
Multi-Paradigm Modelling and Synthesis of User Interfaces

Denis Dubé and Hans Vangheluwe
School of Computer Science

McGill University
Montréal, Québec, Canada

denkkar@gmail.com, hv@cs.mcgill.ca

ABSTRACT
In this article, model-based design and synthesis of reac-
tive user interfaces is presented as a particular application
of Computer-Automated Multi-Paradigm Modelling (CAM-
PaM). Multi-paradigm modelling acknowledges the need to
model at different levels of abstraction, using appropriate
formalisms. It also gives transformations first-class model
status. In the CAMPaM UI development process, a class
of user interfaces is modelled. This includes models of the
abstract syntax of the user interface, of the concrete visual
syntax of the user interface (including layout) and of the
semantics of the application (its reactive behaviour). From
these models, an interactive modelling environment is syn-
thesized. This environment allows the modeller to experi-
ment (analyze, simulate) with different instances in the mod-
elled class of user interfaces. Once a single element of the set
of possible user interfaces is chosen, the final UI application
is synthesized. This process will be demonstrated by means
of a digital watch application. Code is synthesized for ex-
ecution within a web browser using an AJAX client-server
architecture.

1. INTRODUCTION
Recently, model-based approaches to complex (software) sys-
tems development have gained popularity. Putting mod-
els (rather than code) central in the development process
does indeed offer many advantages. It raises the level of ab-
straction; it enables formal analysis (through model check-
ing for example), simulation (for performance analysis), as
well as automated, consistent code synthesis for multiple
target platforms. Modelling complex systems is a difficult
task, as these systems often have components and aspects
which cannot be described in a single formalism (such as
Class Diagrams, Statecharts, or Petri Nets). User interfaces
are a very pertinent example of such complex systems, in
particular as there are many facets to their structure and
behaviour. Multi-Paradigm Modelling [9] captures the no-
tions that (1) models may have components described in
different formalisms, and span different level of abstraction
and that (2) model transformations are used to map models
onto domains and formalisms where certain questions can
be easily answered. The sequel demonstrates by means of

a digital watch example how CAMPaM principles can be
consistently applied to the design and synthesis of User In-
terfaces.

2. MODELLING LANGUAGES
The two main aspects of any model are its syntax (how it
is represented) and its semantics (what it means). The syn-
tax of modelling languages is traditionally partitioned into
concrete syntax and abstract syntax. In textual languages
for example, the concrete syntax is made up of sequences
of characters taken from an alphabet. These characters are
typically grouped into words or tokens. Certain sequences
of words known as sentences are considered to the language.
The (possibly infinite) set of all valid sentences is said to
make up the language. Costagliola et. al. [2] present
a framework of visual language classes in which the anal-
ogy between textual and visual characters, words, and sen-
tences becomes apparent. Visual languages are those lan-
guages whose concrete syntax is visual (graphical, geomet-
rical, topological, . . .) as opposed to textual. For practical
reasons, models are often stripped of irrelevant concrete syn-
tax information during syntax checking. This results in an
abstract representation which captures the essence of the
model. This is called the abstract syntax. Obviously, a
single abstract syntax may be represented using multiple
concrete syntaxes. In programming language compilers, ab-
stract syntax of models (due to the nature of programs) is
typically represented in Abstract Syntax Trees (ASTs). In
the context of general modelling, where models are often
graph-like, this representation can be generalized to Abstract
Syntax Graphs (ASGs). Once the syntactic correctness of a
model has been established, its meaning must be specified.
This meaning must be unique and precise. Meaning can be
expressed by specifying a semantic mapping function which
maps every model in a language onto an element in a seman-
tic domain. Often meaning is given in an operational way
by specifying how to execute models in a language. In our
approach, we consider an application with a reactive, visual
User Interface to be a single element of a language. The
application has concrete visual syntax, abstract syntax (the
essential structures) and semantics (the behaviour). The
Cameleon framework [1] makes a similar distinction focused
on the user interface domain between final UI, concrete UI,
abstract UI, task and domain. Figure 1 shows concrete and
abstract syntax as well as the relation between them explic-
itly. Semantics is distributed over all of these as reactive
behaviour may need to be specified for both the concrete
syntax entities and for the abstract syntax entities. The fig-

