in Figure 6.

184



NOTATION APPLICABILITY IN LIFECYCLE PHASE
ANALYSIS DESIGN IMPLEMENTATION

(e)EPCs
√

(
√

) –
(requires extension)

UML 2 ADs (
√

)
√ √

(requires restriction)

Figure 6: Comparing EPCs and ADs by the phases of the software life cycle in which they are
applicable.

4.2 Tools

Over the last 10 years, the number and quality of UML tools has increased dramatically.
Today, there is a broad range of several hundred tools, from open-source to high-end in-
dustrial tool suites, from mere drawing tools to integrated development environments with
team support, version and configuration control, code generation, consistency checkers,
report generators and so on.

For (e)EPCs, on the other hand, there are only a few tools, most notably of course the
ARIS toolset, but there is now also theEPC Tools open source initiative [CK]. Generally,
EPC tools tended to also provide more advanced functionality like simulation and analysis
of models which was absent in UML models.

With XMI, there has been a standardized data exchange format for many years. Even
though standard compliance has been less than perfect, effective data exchange between
different tools is a reality today for UML. The standardization of UML and its exchange
format XMI are primarily driven by the Object Management Group (OMG). Since the
OMG is just an industrial consortium its documents are not standards in the proper sense.
However, the previous version of the UML (1.4.2) and the accompanying XMI version
have been standardized by the International Standards Organisation (ISO) recently (ISO/IEC
19501:2005 and ISO/IEC 19503:2005), and the OMG also pursues the updating of these
standards to more recent versions of UML.

For (e)EPCs on the other hand, there have been far less tools so that data exchange has
not been as much of a problem as it had been for UML. Still, there has been demand for a
general exchange format, and with EPML (cf. [MN04]), there is now a practical proposal,
including tool support. This format seems to be widely accepted, though so far it lacks
standardization even by the community or an industry consortium.

185



NOTATION TOOL SUPPORT
NUMBER OF TOOLS EXCHANGE STANDARDIZATION

FORMAT

(e)EPCs ∼ 10 EPML proprietary

UML 2 ADs > 200 XMI UML 1.4.2 / ISO 19501:2005
XMI / ISO 19503:2005

Figure 7: Comparing EPCs and ADs by the available tool support.

5 Discussion

For projects restricted to domain analysis, EPCs and tailored (i. e., simplified) ADs are
about level-headed. Wherever code is to be produced at some point, however, ADs have
an edge over EPCs as they allow seamless integration of analysis with design and imple-
mentation.

There are a number of general advantages ADs have over EPCs:

• UML ADs are part of a standard that is internationally accepted and developed,
while EPCs are mainly used in Germany, and in particular in organisations using
SAP software.

• There are so much more tools for ADs than there are for EPCs, that there is a great
likeliness that there are better and cheaper UML tools than there are EPC tools.
The more advanced functionalities traditionally associated with some EPC tools (e.
g. simulation, model analysis, consistency checking and so on) are nowadays also
found and often superseded in UML tools.

• Since UML is the de facto lingua franca of software engineering, all professional
software engineers (and most computer scientists) will have had at least some ex-
posure to UML, but frequently none to (e)EPCs. Therefore, UML ADs are a more
viable choice in a software development project than (e)EPCs.

• Also, there is a much greater choice of books and commercial trainings, a larger
body of scientific work, industrial experiences, and best practices for ADs than there
is for EPCs.

None of these reasons is entirely compelling by itself—together, however, they make it
likely that ADs will supersede (e)EPCs in the long run. Even for specialties of EPCs,
where they currently still have advantages over ADs (certain tools, familiarity in certain
communities etc.), ADs will spread to become the standard notation. How long this pro-
cess may take remains to be seen.

186



References

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic,
and Sanjiva Weerawarana. Business Process Execution Language for Web Services
(v1.1), 2003. available athttp://www.ebpml.org/bpel4ws.htm .

[ADK03] Wil van der Aalst, J̈org Desel, and Ekkart Kindler. On the semantics of EPCs: A
Framework for resolving the vicious circle (extended abstract). In Markus Nüttgens and
Frank J. Rump, editors,Proc. 2. Ws. Gescḧaftsprozessmanagement mit Ereignisges-
teuerten Prozessketten (EPK’03), pages 71–79. Gesellschaft für Informatik e.V. 2003.
available atwww.epk-community.de .

