
A Lightweight Architecture for RSS Polling of
Arbitrary Web sources

Sergio Bossa, Giacomo Fiumara and Alessandro Provetti
Dip. di Fisica, Universit̀a degli Studi di Messina

Sal. Sperone 31, I-98166 Messina, Italy
sergio.bossa@gmail.com,{fiumara,ale}@unime.it

Abstract— We describe a new Web service architecture de-
signed to make it possible to collect data from traditional plain
HTML Web sites, aggregate and serve them in more advanced
formats, e.g. as RSS feeds. To locate the relevant data in the
plain HTML pages, the architecture requires the insertion of
some meta tags in the commented text. Hence, the extra mark-
up remains totally transparent to users and programs. Such
annotated HTML documents are then routinely pulled by our
Web service, which then aggregates the data and serves them
over several channels, e.g. RSS 1.0 or 2.0. Also, a REST-style
Web Service allows users to submit XQuery queries to the
feeds database. Finally, we discuss scalability issues w.r.t. polling
frequencies.

I. I NTRODUCTION

This article describes a new, experimental architecture for
automated data collection and RSS delivery of data from
traditional HTML Web sites. Our solution requires minimal
and totally transparent changes on their HTML pages. The
data of interest will be routinelypolled from the actual sources
by standard HTTP querying. Subsequently, the so-created Web
service can be queried with REST-style sessions that extract
the aggregated data at their wish. As a result, we provide a
complete layout for the implementation of RSS Web services
that interact with the traditional Web in an almost seamless
way.

Even though this research project is only at the beginning,
and only a proof-of-concept implementation is available, we
believe that there is room for the application of this type of
approach to bridging Web services and the traditional Web. Let
us discuss why. Today we find on the Web several interesting,
popular news sites that consist, essentially, of plain old HTML
pages. Even though the content is continuously updated, the
site layout and organization is not changing much. Several ad-
vanced techniques for news broadcasting and syndication are
now available, the main one being RSS feeds, yet it seems that
a large set of relevant news sources will carry onby inertia,
with their existing Web architecture. Our architecture enables
extracting the relevant data from plain HTML and makes it
available to the contemporary Web service techniques.

Indeed, today Web portals are publishing, along with tradi-
tional HTML pages, RSS documents, mostly known as RSS
feeds [1], [2].

Inasmuch as HTML is aimed at content visualization for
end user experience, RSS is an XML format aimed at cap-
turing channels of data items, thus enabling automated data

processing. RSS today is used mainly for content syndication;
it organizes the semantics in achannel element, containing
overall information regarding the resource, and a set ofitem
elements, each containing logically related pieces of informa-
tion. Moreover, every channel or item contains atitle element,
a link element and adescription element.

Even though it has been developed for syndication purposes,
RSS can be applied to realize sophisticated forms of content
manipulation, like aggregation or advanced querying. Using
RSS feeds is indeed simple: Web portals must publish, to-
gether with HTML documents, the related feeds. Users can
then consumethese feeds by a particular client, called RSS
aggregator, by which they can read, query oraggregatefeeds.

However, this simple process has some limitations: Web
masters have to create their RSS feeds by some RSS genera-
tion tool, which are often proprietary and may limit interoper-
ability. Moreover, users may not be able to view older feeds,
nor to query feedson the fly,directly on the server.

The architecture described here1 overcomes these limita-
tions by proposing apull-basedWeb service to generate, store,
aggregate and query contents using RSS standards. With this
application it is possible to:

• Automatically and dynamically generate RSS feeds start-
ing from HTML Web pages

• Store them in chronological order
• Query and aggregate them thanks to REST [4], [5] Web

services acting as software agents

Clearly, there are scalability issues involved in our archi-
tecture, and the pulling policy for each site must be carefully
considered. Section VI-B below describes a common structure
for pulling policies.

II. A DDING META-TAGS TO EXISTINGHTML PAGES

HTML documents contain a mixture of information to be
published, i.e., meaningful to humans, and of directives, in
the form of tags, for graphical formatting, i.e. intended for
browsers interpretation. Moreover, since the HTML format is
designed for visualization purposes only, its tags do not allow
sophisticated machine processing of the information contained
therein.