Figure 1: The Process

ure shows three levels. The top level will not be used in our
digital watch example. It uses Domain-Specific Formalisms
(DSF) to optimally model structure and behaviour of the
different parts of the application. These models are sub-
sequently transformed into models in more general-purpose
formalisms such as Class Diagrams (CD) and Statecharts
(SC). The models thus obtained specify not a single appli-
cation but rather a class of applications. For example, in a
class diagram, a multiplicity * may be used to indicate the
number of allowed buttons in a digital watch. The models
may be used to synthesize a visual and interactive analysis
and simulation environment. Using such an environment,
the modeller may come up with a refinement of the model,
thus specifying a smaller language. The above multiplicity
may for example be refined to 4 indicating that the final
application must have exactly four buttons. This refined
model can then be used to synthesize application code.

3. DIGITAL WATCH EXAMPLE
In this section, we use the example of a digital watch ap-
plication to illustrate the various steps in the process. On
the abstract syntax side, the essential parts of structure and
behaviour of a digital watch are depicted in Figure 2. Due
to space restrictions, the figure does not explicitly show be-
haviour for all elements of the model. Only for the Button

class, Figure 3 shows the associated behaviour in the form of
a Statechart. The simple statechart has two states: ButtonOn
and ButtonOff. Transitions between these states are trig-
gered by an event or trigger T:, but only if the guard G: is
True. When taken, a transition has an action A: as side-
effect. Guards and actions can refer to attributes of the
class (and at instance level object) whose behaviour is de-
scribed. Note that as this model is on the Abstract Syntax
side, it does not contain nor refer to any concrete (visual)
information. Rather, a press or release event received
(from the concrete syntax) is forwarded to the Watch ob-
ject of which the button is part. The Watch (known under

the role name watch here) will subsequently take appropri-
ate action. On the concrete syntax side, a button needs to

Initial

ButtonO ff ButtonO n

Button Behaviour

T: create

A: self = eventhandler.get_event_param s()
T: press

G: self.abstract.set(self.type, ’isActive’, True)

T: release

A: self.w atch.event(self.type + ’release’)

Button

+type: string
+isActive: bool

A: self.w atch.event(self.type + ’press’)

G: self.abstract.set(self.type, ’isActive’, False)

0..*

Figure 3: Button Structure and Behaviour

be visualized. This is done by means of a Button2D visual
object which in this case can turn gray or green to indi-
cate the state of the abstract Button. The actual changing
of colour is done by calling upon the methods setGray and
setGreen of Button2D. In our concrete prototype implemen-
tation, we use Scalable Vector Graphics (SVG) to render vi-
sual objects. As such, Button2D specializes SVGObject. As
such, the setGray and setGreen are actually implemented
by means of SVG instructions. Figure 4 shows structure and
behaviour of Button2D.

Initial

ButtonO ff ButtonO n

Button Behaviour

T: create

A: self = eventhandler.get_event_param s()
T: press

G: self.concrete.set(self.type, ’isActive’, True)

T: release

A: self.setGreen()

A: self.setGray()

G: self.concrete.set(self.type, ’isActive’, False)

Button2D

+isActive: bool

+setGray()
+setGreen()

SVGOb je c t

+id: string
-SVGData: dictionary

+set(attribute,value)
+create(id,SVGData)
+delete(id)

Figure 4: Button2D Structure and Behaviour

Figure 5 depicts how abstract and concrete models are linked
using a ButtonA2CS mediator which keeps both views con-
sistent. Consistency most be guaranteed in both directions
as (1) interactively, the concrete syntax may be manipu-
lated which must be propagated to the abstract level and (2)
changes may occur at the abstract level (such as time up-
date) which need to be reflected/visualized at the concrete