[BG04] Conrad Bock and Michael Gruninger. PSL: A semantic domain for flow models.Intl.
J. Software and Systems Modeling, Online First, 2004.

[CK] Nicolas Cuntz and Ekkart Kindler. The EPC Tools. available atwwwcs.upb.de/cs/
kindler/Forschung/EPCTools .

[CK04] Nicolas Cuntz and Ekkart Kindler. On the semantics of EPCs: Efficient calcula-
tion and simulation. In Markus N̈uttgens and Frank J. Rump, editors,Proc. 3. Ws.
Gescḧaftsprozessmanagement mit Ereignisgesteuerten Prozessketten (EPK’04), pages
7–26. Gesellschaft für Informatik e.V. 2004. available atwww.epk-community.de .

[DAV05] B.F. van Dongen, Wil M.P. van der Aalst, and H.M.W. Verbeek. Verification of EPCs:
Using Reduction Rules and Petri Nets. In Oscar Pastor and J. Falcao e Cunha, editors,
Proc. 17th Intl. Conf. Advanced Information Systems Engineering (CAiSE’05), number
3520 in LNCS, pages 372–386. Springer Verlag, 2005.

[KNS92] Gerd Keller, Markus N̈uttgens, and August-Wilhelm Scheer. Semantische Prozess-
modellierung auf der Grundlage ”Ereignisgesteuerte Prozessketten (EPK)”. Techni-
cal Report 89, Institut f̈ur Wirtschaftsinformatik, Uni Saarbrücken, 1992. available at
http://www.iwi.uni-sb.de/iwi-hefte/heft089.pdf .

[LSW97] P. Langner, C. Schneider, and K. Wehler. Prozeßmodellierung mit ereignisgesteuerten
Prozeßketten (EPKs) und Petri-Netzen.Wirtschaftsinformatik, 39(5):479–489, 1997.

[MN04] Jan Mendling and Markus N̈uttgens, editors.Proc. 1st GI Ws. XML Interchange Formats
for Business Process Management (XML4BPM), March 2004.

[OMG03] OMG. OMG Unified Modeling Language Specification (adopted formal specification,
version 1.5). Technical report, Object Management Group, March 2003.

[OMG05] OMG. UML 2.0 Superstructure Specification (formal/05-07-04). Technical report, Ob-
ject Management Group, August 2005. available atwww.omg.org , downloaded at
September19th, 2005.

[Sch95] August-Wilhelm Scheer.Business Process Engineering. Reference Models for Indus-
trial Enterprises. Springer Verlag, 1995.

[Sch98] August-Wilhelm Scheer.ARIS – Modellierungsmethoden, Metamodelle, Anwendungen.
Springer Verlag,3rd edition, 1998.

[SH05] Harald Sẗorrle and Jan Hendrik Hausmann. Obstacles on the Way Towards a Formal Se-
mantics of UML 2.0 Activities. In Klaus Pohl, editor,Proc. Natl. Germ. Conf. Software-
Engineering 2005 (SE’05), number P-64 in Lecture Notes in Informatics, pages 117–
128. Gesellschaft für Informatik e.V. 2005.

187



[Stö04a] Harald Sẗorrle. Semantics and Verification of Data-Flow in UML 2.0 Activities.
In Mark Minas, editor,Proc. Intl. Ws. on Visual Languages and Formal Methods
(VLFM’04), pages 38–52. IEEE Press, 2004. available atwww.pst.informatik.
uni-muenchen.de/ ∼stoerrle .

[Stö04b] Harald Sẗorrle. Semantics of Control-Flow in UML 2.0 Activities. In Paolo Bottoni,
Chris Hundhausen, Stefano Levialdi, and Genny Tortora, editors,Proc. IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC), pages 235–242.
IEEE Computer Society, 2004.

[Stö04c] Harald Sẗorrle. Semantics of Expansion Nodes in UML 2.0 Activities.Nordic Journal
of Computing, 11(3):1–24, 2004.

[Stö05] Harald Sẗorrle. UML 2 erfolgreich einsetzen. Addison-Wesley, 2005.

188




