
A Repository of Fragments for Agent Systems Design

Valeria Seidita1, Massimo Cossentino2,3 and Salvatore Gaglio1,2

1Dipartimento di Ingegneria Informatica - University of Palermo
Viale delle Scienze 90128 Palermo, Italy

2Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche
Viale delle Scienze, 90128 Palermo, Italy

3SET - Université de Technologie, Belfort-Montbliard
90010 Belfort cedex, France

seidita@csai.unipa.it, cossentino@pa.icar.cnr.it, gaglio@unipa.it

Abstract

The creation of a new design process for a specific sit-
uation using the method engineering approach is based on
the composition of a set of reusable method fragments. The
request for these reusable method fragments leads to the
need for a repository containing standardized fragments
that can be easily selected and assembled in new design
processes. In this work we present a definition of method
fragment coming from the work of the FIPA Technical Com-
mittee Methodology and a repository where fragments are
classified according to the specific process component (ac-
tivity, process role, and work product) they underpin and on
the specific MAS Metamodel element(s) they work on.

1 Introduction

Today a relevant number of design processes for devel-
oping multi agent systems can be found in literature; each
of them is well suited for a specific purpose or for a spe-
cific agent architecture (BDI, reactive, state-based,. . . ); one
unique (and eventually standardized) design process fitting
all possible situation does not exist; in the agent-based de-
velopment context, we are now facing the same problem
some researchers faced a few years ago when the definition
of a new discipline was given, the Method Engineering.

Method Engineering aims at solving the previously said
problem focusing on the creation of new techniques and
tools allowing the construction of a specific design process
(in literature referred as a situational method) [18]. Many
researchers applied this paradigm and shared similar ap-
proaches: constructing and adapting new design processes

by assembling (reusing)method fragmentfrom a repository
(calledmethod base) built by splitting up some existing de-
sign processes [16][22][21][3][17].

Method engineer is the key stakeholder during a process
construction activity; he develops two main phases, the first
one regards extracting, defining, standardizing and storing
in the repository the method fragments coming from exist-
ing processes while the second one consists in composing
the new process through the selection and the assembly of
the right fragments.

Our activity in this field started a few years ago within
the FIPA Technical Committee (TC) Methodology from
where the basis of this work arose. More specifically we
acknowledge a great dependence of our method fragment
definition with the one proposed in the FIPA context and
also the design processes we studied are among the most
important in that context (Adelfe, Gaia, PASSI, Tropos).

In this paper we introduce the repository we used for
storing the fragments extracted from the above cited de-
sign processes. It is essentially a database where method
fragments are stored in form of text documents and can be
accessed using a categorization based on the process meta-
model elements that we consider central in agent-systems
design (process role, phase/activity, work product and MAS
Metamodel element). It is interesting to note that, in our
opinion, this latter element (the MAS Metamodel element,
MMM element hereafter) is one of the keys of agent-system
design today. The lack of a standardized or at least widely
accepted MAS Metamodel brings to several different inter-
pretations for it. Method engineers cannot neglect this as-
pect and we think that one of the first activities while build-
ing the new process is defining the MMM elements that he
will instantiate and their relationships.

130



One of the most difficult activities in constructing our
repository was its conceiving in such a way that fragments
could be easily retrieved. We think that our solution to this
problem, coherently with the choice of basing categoriza-
tion on the four cited elements of the process metamodel
is interesting: we built a taxonomy within each of the four
basic categories (process role, phase/activity, work product,
MMM element). In this way, a method engineer who aims
at retrieving a fragment that produces a structural diagram
(a kind of work product in our taxonomy) and involves a
specific process role (like the Domain Analyst that is an-
other item of our taxonomies), can easily find a list of all
the fragments in the repository satisfying these criteria.A
similarly interesting search could be related to the need for
designing some kind of MMM element (suppose ontologi-
cal concepts) because the method engineer wants to intro-
duce a fragment about that in his/her new process.

The paper is organized as follows: in the next section we
introduce our method fragment definition, in section three
we describe the structure of our repository and in section
four we provide an overview on the content of our method
base; finally in section five, some conclusions are drawn.