1The architecture was first outlined in the first author’s graduation project
[3].

118

Among other things, one factor preventing the spread of the
Semantic Web is the complexity of extracting, from existing,
heterogeneous HTML documents machine-readable informa-
tion. Although our project addresses only a fraction of the
Semantic Web vision, our management of HTML documents
needs some technique to locate and extract some valuable and
meaningful content.

Therefore, we define a set of annotations in form of meta-
tags, which can be inserted inside an HTML document in
order give it semantic structure and highlight informational
content. In our application, meta-tags are used as annotations,
to describe and mark all interesting information, in order
to help in the extraction and so-calledXML-ization phases.
The set of meta-tags we defined (and recognizable by our
application) is listed in Table I below. The meta-tags are
enclosed in HTML comment tags, so they remain transparent
to Web browsers and do not alter the original HTML structure
of the document.

The conceptual model of the meta-tags described above is
rather straightforward and remains orthogonal to the object
tags found in the page.

A. Meta tags vs. dynamic XSLT transformations

An obvious alternative to our approach to the treatment of
existing HTML structures is that of applying, after the polling
phase, some clever XSLT transformation [6] to the HTML
file. It should be considered, however, that applying such
type of XSLT transformations is possible (or at least greatly
facilitated) only when the [X]HTML document is well-formed.
This, regrettably, seems rather unrealistic to us, exp. forold
documents. Viceversa, our solution relieves the webmasters
from any time-consuming translation of her HTML documents
into well-formed XHTML ones, which would then make a
subsequent XSLT transformation successful.

III. STRUCTURE OF THEXML OUTPUT

Once HTML documents are processed by our application,
annotated semantic structures are extracted and organizedinto
a simple XML format which will be stored and used as a
starting point for document querying and transformation. This
XML format has been simply calledXMLData. This neutral
format has also been introduced in order to avoid storing the
same information in both RSS 1.0 and 2.0 formats. Indeed,
we found more economic for our application to create RSS
feeds on the fly rather than store them. This approach is
also more flexible as the support of new syndication formats
(see for example, the Atom format) does not require the re-
design of the lower levels of the application (see further).The
structure of the XML output resembles the structure of meta-
tags previously defined and the RSS XML structure, in order
to facilitate transformations from the former to the latter. It is
defined by the following XML Schema Definition [7]:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified">

<xsd:complexType name="imageType">
<xsd:all>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="link" type="xsd:anyUri"/>
<xsd:element name="url" type="xsd:anyUri"/>

</xsd:all>
</xsd:complexType>

<xsd:complexType name="extensionsType">
<xsd:sequence>

<xsd:any namespace="##any"
processContents="skip"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="channelType">
<xsd:all>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="link" type="xsd:anyUri"/>
<xsd:element name="description"
type="xsd:string"/>
<xsd:element name="image" type="imageType"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="extensions"
type="extensionsType"
minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

<xsd:complexType name="itemType">
<xsd:all>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="link" type="xsd:anyUri"/>
<xsd:element name="description"
type="xsd:string"/>
<xsd:element name="image" type="imageType"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="extensions"
type="extensionsType"

minOccurs="0" maxOccurs="1"/>
</xsd:all>
<xsd:attribute name="index" type="xsd:integer"
use="required"/>

<xsd:attribute name="id" type="xsd:string"
use="required"/>

</xsd:complexType>

<xsd:complexType name="resourceType">
<xsd:sequence>

<xsd:element
name="channel" type="channelType"/>
<xsd:element
name="item" type="itemType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="url" type="xsd:anyUri"
use="required"/>

<xsd:attribute name="rssId"
type="xsd:string" use="required"/>

<xsd:attribute name="timestamp"
type="xsd:dateTime" use="required"/>

</xsd:complexType>

<xsd:element name="resource" type="resourceType">
<xsd:key name="itemId">

<xsd:selector xpath="item"/>
<xsd:field xpath="@id"/>

</xsd:key>
<xsd:key name="itemIndex">

<xsd:selector xpath="item"/>
<xsd:field xpath="@index"/>

</xsd:key>

119

Meta-tag Description
<channel:title> . . .</channel:title> Channel title
<channel:description> . . .< /channel:description> Channel description
<channel:image url=” link=” title=” /> URL, link and title of an image associated to the channel
<channel:extension uri=” prefix=”> . . .</channel:extension> Channel extension (e.g., publication date)
<item:link index=”> . . .</item:link > item link
<item:description index=”> . . .</item:description> item description
<item:extension uri=” prefix=”> . . .</item:extension> item extension (e.g., item publication date)

