
Open Issues for the development of 3D Multimodal User
Interfaces from an MDE perspective

Joan De Boeck1, Juan Manuel Gonzalez Calleros2, Karin Coninx1, Jean Vanderdonckt2
1Hasselt University, Expertise centre for Digital Media

(EDM) and transnationale Universiteit Limburg
Wetenschapspark 2

B-3590 Diepenbeek, Belgium

{joan.deboeck, karin.coninx}@uhasselt.be

2Université catholique de Louvain, School of Management
(IAG), Belgian Lab. Of Computer-Human Interaction (BCHI)

Place des Doyens 1
B-1348 Louvain-la-Neuve, Belgium

{gonzalez, vanderdonckt}@isys.ucl.ac.be
ABSTRACT
Given its current state of the art, Model-Based UI Development
(MBDUI) is able to fulfill the major requirements of desktop and
mobile applications, such as form-based user interfaces that adapt
to the actual context of use. More recent research deals with the
development of 3D interactive multimodal environments. Though
user-centered design is more and more driving the design of these
environments, less attention is devoted to the development proc-
esses than to interactive tools supporting isolated phases in the
realization process. In this paper we describe our findings when
considering model-based development of 3D multimodal applica-
tions in the context of model-driven engineering. We concentrate
on the requirements of such a process, the models being used and
the transformations that are able to guide or even automate part of
the development process for the envisioned applications. We con-
clude with some open issues that have been discovered.
1. INTRODUCTION
Model-based development of user interfaces (MBDUI) is finding
its way from academic research to practical applications in indus-
trial projects. While the principles of MBDUI have largely been
investigated for traditional form-based desktop UIs [9,10,14], the
need for flexible development of contemporary interactive appli-
cations has raised the attention for a model-based approach. Mo-
bile applications [10], (context-sensitive) multi-device user inter-
faces [2,3,10], distributed and migratable user interfaces [3,14]
are already emerging, and will gain importance with the realiza-
tion of pervasive computing.
Multimodality, including speech input, voice output and pen-
based interaction, is a central topic in many research projects.
However, most of the contemporary research activities in the area
of model-based UI development concentrate on 2D applications,
in which interaction is done in two dimensions with traditional or
pen-based input, even when working with 3D scenes or data.
In order to interact with these 3D objects in a multimodal way,
several methods have been introduced ([1,4,7,11,15,16]) but none
of them is truly based on genuine models for the whole develop-
ment life cycle. Most are focusing directly on programming issues
rather than on the design and analysis of the final application.
This is sometimes reinforced by the fact that available tools for
3D UI design are toolkits, interface builders, or rendering engines.
Based on our former experience with the realization of interactive
virtual environments (IVEs) on the one hand, and with model-
based development of multi-device applications on the other
hand, our current research activities concern on bridging the gap
between both techniques.

In order to solve the shortcomings of current model-based design
approaches for IVEs, we investigate the possibilities of a tool-
supported development process for virtual environment applica-
tions. To specify this development process we will first gather
some requirements, based on existing tools and processes. After-
wards we will elaborate on two model-based approaches and
compare them with respect to the identified requirements. We
investigate which requirements are fulfilled and what the prob-
lems are in both processes. Finally, some open issues will be pre-
sented that have been discovered during their implementation and
evaluation.

2. REQUIREMENTS
We expect model-based development of interactive 3D environ-
ments to be successful when it is conceptualized as a combination
of two different development approaches, namely MBUID and
the toolkit-based development of IVEs. Both approaches have
been examined for their benefits in order to gather the require-
ments necessary to define our process.
An overview of model-based processes (e.g., [2,3,9,10]) shows
that they have several common properties. Nearly all processes
start with some kind of a task model and evolve towards the final
user interface using an incremental approach. During each incre-
ment, a model is converted into the next by means of an automatic
transformation (through mapping rules) or manual adaptation by
the user. Although these model-based approaches have shown
their value in dialog and web-based interface generation, none of
them seems directly usable to design IVEs, since they all lack the
possibility to describe direct manipulation techniques and meta-
phors. A good MBDUI should therefore consider both the UI
widgets and the description of possible interaction techniques.
In contrast with the MBUID tools that have been studied, tools
and toolkits to develop interactive virtual environments (e.g.,
[4,16]) do not immediately show common characteristics. This is
mainly due to the wide variety of existing toolkits, each focusing
on a specific part of the final application such as object design,
scene composition and widget design. Combining these different
toolkits is not easy since the output of one tool cannot, in most
cases, be used as input for another tool. Therefore it is important
that several design issues can be integrated within the same proc-
ess, containing code generation algorithms that can be supported
by some existing toolkits. An important issue for these code gen-
eration algorithms is that manual changes should be preserved
after regeneration. Finally, graphical tool support should be of-
fered in order to design the high-level description models, check
their correctness and generate the final application.