2 Method Fragment

FIPA TC Methodology approach shares a similar mean-
ing of method fragment with Harmsen and Brinkkemper
[3][16][14]. A method fragment is a portion of a design
process composed of two main parts, the process and the
product. In our specific approach (also grounded on the
process model proposed by an OMG specification, SPEM
[20]) main process elements are Activity, Role and Arte-
fact; more explicitly a development process is composed
of Activities performed by one (or more) Role(s) responsi-
ble for producing artefacts, Activities produce or consume
Artefacts as inputs or outputs. From now on, in order to be
compliant with SPEM notation, we will refer to WorkProd-
uct and ProcessRole in place of, respectively, Artefact and
Role.

According to our approach a method fragment is com-
posed as follows :

1. A portion of process (what is to be done, in what or-
der), defined with a SPEM diagram.

2. One or more deliverables (WorkProducts like
(A)UML/UML diagrams, text documents including
code and so on). The result of the work could
also be some kind of product/artefact that is not be
delivered to anyone outside the development pro-
cess. It also includes a reference to a recommended
notation/language/ structure to be used.

3. Some preconditions (they are a kind of constraint be-
cause it is not possible to start the portion of process

specified in the fragment without the required input
data or without verifying the required guard condi-
tion).

4. A list of concepts (related to the MAS Metamodel) to
be defined (designed) or refined during the specified
process fragment.

5. Guideline(s) that illustrates how to apply the fragment
and best practices related to that.

6. A glossary of terms used in the fragment (in order to
avoid misunderstandings if the fragment is reused in a
context that is different from the original one).

7. Composition guidelines are a description of the con-
text/ problem that is behind the portion of methodol-
ogy from which the specific fragment is extracted; it
can be used to facilitate fragment reuse in the proper
context.

8. Aspects of fragment are a textual description of spe-
cific issues like for instance: implementation platform
for which the fragment is more suitable, application
area, etc.

9. Dependency relationships that can be used to identify
fragments strongly related to the considered one.

It can be represented by the metamodel shown in Fig.
1 where the presented elements are logically divided in
three areas, the first one concerns the fundamental pro-
cess features (Activity, ProcessRole, WorkProduct and
MMMElement- drawn in grey in the figure), the second one
concerns the reuse features of the fragment and the third one
its representation in the repository.
As regards the first area, the main element is the Frag-
ment that is part of a Development Process based on
a well defined LifeCycle (for example waterfall[13],
iterative/incremental[2]); Lifecycle, in the area concerning
the reuse of the fragment, allows positioning the fragment
in the proper place in the development cycle.

A fragment is composed of elements such as Activity,
ProcessRole and WorkProduct useful for the description of
the portion of process related to the specific fragment: an
Activity describes a portion of work, performed by a Pro-
cessRole [20] during which some data are used as input or
produced as output, besides an Activity is an element of a
Phase and it is composed of Steps, which are the smaller
parts of work to be performed. At last an Activity can pro-
duce one or more WorkProducts, whatever consumed, pro-
duced, modified or refined during the portion of work con-
sidered in the fragment; a WorkProduct can be a diagram
(for example an UML diagram) or a text document, and

131



Figure 1. The method fragment metamodel

refers to a Modelling Language Notation. A WorkProd-
uct is classified according to a WorkProductKind that de-
scribes the WorkProduct category, for instance text docu-
ment, model, code library etc., it is built by a ProcessRole,
which is responsible for its production. MMMElement (the
Multi agent system Meta-Model Element) is a very impor-
tant element of the fragment metamodel we adopted, it is
the generic component of a MAS Metamodel (Multi Agent
System metamodel) which constitutes the main building
block of an agent design methodology. A MAS Meta-
model is a structural/ontological representation of the el-
ements (for instance agent, role, behaviour, ontology, ...)
and relationships that will be instantiated in an actual sys-
tem; instances of MAS Metamodel elements are described
in WorkProducts and are also considered as input/output of
activities; it is worth to note that in our approach the ul-
timate aim of the work performed in a fragment is to de-
fine/refine/relate MMMElements.
Two elements of the definition, belonging to this area, are
not explicitly presented in the metamodel, but included in
other elements, they are: portion of process, it is represented

by the activities that are parts of the whole process, and list
of concepts, which is composed of the set of MMMelements
that are designed during the portion of process the fragment
represents.
The second area (in Fig. 1) shows all the elements allow-
ing the fragment reuse and assembly, they are the Glossary
of terms used in the fragment, the Aspect, in the form of a
textual description useful to identify the field of fragment
application (several fragments are rather specific for some
kind of agent architecture like the BDI one or an imple-
mentation platform like JADE and are not suitable for dif-
ferent contexts without a significant maintenance), and the
Composition Guideline (while Aspects deal with the target
system features, Composition Guidelines concern the de-
velopment process and describe how and in which context
the fragment can be profitably reused).
The third area describes the fragment as it is stored in the
repository, Fragment Dependency is the only element it
contains, this is a list of fragments that have a dependant
or dependee relationship with the the specific reused frag-
ment.