TABLE I

THE SET OF META-TAGS

Fig. 1. The general schema

</xsd:element>

</xsd:schema>

IV. T HE OVERALL APPLICATION ARCHITECTURE

Figure 1 shows the overall architecture of the application.
Our application is based on a modular structure, for maximiz-
ing the flexibility and the extensibility of configuration. Three
levels can be distinguished:

• Physical Data Storage Level It is the lowermost level,
which stores resources, and provides a means for retriev-
ing and querying them. It can be implemented in various
ways, using also established technologies like relational
or XML database[8].

• Core Level. It holds the core part of the entire architec-
ture, including the software components which implement
the logic of information management and processing;
each component can be implemented using different
strategies or algorithms, and plugged into the system

without affecting other components, i.e., by simply tuning
the application configuration files.

• Service Level. It is the highest level, interacting with Web
clients by means of REST Web services.

A more detailed explanation follows, starting from the Core
level, the foundation over which our application is based.

A. The Core Level

The Core level is composed by several components defining
how the application i) retrieves HTML resources, ii) processes
to extract information about channeling, iii) manages thisnew
piece of information and finally iv)transforms and preparesit
for client consumption:

• engine: the code that routinely invokes the Retriever and
thus the whole polling process.

• Poller: it monitors changes in a set of HTML resources
configured in a particular file, using some polling policy
(see next section). Moreover, the poller has the important
task of coordinating other components in the retrieving,
extraction, and storing phases.

• Retriever: when invoked by the Poller, it captures the
Web resource from its URL and makes it available to
other components.

• Wrapper : it takes care of extracting the annotated seman-
tic structures from the retrieved HTML resources, wrap-
ping them in a new one, that is, assembling the extracted
structures in a fresh, pure XML format, containing the
desired informational content: the previously-described
XMLData format. So, this component must produce a
well formed XML document, ready to be stored by the
Physical Data Storage level.

• DataManager: it acts as a gateway to the Physical Data
Storage level, taking care of managing information in
the form of the new XML documents previously created,
storing them and permitting client components to query
their contents.

• Transformer : it finally takes care of transforming the
stored XML documents into the RSS format requested
by clients, using XSLT transformations.

Typical parameters of this level can be changed simply
modifying the corresponding parameters which are listed in
some configuration files, in XML format. The configuration
file of the Engine Component, for example, allows to set the
type of polling policy of the Web resources. Currently, the
choice is betweenflat, i.e, constant over time, orsmart, i.e.,

120

depending on the recent rate of updates. Other parameters
are: the type of data manager (currently, the Exist native-
XML database together with its connection parameters) and
the format of the RSSs sent to Dynamo subscribers (currently
RSS1 and RSS2).

B. The Physical Data Storage Level

The Physical Data Storage level can be implemented with
various technologies: our choice has been to implement it
using a native XML database. This choice allows us to
store and manage XML documents produced by the Wrapper
software component in their native format, and to use the
powerful XQuery language for advanced content querying
and aggregation. The native XML database is organized as
a set of collections of XML resources, where the nesting
of collections is allowed. In our application, we store XML
resources as provided by the Wrapper software component,
one collection for each resource. Each collection holds the
various chronological versions of the resource: so, each col-
lection effectively contains the history of the resource, all its
informational content and a changelog.

When a new resource is to be stored, a check is done by the
DataManager software component, in order to avoid duplicate
resources. Two resources are considered to be different if their
informational content changes. More precisely, they are differ-
ent if changes to titles, links or descriptions of the resource
channel or items are detected. Once stored, the resource is
chronologically archived and ready for later retrieving and
querying.