3. PRACTICAL IMPLEMENTATIONS
In this section we will describe two model-based approaches for
the design of IVEs, called CoGenIVE and Veggie, by means of
the PIM-PSM pattern explained in [12] and depicted in Figure 1.
This pattern starts with a Computing Independent Model (CIM)
which is aimed at capturing general requirements of the future
system independently of any implementation. From this model, a
Platform Independent Model (PIM) is derived once a technologi-
cal space has been selected. This model is in turn converted into a
Platform Specific Model (PSM) by means of certain transforma-
tion rules once a particular target computing platform has been
decided. This MDA pattern can be applied multiple times at these
three levels, using the resulting PSM of the first pass as input PIM
for the second pass. Usually, the initial CIM remains constant
over time unless new requirements are introduced. In the remain-
der of this section CoGenIVE and Veggie will be compared to the
requirements that were defined in section 2.

Figure 1: PIM-PSM pattern

3.1 The CoGenIVE approach
3.1.1 Process description
CoGenIVE (Code Generation for Interactive Virtual Environ-
ments) is a tool-supported process developed at the Expertise
centre for Digital Media (EDM), a research lab at Hasselt Univer-
sity. The tool has been created in order to support and evaluate a
model-based development process (depicted in Fig. 2a), to facili-
tate the creation of multimodal IVEs. See [6] for more details.
The first explicit artifact in the development process is a Task
Model, expressed in ConcurTaskTrees (CTT) [10]. This widely
used notation uses a graphical syntax and offers both a hierarchi-
cal structure and support to specify temporal relations between
tasks. Four types of tasks are supported in the CTT notation: ap-
plication tasks, user tasks, interaction tasks, abstract tasks. Sibling
tasks on the same level in the hierarchy of decomposition can be
connected by temporal operators.
Once the Task Model is created it will be converted to a Dialog
Model, denoted as a State Transition Network (STN). The STN is
based upon Enabled Task Sets (ETS), which can be automatically
generated from the CTT by means of the algorithm described by
Luyten et al. [9]. Each ETS consists in the tasks that can be exe-
cuted in a specific application state. Since we are developing In-
teractive Virtual Environments, we will only elaborate on the
interaction tasks within the application. A possible example of
such a task is object selection. In a typical form-based desktop
application, selecting an item is a straightforward task in which
the user selects an entry from a list. In an IVE however, this task
becomes more complex because of the wide variety of selection
metaphors (e.g. touch selection, ray selection, go-go selection).

Figure 2: CoGenIVE (a) and Veggie (b) approaches

To handle this problem, an Interaction Description Model, called
NiMMiT, has been created. The goal of NiMMiT is to describe an
interaction task in more detail. The diagrams can be created by
means of the CoGenIVE tool and are exported to an XML file
which is loaded at runtime. The connection of the diagrams to the
interaction tasks in the dialog model is currently done by hand. A
more detailed description of NiMMiT, together with some exam-
ples, can be found in [13].
Within CoGenIVE the user can create user interface elements
such as dialogs, menus, and toolbars, that are then expressed in a
VRIXML presentation model. VRIXML is an XML-based user
interface description language (UIDL), so that the resulting re-
sources are loaded into the application at runtime as well.
VRIXML examples and a motivation for the creation of this
UIDL can be found in [5]. Like the interaction descriptions, the
user interface elements should be connected to the different appli-
cation states manually.
Once all models have been created and connected they are used to
automatically generate a prototype of the IVE together with the
external resource files in which the NiMMiT and VRIXML de-
scriptions are stored. This approach offers some extra flexibility
since the interaction techniques and the interface widgets) can be
altered without regenerating the code of the virtual environment.

