
Middleware Support for BPEL Workflows in the

AO4BPEL Engine

Anis Charfi, Mira Mezini

Software Technology Group
Darmstadt University of Technology

{charfi,mezini}@informatik.tu-darmstadt.de

Abstract. This paper focuses on middleware concerns in BPEL work-
flows. When looking at those workflows from the implementation per-
spective, we observe that they have several BPEL-specific middleware
requirements, which are not supported by current WS-* specifications
and by most BPEL engines available to date. This demo paper will show
the AO4BPEL Engine, which implements a container framework that
allows the specification and enforcement of middleware requirements in
BPEL processes. A deployment descriptor is used to specify the quality
of service requirements of BPEL activities. A light-weight and aspect-
based process container is used to enforce those requirements by calling
dedicated middleware Web Services. We implemented those middleware
Web Services by extending open source implementations of WS-* speci-
fications for security, reliable messaging, and transactions.

1 Introduction

In BPEL [11], a composite Web Service is implemented by means of a workflow
process, which consists of a set of interactions between the composition and
the partner Web Services along with the flow of control and data around those
interactions. Whilst the functional side of the composition is specified by the
BPEL process, it is unclear how to handle non-functional middleware concerns
such as security, reliable messaging, and transactions.

The BPEL specification does not address middleware issues and leaves that
for good reasons to BPEL implementations, which should support these “de-
ployment issues” somehow. We observe however, that current BPEL engines do
no provide appropriate middleware support for BPEL processes. In addition, it
is widely assumed that WS-* specifications such as WS-Security [18] and WS-
ReliableMessaging [4] are sufficent to cope with the middleware requirements of
BPEL processes, for example by attaching appropriate policies [5] to the WSDL
of the composite Web Service or its partners. We argue that WS-* specifications
support only some of BPEL middleware requirements, namely those which have
corresponding operations and messages in WSDL. There are other BPEL-specific
middleware requirements that cannot be mapped to WSDL and SOAP as they
require knowledge about the process, its activities, and BPEL semantics. These
requirements are not supported by WS-* specifications.



In [7], we presented a container framework, which addresses the problems of
specification and enforcement of middleware requirements in BPEL processes.
The framework introduces a deployment descriptor, which specifies the middle-
ware requirements of the process activities and a process container, which inter-
cepts the execution of the activities at well-defined points and plugs in calls for
dedicated middleware Web Services to enforce those requirements. In this paper,
we present an implementation of that framework on top of the AO4BPEL en-
gine, which is an aspect-aware engine based on IBM’s BPWS4J [15]. We will also
present some BPEL middleware Web Services that we developed by extending
open source implementations of WS-* specifications.

2 Middleware Requirements in BPEL Workflows

We distinguish simple requirements, which correspond to BPEL messaging ac-
tivities and could be supported somehow by using existing WS-* specifications
and complex requirements, which are specific to BPEL. We will elaborate on
reliable messaging, security, and transactions.

2.1 Reliable Messaging

A simple requirement of BPEL messaging activities is the reliable delivery of
their respective SOAP messages with guaranteed delivery assurances (e.g., with-
out message loss and/or duplication). Consider for instance two messaging ac-
tivities such as reply or one-way invoke that target different partners and are
nested in a sequence. The corresponding messages should be delivered in the
order, in which the activities appear in the sequence, i.e, the SOAP message of
the first activity should be received by the respective partner before the SOAP
message of the second activity. Current reliable messaging specifications [17, 4]
do not support this complex requirement because it involves more than two end
points (the process and the two partners). This requirement is about the ordered
message delivery in multi-party BPEL interactions [10].

2.2 Security

Messaging activities have simple requirements such as integrity, confidentiality,
and authentication, which are supported by WS-Security [18]. Complex require-
ments arise when we consider issues such as secure conversations, trust, and
federation in the context of BPEL processes. For example, we assume that we
have a sequence, which contains many messaging activities targeting the same
partner. From a performance point of view, it is inefficient to secure each mes-
saging activity individually as in WS-Security. Instead, using a security context
(according to WS-SecureConversation [14]) for all interactions with that partner
would improve the performance significantly.



2.3 Transaction

Composite BPEL activities might require transaction semantics e.g., in a se-
quence with two invoke activities it might be necessary that either both invo-
cations succeed or both must be undone. It is also essential that the process
and the partners decide together the outcome of the transaction, which is called
external coordination [19]. This feature is not supported in BPEL. Moreover, a
way is needed to flexibly configure the transactional requirements of activities
according to the application semantics e.g., a sequence might need to be exe-
cuted as an atomic transaction or as a compensation-based transaction. WS-*
transaction specifications [12, 13] can support the transactional requirements of
BPEL activities if the BPEL engine is integrated properly with the Web Service
transaction middleware.

2.4 Discussion

The problem of middleware requirements in BPEL is two-fold. On the one hand,
appropriate means are needed to specify the requirements of BPEL activities.
On the other hand, appropriate infrastructure is necessary to enforce those re-
quirements during process execution. Even for simple requirements, most current
BPEL engine do not provide a way to say “this invoke or that reply must be
secure”. Moreover, the integration of BPEL engines with existing WS-* middle-
ware is still problematic.

3 The AO4BPEL Engine and the Container Framework

Our framework has three main components: a deployment descriptor, a process
container, and a set of middleware Web Services [7].

Fig. 1. Deployment Descriptor GUI Tool



3.1 The Deployment Descriptor

An XML-based deployment descriptor specifies declaratively the middleware re-
quirements of the BPEL activities and the parameters that are needed to accom-
plish those requirements. Listing 1. shows an excerpt of a deployment descriptor
for a bank transfer process, which calls the operations credit and debit on two
partner Web Services.