C. The Service Level

The Service level lets Web clients access the RSS feeds
through the use of REST Web Services [9]. REST, an acronym
for Representational State Transfer,is an architectural style
which conceives everything as a resource identified by a
URI. In particular, it imposes a restriction about of the URL
defining the page info, that, in the REST view, are considered
resources. Each resource on the Web, such as a particular part
specification file, must have a unique URL (without GET fields
after it), that totally represents it.

With respect to the well-known SOAP architecture2, in
REST we never access a method on a service, but rather
a resource on the Web, directly using the standard HTTP
protocol and its methods, To put it differently, in REST the
hypertext linking controls the application state. This feature of
REST allows greater simplicity and maximum interoperability
with any Web client, eitherthick, like a desktop application,
or thin, like a Web browser.

D. Accessing REST Web Services and resources

Adhering to the REST architecture and vision, everything
is a resource and so any request and any search returns to the
client an RSS resource, actually in the format of RSS 1.0 or
2.0, depending on the client choice.

2Please refer to [10] for an introduction to SOAP

In our application, these RSS resources are accessed through
HTTP requests, using the GET method of HTTP 1.1 protocol;
clients can ask for:

• A list of collections of RSS resources, each representing
the chronological history of a resource.

• A list of RSS resources contained in a given collection.
• An RSS resource, identified by an index.
• An RSS resource containing only up to a given number

of items, starting from the most recent one.
• An RSS resource obtained by querying a collection

of resources, searching for keywords in titles, links or
descriptions of items.

The GET method, in principle, should not modify the original
resource. A detailed description of how REST Web Services
and resources are accessed follows.

a) /resources[?type=rssType]:Accesses an RSS re-
source listing all collections of resources that clients can
request and query. The optionaltype parameter identifies the
RSS type of the requested resource.

b) /resources/rssId[?type=rssType]:Accesses an RSS
resource listing all resources contained in the collectioniden-
tified by the resource id, therssId URL section. The optional
type parameter identifies the RSS type of the requested re-
source.

c) /resources/rssId?index=n & [type=rssType]:Ac-
cesses an RSS resource identified by itsrssId and theindex
parameter, that is the index number into the chronological
history: use ”1” for the first resource (the most recent one),
”2” for the second and so on. The optionaltype parameter
identifies the RSS type of the requested resource.

d) /resources/rssId?max=n & [type=rssType]:Accesses
an RSS resource identified by itsrssId, containing only up
to max items. The optionaltypeparameter identifies the RSS
type of the requested resource.

e) Complex queries:The following query:

/resources/rssId?max=n & [type=rssType]
& [(title | link | description| desc)=value]
& [op=(and| or)]
& [(title | link | description| desc)=value]
& . . .

is intended to query all resources identified by the givenrssId,
requesting only up tomax items and combining, using logical
”and/or” operators, searches for title, link, or description of items.
The optionaltypeparameter identifies the RSS type of the requested
resource.

V. THE APPLICATION AT WORK

To illustrate how our application works we consider a frag-
ment of a HTML document taken from the reference Web site
www.theserverside.com.After the insertion of the meta-tags, the
fragment looks as in Figure 2. Then the fragment is converted in
XML format and, if not already present in the database, is stored
in the appropriate collection of the database. Upon request from the
client, the XML file is extracted and converted into one of the two
formats currently supported by our application, that is to say RSS
1.0 or RSS 2.0. For sake of brevity we present here only the RSS2
version of the output (see Figure 3). It should be noted that in order
to work properly our application strongly relies upon the insertion of

121

Collection path Description
/db/resources Root collection
/db/resources/headlines.rss Collection holding XML resources related to the headlines.rss resource, that is, its history
/db/resources/headlines.rss/123XML resource identified by its time-stamp (123)

TABLE II

COLLECTION EXAMPLES

Fig. 2. An HTML fragment after the insertion of meta-tags

meta-tags, which can be accomplished with a very little effort and/or
change in currently available content management and publishing
systems. It is beyond the scope of our application to be able to
discover the appropriate patterns inside the HTML documents and
automatically insert the meta-tags, which can be successfully done
by our application only if the HTML document never changes in its
internal structure.