3.1.2 Process evaluation
CoGenIVE covers several of the requirements that have been
found in section 2. The process starts from a task-model and in-
crementally evolves towards the final user interface. The first
increment (towards the dialog model) can be done by an auto-
matic transformation. Afterwards the designer has to manually
connect the presentation and the interaction description model.
Preservation of manual changes in conserved only in the second

transformation, resulting in possible inconsistencies between
models that are manually adapted. However; once the code is
generated from the designed models, manual adaptations are
tracked and saved. This way, when regenerating the application
prototype, the manually inserted code is preserved.
Preliminary evaluation of the CoGenIVE process in some IVE
realizations has shown a considerable reduction of development
time. Currently we are working on a new version of CoGenIVE
with improved and more integrated tool-support.

3.2 The Veggie approach
3.2.1 Process description
Veggie (Virtual reality Evaluator providing Guidance based on
Guidelines for Interacting with End-users) is a project developed
at the Belgian Lab of Human Computer Interaction (BCHI), a
research lab at University catholic of Louvain. A transformational
method for developing 3D user interfaces of interactive informa-
tion systems was presented (Figure 2b) [8].
The method relies on the Cameleon reference framework [2],
which structures the development life cycle of multi-target UIs
according to four layers: (i) the Final UI (FUI) is the operational
UI, i.e. any UI running on a particular computing platform either
by interpretation (e.g., through a Web browser) or by execution
(e.g., after the compilation of code in an interactive development
environment); (ii) the Concrete UI (CUI) expresses any FUI inde-
pendently of any term related to a peculiar rendering engine, that
is independently of any markup or programming language; (iii)
the Abstract UI (UI) expresses any CUI independently of any
interaction modality (e.g., graphical, vocal, tactile); and (iv) the
Task & Concept level, which describes the various interactive
tasks to be carried out by the end user and the domain objects that
are manipulated by these tasks Models are uniformly expressed in
the same UIDL, which is selected to be UsiXML (User Interface
eXtensible Markup Language – www.usixml.org [14]). Any other
UIDL could be used equally provided that the used concepts are
also supported. For instance, other UIDLs in this area are
VRIMXL [5], SSIML/AR [15], and DAC [1].
The method starts from a task model and a domain model to pro-
gressively derive a final user interface. This method consists of
three steps (depicted in Fig. 2b): deriving one or many abstract
user interfaces from a task model and a domain model, deriving
one or many concrete user interfaces from each abstract interface,
and producing the code of the final user interfaces corresponding
to each concrete interface. To ensure the two first steps, transfor-
mations are encoded as graph transformations performed on the
involved models expressed in their graph equivalent. In addition,
a graph grammar gathers relevant graph transformations for ac-
complishing the sub-steps involved in each step.
Once a concrete user interface is resulting from these two first
steps, it is converted in a development environment for 3D user
interfaces where it can be edited for fine tuning and personaliza-
tion. From this environment, the user interface code is automati-
cally generated. By expressing the steps of the method through
transformations between models, the method adheres to Model-
Driven Engineering paradigm where models and transformations
are explicitly defined and used.

3.2.2 Process evaluation
Veggie covered just some of the requirements identified in section
2. In particular there still is a lack to describe the dialog and inter-

action models. Also, the graphical support is only partly covered.
Similarly the set of rules to go from Abstract to Concrete model is
reduced. When modified manually there is no support to track
changes, resulting in possible inconsistencies between models.
On the other hand the process covers the rest of the requirements
automatically and manually. The automatic process is supported
for the transformations from task/domain model until concrete
model. Then manually, the concrete UI is edited in a high level
editor which supports automatic code generation. The feasibility
of the process has been tested through case studies [8].