Button2D

+isActive: bool

+setGray()

+setGreen()

Button

+type: string

+isActive: bool

ButtonA2CS

To AbsractTo Concrete

Figure 5: Abstract and Concrete Syntax in Synch

Watch

Chrono

+min: int

+sec: int

+tengthOfSec: int

+start()

+stop()

+reset()

+addTengthOfSec()

Time

+year: int

+month: int

+day: int

+hour: int

+min: int

+sec: int

+blinkedItemIndex: int

+blinkedItemFlag: boolean

+addSec()

+addMin()

+addHour()

+addDay()

+addMonth()

+addYear()

-getDaysInMonth()

+setEditBlink(index)

+toggleEditBlink(index)

Alarm

+hour: int

+min: int

+isActive: boolean

+isRinging: boolean

+ringAlarm(hour,min)

+addMin()

+addHour()

+toggleAlarm()

Display

+stringFields: list

+setDisplayField(index,text)

Button

+type: string

+isActive: bool

Indiglo

+isLightOn: boolean

+setLightOn()

+setLightOff()

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

1..*0..*

1

1

1

+1

+1

1

1

1

1

1

1

1

1

<<Interface>>

AbstractSyntax

+abstractObjectDictionary

+set(id,attribute,value)

+create(id)

+delete(id)

+connect(edgeID,sourceID,targetID)

+disconnect(edgeID)

To Concrete

Figure 2: Digital Watches Abstract Syntax

level. Some of the classes in the abstract syntax have no con-
crete representation. Other classes are related to concrete
visual representations (vector graphics drawings). Some as-
sociations in the abstract syntax are related to connection
splines connecting the visual representations of the classes.
Another alternative is to relate abstract syntax associations
to geometric or topological relations such as insideness or
relative positioning on the concrete side.

Once the above models have been built, an appropriate
meta-modelling and model transformation tool such as AToM3

[3, 4] can be used to synthesize an interactive modelling and
simulation environment as shown in Figure 6. Synthesis

Figure 6: Simulating language elements in AToM3

is possible thanks to the information available in both the
Class Diagrams and (Rhapsody) Statecharts. Note that our
current code generator generates Python code which ex-
plains the syntax of guards and actions in the Statecharts.

As the models upto now still leave a lot of freedom (in mul-
tiplicities at the abstract side and in visual layout on the
the concrete side), the modelling and simulation environ-
ment allows the modeller to experiment with various model
refinements. A modeller might for example decide to cre-
ate a watch which only shows time, and has no chrono nor
alarm. Referring back to our discussion about modelling lan-
guages, the various alternative models are all sentences in
the language defined by the design model. As such, the syn-
thesized modelling and simulation environment is a highly
domain-specific visual modelling environment (DSVME). It
is interesting to note that the modeller refines the design by
manipulating concrete visual (instance) objects.

Eventually, after refinements are complete, an actual appli-
cation can be synthesized as shown in Figure 7. In our
prototype we synthesize a real-time, reactive application
whose user-interaction part runs in an SVG-rendering ca-
pable browser such as firefox. We use an “Asynchronous
JavaScript + CSS + DOM + XMLHttpRequest” (AJAX)
[6] framework supporting both push and pull interaction as
shown in Figure 8 As XMLHttpRequest can be initiated from
the browser side, we need a means of “pushing” information
from the abstract side to the browser. This is particularly
necessary for the autonomous, timed digital watch applica-
tion where time gets updated every second on the abstract
side (as specified by the Statechart of the Time class in Fig-
ure 2). This “push” is achieved by polling the server (every
50ms) in the Javascript JS_Eval_Poll inside the browser.