Let us now see how a user interacts with the application. First
of all, a user can verify the available RSS resources through his
Web browser. She obtains a list of the available resources which can
be formatted in one of the two currently supported formats, namely
RSS 1.0 or 2.0. Following the link, the user gets the archive of the
resource, chronologically ordered from the newest to the oldest. Our
application allows also to aggregate RSS items and to query them.
It is then possible to keep up-to-date by requesting a fixed number
of the newest items. It is also possible to request the newest items
containing a certain keyword in the title or in the description.

VI. A PPLICATION EXPERIENCE

A. The proof-of-concept: dynamo.dynalias.org
We made a working prototype of our architecture, that we called

Dynamo, available at http://dynamo.dynalias.org. By now Dynamo
publishes the news feeds, in both RSS1 and RSS2 formats, taken
from the Web portals www.serverside.com and www.java.net, each

Fig. 3. The fragment in RSS 2.0 format

of which produces about 4-5 news (in plain HTML format) every
day. In order to avoid any interaction with the portals we resorted to
download the HTML pages containing the news, insert the meta-tags
we defined and submit them to the entire procedure of extraction,
storing and publishing.

B. Scalability issues
A typical problem in the design of an architecture like ours consists

in the forecast of all possible critical elements that can raise as work
loads become bigger and bigger. First of all it must be considered that
an instance of Dynamo can be installed for each Web server. In those
cases in which we have a very frequent production of news coming
from different sources of information, it is possible to install a ”copy”
of Dynamo for each source so to distribute and even balance the load.
Another, even more severe, possible limitation to the performance of
the proposed architecture is represented from the bandwidth required
to forward the requests for updates, because in those cases of non
regular updates a lot of requests would be useless thus resulting in
wasting bandwidth. This is the reason of an improvement we are
studying, that is a polling policy able to fit the frequency of the
updates of the news from the Web servers: this policy, we called
smart polling policy, adjusts the frequency of the requests for updates
to the frequency with which Web portals generate new information.

122

Another factor that may affect the overall performances of Dy-
namoNews is the host database management system, which is in
our implementation iseXist, an Open Source native XML database
whose performance seems not up to those of the DBMSs normally
adopted to service Web portals. To avoid long response times even
for simple queries, we have implemented a cache engine where the
most frequently requested queries are stored.

We introduced two different polling policies, which can be chosen
and plugged in our application independently from each other. The
first is called ”flat” polling policy, as it does not depend from update
frequency, while the second is called ”smart”, as it tries to fit the
update frequency of each Web portal. It is possible to reconfigure
at run-time the Poller component of the application (see further), in
order to switch policy at runtime. It must however be considered that
the smart polling converges asymptotically to the flat one.

With the flat polling policy, Web resources are queried for updates
at regular time intervals which can be modified. It is the simplest
strategy and it well applies to regularly updated information. The
first improvement one can make over flat polling is to compute the
frequency of the requests of updated Web documents as an estimate of
the frequency. Then such estimate is compared to thereal frequency
with which Web documents are updated or newly generated. Both
the estimate and thereal times are used to compute a new estimate.
That is:

τn+1 = ατn + (1 − α)tn (1)

where τn+1 is the estimate at the(n + 1)-th iteration, τn the
estimate at then-th iteration, tn the real frequency at then-th
iteration. The parameterα, whose value stands in the interval between
0 and1, represents the relative weight of the previous estimate w.r.t.
thereal frequency. Asτn+1 takes into account the previous iterations,
α represents the importance given to previous iterations.

Some considerations about the parameterα. Its value, comprised
between0 and 1, influences the velocity with which the frequency
of polling equals the frequency with which Web portals publish new
information. We found, on the other side, that its value does not
influence theconvergenceof the frequency of polling to the frequency
of publication, but only its velocity. Analogous results can be found
in literature, even if in rather different situations. See, for example,
the algorithm of processes scheduling known asshortest job first[11],
as well as the weighed mean frequently used in iterative calculations
typical of the Self-Consistent Integral Theories in Statistical Many-
Body Thermodynamics. Please refer to the survey in

VII. R ELATIONSHIP WITH LITERATURE

The amount of information currently available in HTML format is
really huge, but the main limitation in its fruition consists in its poor
machine-readability, that is, in its lack ofstructure. Such problem
can be solved, vis-a-vis the size of the Web and of individual Web
portals, by making the extraction and annotation phase automated at
least to some extent. To the best of our knowledge, the most advanced
example of this approach is the LiXto [12] suite. LiXto supports the
semi-automated creation of extraction programs, called filters, which,
thanks to some clever logic-based representation of the HTML/XML
structure [13], [14] of the document, is tolerant to some degree of
elaboration of the source. We are planning to experiment with LiXto
to make our extraction function capable of re-arranging the meta-tags
annotation to adapt to changes in the HTML source.