4. OPEN ISSUES
The challenges to have a framework to support all the above re-
quirements are considerable. From a technological point of view
it involves an integration of technologies to support the complete
process. A transformation engine to support the transformational
approach, high-level editors to support the design of each model,
a change tracking system (reverse engineering process) to identify
changes in dependent models are also beneficial in a mature
model-based approach.
From a methodological point of view on the other hand, there are
quite some open issues for which the solution is not straightfor-
ward.
Traditional task models (such as the CTT) lack the ability to de-
scribe real 3D tasks such as selection or object manipulation. A
first glance solution is to expand the task model so as to reflect
3D tasks [8] with a taxonomy of primitives. Another suggested
solution is to create another starting model, such as an interaction
description model (such as the NiMMiT notation [13]). An impor-
tant question related to this issue is: ‘when should a designer
switch from the task model to the interaction description model?’
As more and more IVEs are multi-user environments, possibly
supporting collaboration between users, task models and interac-
tion descriptions should allow for specification of cooperative
activities. Further research is needed to judge to what extent Co-
operative ConcurTaskTrees and (an extended version of) NiM-
MiT can do the job, and when other task and interaction descrip-
tions come into play. In addition, this poses the constraint of rep-
resenting 2D vs 3D. tasks working on 2D vs. 3D objects, espe-
cially in augmented reality, where both could be combined on top
of real world objects. [15] represents a first attempt towards this
direction. [14] also refers to some effort in augmented reality for
combining 2D traditional widgets with 3D objects.
Another question is related to the FUI. What is the appropriate
representation of 3D UIs? Should the 2D desktop metaphor still
be used or are there alternative visualizations or metaphors? Sev-
eral attempts go towards defining a new toolkit of 3D objects
[1,15] which are natively appropriate to 3D applications. Again,
this represents an advantage to have a predefined collection of
such 3D-widgets, but then the interaction is reduced by what they
offer natively. Expanding already existing widgets or introducing
custom widgets remains a very challenging issue.
A final issue we would like to address in this paper concerns the
mapping rules. This is one of the most complex tasks in an MDE
approach. A problem such as: ‘how to define spatial positions to
place 3D UI elements or objects’, is not easy to automate due to
the lack of semantic properties that define these spatial relations.
Maybe the use of ontologies can be of any help to solve this issue.

5. CONCLUSION
This paper introduced a series of requirements for enabling
model-driven engineering of 3D multimodal UIs, an area which is
recognized for being challenging MDA.
In general, model transformation holds the promise that each step
could be achieved by applying a limited set of transformations,
which are declaratively stated. It is a fundamental research prob-
lem to assess that the declarative power of such transformations at
least equal the procedural capabilities of algorithms traditionally
used to produce a final UI. On the one hand, such algorithms
could be very powerful, but do not preserve properties like ob-
servability, controllability, and traceability. On the other hand,
algorithms could probably produce a final code which is hardly
attainable by model transformation. Moreover, the multiplication
of transformations in a same transformation set is complexifying
the problems of transformation dependence, sequence, and or-
ganization. This is a potential reason why mixed-model-based
approaches could be also attempted. In this case, the advantages
of both paradigms could be combined without suffering from their
drawbacks.

6. ACKNOWLEDGEMENTS
Part of the EDM research is funded by EFRO (European Fund for
Regional Development), the Flemish government and the Flemish
Interdisciplinary institute for Broadband Technology (IBBT). The
VR-DeMo project (IWT 030248) is directly funded by the IWT, a
Flemish subsidy organization. We gratefully thank the support
from the SIMILAR network of excellence (The European re-
search taskforce creating human-machine interfaces SIMILAR to
human-human communication), supported by the 6th Framework
Program of the European Commission, the Alban program sup-
ported by European Commission and the CONACYT program
supported by the Mexican government.

7. REFERENCES
[1] Andujar, C., Fairén, M., and Argelaguet, F. A Cost Effective

Approach for Developing Application-Control GUIs for Vir-
tual Environments. In Proc. of the 1st IEEE Symposium of 3D
User Interfaces 3DUI’2006 (Alexandria, March 25-26,
2006)..IEEE Comp. Society Press, 2006, pp. 45-52.

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L. and Vanderdonckt, J. A Unifying Reference Frame-
work for Multi-Target User Interfaces. Interacting with
Computers, Vol. 15, No. 3, 2003, pp. 289-308.

[3] Clerckx, T., Luyten, K., and Coninx, K. Dynamo-AID: A
Design Process and a Runtime Architecture for Dynamic
Model-based User Interface Development. In Proc. of 9th
IFIP Working Conf. on Engineering for Human-Computer
Interaction jointly with 11th Int. Workshop on Design, Speci-
fication, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). LNCS, Vol.
3425, Springer-Verlag, Berlin, 2005, pp. 77-95.