132



This definition of fragment is the basis for the extraction
of method fragments from existing methodologies; in our
opinion the extraction process aims at reifying the concepts
of activity, role, work product and MAS Metamodel ele-
ment. A fragment is physically stored in the repository in
the form of a text document [7]; in these documents, SPEM
is used as a process modeling language, in particular SPEM
notation is employed to represent the main fragment ele-
ments (Activity, ProcessRole and WorkProduct) and some
diagrams (for instance SPEM Activity Diagrams) are used
to depict the work flow performed in the fragment and the
relationships among these elements.

3 Fragment Repository

As we said in section 1 method engineering is a disci-
pline which aim is to design, construct and adapt methods
for information systems development [3][22][18]; one of
the most common applications of the method engineering
paradigm is an approach based on reuse, where the con-
stituent parts of a development process (method fragments)
are stored in a repository (method base) from which they
could opportunely be selected and retrieved in order to be
successively assembled in the new required process (this
operation sometimes requires an adjustment of the fragment
in order to properly place it in the new process).

In literature we found two repositories of fragments, the
first one [15] is a method base associated to the Decamerone
CAME tool and the second one is the OPF repository [11].
These repositories share the same aim: to facilitate the se-
lection and retrieval of method fragments. In constructing
our repository we share the same aim of the two previously
cited examples but our approach is quite different.
The method base in Decamerone is based on the assump-
tion that a method engineer creates a repository of frag-
ments coming, only, from processes suitable for solving a
particular problem; this brings about a first selection of de-
sign processes. The extraction of method fragments, that
once stored in the repository may be selected and assem-
bled in the new design process, regards only a limited num-
ber of fragments. Instead we aim at collecting a relevant
number of the existing agent design processes and at stor-
ing all the fragments we can extract from them, in so doing,
during the creation of a specific design process, we have
a larger repository to be used and we can select and even-
tually adopt a fragment coming from a process that could
not fit, in its wholeness, the problem we want to solve; we
think this choice constitutes a richness for the selection ac-
tivity. As regard OPF, which is the most important element
of the OPEN approach [11], it comprises a metamodel rep-
resenting all process elements which instantiation generates
a method fragment; OPF contains a very large number of
method fragments accessible from a website and it provides

methods fragments at a very low level of granularity.
In our previous works [8][9][10][12] we extracted a lot
of method fragments coming from different agent de-
sign processes created by different research groups and
suited to deal with very different multi-agent system de-
sign philosophies, they are: Adelfe, Gaia, PASSI and Tro-
pos [1][24][6][4].
All of these processes present substantial differences in the
terms they adopted and in their meanings for specifying the
design process elements; for instance in Adelfe process the
process role called Requirement Analyst in some activities
performs the same work performed by the System Analyst
in the PASSI process; besides each process underpins a spe-
cific MAS Metamodel which elements have a meaning that
can be different from the corresponding one in another pro-
cess even if sometimes they share the same name. There-
fore the fragments, once stored in the repository, lose im-
portance and usefulness if we do not dispose a method for
their easy retrieval. We thought that the rationale for stor-
ing the fragments in the repository (and then make clever
query) was to consider the work performed by method engi-
neer when trying to assemble new methodologies, he selects
only the fragments he can really use; with this we mean that,
for instance, if there is not any ontology designer among
the workers of an organization, it is useless to include in
the process under construction an activity to be performed
by such a stakeholder (this would bring to a process that
for its application would need skills that are unavailable).
We think to facilitate the discrimination of the right frag-
ments classifying them in categories based on the main pro-
cess elements (2): Activity, ProcessRole, WorkProduct and
MMMElement. However while categorizing the fragments
we met a great problem: from the studied processes we
collected about sixteen different process roles, seventeen
phases (each of them is composed of several activities), a
lot of work products and of MMM elements. Therefore we
thought useful to categorize all the available method frag-
ments according to a taxonomy unifying (and mapping) dif-
ferent elements (from different approaches) under a unique
definition. We firstly identified the set of common activi-
ties, a design process is usually composed of, referring to
the main phases of a software engineering design process
[23][13], then the principal process roles performing these
phases and finally a set of work product kinds; Fig. 2 shows
the clustering rationale for phase and process role, it is just
an illustrative representation of our taxonomy that does not
exclude some possibility of intersection among different ar-
eas; for the work product kinds taxonomy we adopted the
structure shown in Fig. 3. In the following subsections we
will better illustrate the taxonomies.