VIII. F INAL CONSIDERATIONS

We have described a Web application that generates and manages
the RSS feeds extracted from HTML Web documents. The proposed
architecture is intended to be applicable to arbitrary Web sites,
provided that the Web administrator decides to start the service by
adding the proposed meta-tags to the commented part of each page.

In order to collect the information relevant for the generation of
a RSS feed we have defined a set of XML-like annotations which
have to be inserted inside the HTML documents that contain the
information we want to convert. The information is then extracted and
organized into an XML format for storing. Typical actions which can
be made include aggregation, query and conversion to RSS formats
for syndication.

The most contemporary Web Content Management Systems
(CMS) can handle news publishing and channeling by dynamic
procedures which, upon user’s request, retrieve data from the DBMS,
the insertion of Dynamo meta-tags is accomplish just by some slight
modification of those procedures (usually coded in PHP, JSP or ASP).
Although content management systems of the last generation allow
the publication of news in RSS format, Dynamo has the advantage
of preparing and storing XML news and querying the database in a
moresemantics-drivenway than with the relational databases which
normally underlie CMSs.

We believe that there is room in the current landscape of the Web
for this solution as it allows upgrading existing Web portals with
minimal effort. As an instance, our recent work [15] describes how
to bring a legacy system for the managing of community Web pages
up to RSS news channeling. By hosting hundreds of discussion lists,
accessed daily by thousands of users, the considered application is a
good, and successful testbed for Dynamo.

REFERENCES

[1] WC, “Rdf site summary (rss) 1.0.” [Online]. Available: http:
//web.resource.org/rss/1.0/spec

[2] “Rss 2.0 specification.” [Online]. Available: http://blogs.law.harvard.
edu/tech/rss

[3] S. Bossa, Towards the Semantic Web: a platform for dynamic
generation, query and archival of RSS contents (In Italian).
http://informatica.unime.it/: Graduation Project in Computer Science,
Univ. of Messina, 2005.

[4] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. Dissertation, 2000.

[5] R. L. Costello, “Building web services the rest way.” [Online].
Available: http://www.xfront.com/REST-Web-Services.html

[6] W3C, “Xsl transformations (xslt) version 1.0,” 11 1999.
[7] ——, “Xml schema part 0: Primer version 2.0,” 10 2004. [Online].

Available: http://www.w3.org/TR/xmlschema-0
[8] R. Bourret, “Xml and databases.” [Online]. Available: http://www.

rpbourret.com/xml/XMLAndDatabases.htm
[9] J. M. Snell, “Resource-oriented vs. activity-orientedweb services.”

[Online]. Available: ftp://www6.software.ibm.com/software/developer/
library/ws-restvsoap.pdf

[10] W3C, “Soap version 1.2 part 0: Primer,” 06 2003. [Online].Available:
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

[11] G. G. Abraham Silberschatz, Peter Galvin,Operating System Concepts
VI Edition. John Wiley & Sons, 2002.

[12] G. Gottlob, R. Baumgartner, and S. Flesca, “Visual web information
extraction with lixto,” Proc. of VLDB Conference, 2001.

[13] G. Gottlob and C. Koch, “Monadic datalog and the expressive power of
languages for web information extraction.”Journal of the ACM, vol. 51,
2004.

[14] G. Gottlob and et Al., “The lixto data extraction project – back and forth
between theory and practice.”Proc. of PODS, Principles of Database
Systems, 2004.

[15] F. DeCindio, G. Fiumara, M. Marchi, A. Provetti, L. Ripamonti, and
L. Sonnante, “Aggregating information and enforcing awareness across
communities: the dynamo rss feeds creation engine,” inProc. of COM-
INF06 Workshop. Springer LNCS, 2006.

123