SVGObject

+id: string

-SVGData: dictionary

+set(attribute,value)

+create(id,SVGData)

+delete(id)

<<Interface>>

SVGRender

+set(id,attribute,value)

+create(id,SVGDataString)

+delete(id)

Queue

+queuedSVGRequests: list

+set(id,attribute,value)

+create(id,SVGDataString)

+delete(id)

+getAndClearQueue()

RequestMediator

+sendEventTo(id,eventName)

HTTPServer

+do_GET()

+do_POST()

JS_Eval_Poll

+pollForever()

+AJAX(url)

sendEvent

1 1

queryUpdates

1

1

1
1 1

1

1

1

11 T
o

A
b
s
r
a
c
t

Figure 8: AJAX Framework

Figure 7: Synthesized Application in Browser

4. RELATED WORK
An example of the use of various formalisms for the speci-
fication of contex-sensitive interactive applications is given
in [12]. Behaviour and structure of the UI are modeled and
then XForms and XHTML is generated for the final appli-
cation. Myers [10] describes the UI challenges and the diffi-
culty of UI and behaviour seperation. This problem gets ex-
acerbated when in addition the application logic is reactive
due to complexity of the callback structure. [5] gives a brief
high-level overview of a UI synthesizer whereas [8] discusses
abstract UI to concrete UI synthesis on multiple platforms.
[11] goes deeper into the issues of having different models at
the presentation, dialog, and application levels. The closest
to our approach is reactive animation [7] which links appli-
cation behaviour to rendering and reactivity to interactive
input. It uses Flash rather than SVG.

5. REFERENCES
[1] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,

L. Bouillon, and J. Vanderdonckt. A unifying
reference framework for multi-target user interfaces.
Interacting with Computers, 15(3):289–308, 2003.

[2] G. Costagliola, A. D. Lucia, S. Orefice, and G. Polese.
A classification framework to support the design of
visual languages. J. Vis. Lang. Comput.,
13(6):573–600, 2002.

[3] J. de Lara and H. Vangheluwe. AToM3: A tool for
multi-formalism and meta-modelling. In FASE ’02:
Proceedings of the 5th International Conference on
Fundamental Approaches to Software Engineering,
pages 174–188, London, UK, 2002. Springer-Verlag.

[4] J. de Lara and H. Vangheluwe. Defining visual
notations and their manipulation through
meta-modelling and graph transformation. J. Vis.
Lang. Comput., 15(3-4):309–330, 2004.

[5] J. Falb, R. Popp, T. Rock, H. Jelinek, E. Arnautovic,
and H. Kaindl. Using communicative acts in high-level
specifications of user interfaces for their automated
synthesis. In ASE ’05: Proceedings of the 20th
IEEE/ACM international Conference on Automated
software engineering, pages 429–430, New York, NY,
USA, 2005. ACM Press.

[6] J. J. Garrett. Ajax: A new approach to web
applications. http://www.adaptivepath.com/
publications/essays/archives/000385.php, 2005.

[7] D. Harel, S. Efroni, and I. R. Cohen. Reactive
animation. In FMCO, pages 136–153, 2002.

[8] G. Mori, F. Paterno, and C. Santoro. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Trans. Softw.
Eng., 30(8):507–520, 2004.

[9] P. J. Mosterman and H. Vangheluwe. Computer
Automated Multi-Paradigm Modeling: An
Introduction. Simulation: Transactions of the Society
for Modeling and Simulation International,
80(9):433–450, September 2004. Special Issue: Grand
Challenges for Modeling and Simulation.

[10] B. A. Myers. User interface software tools. ACM
Trans. Comput.-Hum. Interact., 2(1):64–103, 1995.

[11] K. Stirewalt and S. Rugaber. Automating ui
generation by model composition. In ASE ’98:
Proceedings of the 13th IEEE international conference
on Automated software engineering, page 177,
Washington, DC, USA, 1998. IEEE Computer Society.

[12] J. Van den Bergh and K. Coninx. Cup 2.0: High-level
modeling of context-sensitive interactive applications.
In Proceedings of ACM/IEEE 9th International
Conference on Model Driven Engineering Languages
and Systems, LNCS, Genoa, Italy, October 2006.
Springer. Accepted.