133



Figure 2. Categories for phases and process roles in the design process

Figure 3. Categories for work product kind

3.1 Phase

Any kind of design process for information system pro-
duction, and in our case for multi agent system production,
can be decomposed in a set of activities (or phases) orga-
nized in sequential steps depending on the specific chosen
process model; regardless of their organization some kind
of activities have to be performed to develop any system.
We examined all the phases our the 4 studied processes
present (in terms of the work they carry on and their aim)
and, referring to the main phases of a software engineering
process, we clustered them in the following phases:
Requirements, it consists in the requirements elicitation
phase during which a functional model is given to provide
the purpose of the system and the interactions between the
system and the environment.
Analysis, it consists in all the activities aiming at under-
standing the system and its structure (without reference to
any implementation detail), identifying and defining the
main entities of a MAS (such as role, communication, etc.).
Design, the aim of this phase is to define the agent architec-
ture, describing agents’ behaviours and to investigate how
a society of agents cooperate to realise the system- level
goals, and what is required of each individual agent in order

to do this; all the aspects of the agent society are faced.
Implementation, gives a view on the system architecture,
methods and classes are used to describe the agent’s struc-
ture and behaviour.
Testing, it is composed of a unit test, the verify of the single
agent’s behaviour with regards to the original requirements
of the system and a society test, the validation of efficient
cooperation between agents.
Deployment, this phase defines and describes how agents
are deployed and which constraints are present for their mi-
gration and mobility.
Coding, the phase of writing the code eventually with the
aid of reusable code and source code.
Some of these phases are fundamental in a classic software
development process while some others are specific for the
agent oriented context, for instance design phase deals with
the concept of agent and explores the social aspect of a multi
agent system while a classic design phase concerns the way
the different system components provide system function-
alities.

3.2 Process Role

Starting from the phases identified in the previous sub-
section and from the examination of all the existing stake-
holders in the referring agent design processes, we clus-
tered, under the same element, a set of process roles per-
forming similar activities. First of all we associated for each
phase a process role, in Fig. 2 we can see that a general
role called Analyst performs the requirement and analysis
phases, the Designer performs design, implementation and
deployment, a tester performs testing and the Programmer
performs the coding phase, then examining all the process
role involved in the the studied processes we succeeded in
detailing each of these higher level stakeholder in the fol-
lowing:
System Analyst: models the current system and generates
information about the future system, he is responsible of
detailing use cases and he is an expert of the development

134



domain thus identifying and modeling the main elements of
the multi agent system under construction (referring to the
MMM elements).
Domain Analyst: analyzes the system environment in or-
der to determine and model MAS domain elements.
User: defines and validates the system requirements.
Agent Analyst: analyzes the system to be in order to es-
tablish which entities can be agents and to research which
architecture is necessary to build the system.
Agent Designer: analyzes and designs all the MMM ele-
ments strictly related to the concept of agent (in each design
process), such as role, task, services, interaction language
and so on.
User Interface Designer: identifies and defines the inter-
face among actors and the system.
Programmer: is responsible of writing the code.
Test Designer: designs a test activity basing on system re-
quirements an agent has to satisfy.
Test Developer: executes the designed tests.
Again we can see that some process roles are classic ones
for object oriented context while some others, for instance
agent designers, are specific stakeholders of the agent ori-
ented context.

3.3 Work Product Kind

A generic work product produced by a process activity
can be of a certain kind representing a specific category,
for instance text document, code an so on; we clustered all
the possible work product kinds under two main categories
(Fig. 3): graphical and textual.

A work product which kind is graphical can be further-
more categorized as a structural or a behavioural one, when
used to model respectively the static or the dynamic aspect
of a system; for instance a behavioural work product points
out the flow of messages along the time among different
agents.

As regard the textual work product we decided to classify
them as structured or free, in the sense that a text document
can be hold by a particular template or grammar, for exam-
ple to build a table or to write a code document, or can be
freely written in a natural language.