[4] Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A.,
and Cruz-Neira, C. VR Juggler: A Virtual Platform for Vir-
tual Reality Application Development. In Proc. of Conf. on-
Virtual Reality VR’2001 (Yokohama, 13-17 March 2001),
IEEE Comp. Society Press, Los Alamitos, 2001, pp. 89-96.

[5] Cuppens, E., Raymaekers, C., and Coninx, K. VRIXML: A
user interface description language for virtual environments.
In Proc. of the ACM AVI’2004 Workshop “Developing User
Interfaces with XML: Advances on User Interface Descrip-
tion Languages” (Gallipoli, May 25, 2004), Gallipoli, 2004,
pp. 111–117.

[6] Cuppens, E., Raymaekers, C., and Coninx, K. A Model-
Based Design Process for Interactive Virtual Environments.
In Proceedings of 12th Int. Workshop on Design, Specifica-
tion and Verification of Interactive Systems DSVIS’05,
(Newcastle upon Tyne, July 13-15, 2005). LNCS, Vol. 3941,
Springer-Verlag, Berlin, pp. 239-250.

[7] Fencott, C. Towards a Design Methodology for Virtual Envi-
ronments. In Proc. of Workshop on User Centered Design
and Implementation of Virtual Environments UCDIVE’99
(University of York, 30 September 1999).

[8] Gonzalez, J.M., Vanderdonckt, J., and Arteaga, J.M. A
Method for Developing 3D User Interfaces of Information
Systems. In Proc. of 6th Int. Conf. on Computer-Aided De-
sign of User Interfaces CADUI’2006 (Bucharest, 6-8 June
2006), Springer-Verlag, Berlin, 2006, pp. 85-100..

[9] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J. Deri-
vation of a Dialog Model from a Task Model by Activity
Chain Extraction. In Proc. of 10th Int. Conf. on Design,
Specification, and Verification of Interactive Systems DSV-
IS’2003 (Madeira, June 4-6, 2003), LNCS, Vol. 2844,
Springer-Verlag, Berlin, 2003, pp. 203-217.

[10] Mori, G., Paternò, F., and Santoro, C. Design and Develop-
ment of Multidevice User Interfaces through Multiple Logi-
cal Descriptions. IEEE Transactions on Software Engineer-
ing, Vol. 30, No. 8, August 2004, pp. 1-14.

[11] Neale, H. and Nichols, S. Designing and developing Virtual
Environments: Methods and Applications. In Visualization
and Virtual Environments Community Club VVECC‘2001,
Designing of Virtual Environments. 2001.

[12] Miller, J. and Mukerji, J. MDA Guide Version 1.0.1, Docu-
ment Number: omg/2003-06-01, OMG, June 12th, 2003, ac-
cessible at http://www.omg.org/docs/omg/03-06-01.pdf

[13] Vanacken, D., De Boeck, J., Raymaekers, Ch., and Coninx,
K. NiMMiT: A Notation for Modeling Multimodal Interac-
tion Techniques. In Proceedings of the Int. Conf. on Com-
puter Graphics Theory and Applications GRAPP’2006
(Setúbal, February 25-28, 2006).

[14] Vanderdonckt, J. A MDA-Compliant Environment for De-
veloping User Interfaces of Information Systems. In Proc. of
17th Conf. on Advanced Information Systems Engineering
CAiSE'05 (Porto, 13-17 June 2005), LNCS, Vol. 3520,
Springer-Verlag, Berlin, 2005, pp. 16-31.

[15] Vitzthum, A. SSIML/AR: A Visual Language for the Ab-
stract Specification of Augmented Reality User Interfaces. In
Proceedings of the IEEE Virtual Reality Conference
VR’2006 (March 25-29, 2006). IEEE Computer Society
Press, Los Alamitos, 2006, pp. 135-142.

[16] Willans, J. and Harrison, M.D. A Toolset Supported Ap-
proach for Designing and Testing Virtual Environment Inter-
action Techniques. International Journal of Human-
Computer Studies, Vol. 55, No. 2, August 2001, pp. 45-165.

	1. INTRODUCTION
	2. REQUIREMENTS
	3. PRACTICAL IMPLEMENTATIONS
	3.1 The CoGenIVE approach
	3.1.1 Process description
	3.1.2 Process evaluation

	3.2 The Veggie approach
	3.2.1 Process description
	3.2.2 Process evaluation

	4. OPEN ISSUES
	5. CONCLUSION
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