Sometimes some work products can combine two differ-
ent kinds (this is the case of a document including both a
diagram and the related description) so we introduced the
term atomic or composite to mean a work product of a sin-
gle kind or a work product of two or more combined kinds.

3.4 MAS Model Elements

The MAS Metamodel gives a structural representation
of the concepts belonging to the system under construction;
in our previous works [7][8] we divided the metamodel of

Figure 4. Repository Content

the multi agent system in three areas, to better deal with the
different domain abstractions relevant to a system design;
the first area represents all the aspects of the user’s prob-
lem description including the environment representation,
the second deals with agent based concepts that are use-
ful to define a solution strategy and the third describes the
structure of the code solution.

We claim that all the existing MAS Metamodels can be
divided in the cited three areas thus allowing the creation of
three categories of MMM elements; we named them: Prob-
lem, Social and Solution.

4 Overview on our repository content

Our work starts from a re-engineering activity of the an-
alyzed processes [8][9][10][12], that let us to represent all
of them in a standardized way using SPEM and to extract
forty-five fragments, each of them stored in our repository
on the basis of the process elements and the MMM elements
categories it deals with; Fig. 4 summarizes how much frag-
ments we stored in each category.

Some repositories of fragments already exist [11][15], in
our work we propose a repository structured with the aim
of minimizing the effort necessary for finding the best frag-
ment for a specific purpose and a specific application con-
text.

In building our repository we adopted an approach that
is someway similar to the OPF one [11](we reengineered
the studied processes, expressed them in a standardized no-
tation, and then extracted the fragments); in so doing we
adopted a specific choice at the basis of the extraction pro-
cess: we looked at the work products as the beam for split-

135



ting down the process in its constituting method fragments.
The result is a relatively small number of method fragments
but we think this could be the right level of granularity for
our purposes because, in this way, the process construction
can be lead by a concrete and tangible entity, the work prod-
uct, and finally it results in an easier and faster extraction
and selection of fragments.
We already made an experiment on constructing a new de-
sign process using some method fragments stored in the
repository; it consisted in building an agile process for rapid
prototyping of applications in our laboratory. The result
was the Agile PASSI [5] process that was largely based on
PASSI fragments, because we wanted to reuse the expertise
we accumulated in several years of using it.

The repository we presented can be accessed from
a website1 that allows the user to query the method
base looking for matches on several keys from the cat-
egories we proposed in section 3; in the repository the
method fragments are stored in form of text documents
and the metadata are managed using a relational data
structure, some relationships are, for instance, the fol-
lowing: Fragment(ID,FragName,FileName,IDPhase)con-
tains the data identifying each fragment with the link to
its representing document and the phase it belongs to,
Phase(ID,PAName,PADescription)contains the informa-
tion on phases and in the same way for all the other ele-
ments.

5 Conclusion

In this paper we presented a repository of method frag-
ments that can be used for composing a new design process
for multi-agent systems. The peculiarities of this reposi-
tory can be summarized as follows: (i) this is a specifically
agent-oriented conceived repository; as a consequence a
specific attention has been given to agent-oriented peculiar-
ities like the MAS Metamodel elements that are explicitly
present in both the method fragments descriptions and in
their categorization; (ii) fragments have been defined (and
extracted from existing methodologies) following a work
product-based approach; we mean that each method frag-
ment is supposed to produce at least one work product (not
necessarily from scratch, it can also refine an existing one);
(iii) we adopted a specific philosophy for enabling frag-
ments retrieval from the method base: fragments are cate-
gorized according to 4 basic criteria: process roles involved
in the design activities, phase of the overall design process
in which the specific fragment can be reused, kind of work
product produced by the repository and finally, MAS meta-
model elements that are managed in the activities involved
in the fragment. In the future we plan of extending the

1http://www.pa.icar.cnr.it/passi/fragment.html

repository by including some other methodologies (we are
currently working on Ingenias and Prometheus) and then in-
corporating that in a CAME/CASE tool we are building in
order to effectively support the work of the process designer
first (while he defines the new process) and the system de-
signer later (while he designs the agent system).

References

[1] Bergenti, F., Gleizes, M.P., Zambonelli, F.: Method-
ologies and Software Engineer- ing for Agent Systems.
Kluwer (2004)

[2] Boehm, B.: A Spiral Model of Software Development
and Enhancement. IEEE Computer, Vol. 21, N 5, May,
(1988) pp. 61-72

[3] Brinkkemper, S.: Method engineering: engineering of
information systems development methods and tools.
Information and Software Technology. 38(7): p. 275-
280 (1996)

[4] Castro, J., Kolp, M., Mylopoulos, J.: Towards
requirements-driven information systems engineering:
the tropos project. Inf. Syst. 27 (2002) 365389

[5] Chella, A. Cossentino, M., Sabatucci, L., Seidita, V.:
Agile PASSI: An Agile Process for Designing Agents.
International Journal of Computer Systems Science &
Engineering. Special issue on ”Software Engineering
for Multi-Agent Systems”. May 2006. in printing

[6] Cossentino, M.: From requirements to code with
the PASSI methodology. In Henderson-Sellers, B.,
Giorgini, P., eds.: Agent-Oriented Methodologies, Idea
Group Inc. (2005)

[7] Cossentino, M., Sabatucci, L., Seidita, V.: Method
Fragments from the PASSI process. Technical Report
ICAR-CNR n. 21-03 (2003)

[8] Cossentino, M., Sabatucci, L., Seidita, V.: SPEM
description of the PASSI process. Technical Re-
port ICAR-CNR n. 20-03 (2003) Available on
line at http://www.pa.icar.cnr.it/cossentino/FIPAmeth/
metamodel.htm.

[9] Cossentino, M., Seidita, V.: SPEM Description of
ADELFE Process. Technical Report ICAR-CNR n.05-
07 (2005)

[10] Cossentino, M., Seidita, V.: Tropos: Processo e fram-
menti. Technical Report ICAR-CNR n.05-06 (2005)

[11] Firesmith, D. and Henderson-Sellers, B.:The OPEN
Process Framework - An Introduction. Addison-
Wesley: Harlow, UK (2002)

136



[12] Garro, A., Turci, P.: Gaia Fragments. available on
line at http://www.pa.icar.cnr.it/cossentino/FIPAmeth/
metamodel.htm

[13] Ghezzi, C., Jazayeri, M., and Mandrioli, D.: Funda-
mentals of Software Engineering. Prentice Hall Inter-
national, Upper Saddle River, NJ (USA) (1991)

[14] Harmsen A.F.: Situational Method Engineering.
Moret Ernst & Young (1997)

[15] Harmsen,A.F., Brinkkemper, S.: Design and Imple-
mentation of a Method Base Management System for
a Situational CASE Environment. APSEC 1995: 430-
438

[16] Harmsen A.F., Brinkkemper, S., Oei, H.: Situational
Method Engineering for Information System Projects.
In Olle T.W. and A.A. Verrijn Stuart (Eds.), Math-
ods and Associated Tools for the Information Systems
Life Cycle, Proc. of the IFIP WG8.1 Working Confer-
ence CRIS’94, pp. 169-194, North-Holland, Amster-
dam, (1994)

[17] Henderson-Sellers, B.: Process Metamodelling and
Process Construction: Examples Using the OPEN Pro-
cess Framework (OPF). Ann. Softw. Eng. 14, 1-4, 341-
362 (Dec. 2002)

[18] Kumar K., Welke R.: Methodology engineering: a
proposal for situation-specific methodology construc-
tion. In Challenges and Strategies for Research in Sys-
tems Development, pages 257269, 1992.

[19] Method fragment definition. FIPA Document,
http://www.fipa.org/activities/methodology.html, (Nov
2003)

[20] OMG, 2002, Software Process Engineering Meta-
model Specification, Version 1.0, Object Management
Group, formal/02-11-14 (Nov 2002)

[21] Ralyté, J.: Towards situational methods for infor-
mation systems development: engineering reusable
method chunks, Procs. 13th Int. Conf. on Information
Systems Development. Advances in Theory, Practice
and Education Vilnius Gediminas Technical University,
Vilnius, Lithuania, 271-282 (2004)

[22] Saeki, M.: Software Specification & Design Methods
and Method Engineering. International Journal of Soft-
ware Engineering and Knowledge Engineering.

[23] Sommerville, I.: Software Engineering. Addison-
Wesley (2004)

[24] Zambonelli, F., Jennings, N., Wooldridge, M.: Devel-
oping multiagent systems: the gaia methodology. ACM
Transactions on Software Engineering and Methodol-
ogy 12 (2003) 417470

137