The deployment descriptor defines one or more activity selectors, which are
XPath expressions to identify the activities that will be associated with some
requirement. The attribute selectorid attribute of the requirement element is
used for this association. The service elements group requirements that belong
to a specific middleware service.

<bpel−dd xmlns=”http://www.st.informatik.tu−darmstadt.de/bpel−dd”>

<selectors>

<selector id=”0” name=”credit” type=”activity”>/process//invoke[@operation=”credit”]</selector>

<selector id=”1” name=”debit” type=”activity”>/process//invoke[@operation=”debit”]</selector>

</selectors>

<services>

<service name=”reliability”>...
<requirement name=”req0” class=”semantics” type=”exactlyOnce” selectorid=”0”/>...

</service>

<service name=”security”>...
<requirement name=”req2” class=”confidentiality” type=”decryption” selectorid=”1”/>

<parameters>

<parameter name=”symmetricEncAlgorithm”>xmlenc#tripledes−cbc</parameter>

<parameter name=”keyEnc”>http://www.w3.org/2001/04/xmlenc#rsa−1 5</parameter>

<parameter name=”transportKeyId”>16c73ab6−b892−458f−abf5−2f875f74882e</parameter>...
</parameters>

</requirement>...
</service>

</services>

</bpel−dd>

Listing 1. The deployment descriptor

The deployment descriptor is the only component of the framework that the
BPEL programmer needs to know about. He/she could write it manually or use
the GUI tool shown in Fig. 1 to generate it.

One major advantage of the deployment descriptor against policies [16] is that
the deployment descriptor allows the specification of the necessary parameters
to enforce a given requirement. With policies, which are too declarative, this is
not possible. For instance, in a policy is not possible to specify the user name
and password that should be used to support authentication.

At process deployment time, the deployment descriptor file has to be specified
in addition to the BPEL file as shown in Figure 2.

3.2 The Process Container

The process container is an implementation concept that BPEL programmers
do not need to know about. It intercepts the execution of BPEL activities at
well-defined points and calls dedicated middleware Web Services that provide
the necessary functionality to enforce the middleware requirements.

We implemented a light-weight and aspect-based process container using a set
of AO4BPEL aspects [6] that are automatically generated from the deployment
descriptor. Automatic aspect generation is possible because the advices used



Fig. 2. Process Deployment in AO4BPEL

for integrating middleware Web Services follow well-defined patterns. E.g., for
reliable messaging, there are recurring advice patterns for sending a message
with exactly-once semantics, etc.

AO4BPEL [6, 9] is an aspect-oriented extension to BPEL. AO4BPEL sup-
ports process-level join points and interpretation-level join points. The former
capture the execution of an activity. The latter capture internal points during
the interpretation of an activity e.g., the point where a SOAP message of an
invoke activity has been created. In AO4BPEL, an aspect defines one or more
pointcuts and advices. A pointcut is a construct for selecting a set of join points
e.g., to intercept some activities that have a common requirement. XPath is
used as pointcut language in AO4BPEL. The advice is a BPEL activity that
specifies some crosscutting functionality and can be used for example to enforce
a requirement by calling a middleware Web Service.

After deploying the BPEL process (cf. Fig. 1), container aspects are auto-
matically generated and deployed. We can see these aspects by switching to the
process-list view of the AO4BPEL engine shown in Fig. 3.

Listing 2 shows the second aspect in the aspects list of Fig. 3. This aspect
declares the reliable messaging service (RM) as partner and two variables for
the input and output parameters of the call to sendWithExactlyOnceSemantics.

The pointcut of this aspect intercepts the invoke activity that calls the op-
eration credit at the point where the SOAP request message has been created
(this is the semantics of the advice type around soapmessageout). The advice
contains an assign activity, which sets the input parameters of the call to the
operation sendWithExactlyOnceSemantics of the RM Service. The SOAP mes-
sage corresponding to the current join point (i.e., the invoke activity that calls
the operation credit) is accessed by means of the special AO4BPEL context
collection variable soapmessage. The second assign activity is used to pass the
response message for the current join point activity from the RM Service to
the BPEL process by using the special AO4BPEL context collection variable
newsoapmessage. This is necessary because the request message for calling the
operation credit was sent by the RM service on behalf of the BPEL process.



Fig. 3. The List of Container Aspects in AO4BPEL

<aspect name=”credit semantics exactlyOnce”>

<partners><partner name=”rmService” partnerLinkType=”rms:RMService”/></partners>

<variables>

<variable messageType=”rms:sendWithExactlyOnceSemanticsRequest” name=”inputMessage”/>

<variable messageType=”rms:sendWithExactlyOnceSemanticsResponse” name=”outputMessage”/>

</variables>

<pointcut name=”creditExactlyOnce”>/process//invoke[@operation=”credit”]</pointcut>

<advice type=”around soapmessageout”>

<bpws:sequence>

<bpws:assign>

<bpws:copy><bpws:from part=”message” variable=”soapmessage”/>

<bpws:to part=”message” variable=”inputMessage”/></bpws:copy>

<bpws:copy><bpws:from part=”isInonly” variable=”ThisJPActivity”/>

<bpws:to part=”inonly” variable=”inputMessage”/></bpws:copy>

<bpws:copy><bpws:from part=”partnerEndpoint” variable=”ThisJPActivity”/>

<bpws:to part=”endpoint” variable=”inputMessage”/></bpws:copy>

</bpws:assign>

<bpws:invoke name=”rmInvoke” operation=”sendWithExactlyOnceSemantics” partner=”rmService”
inputVariable=”inputMessage” outputVariable=”outputMessage” portType=”rms:RMService”/>

<bpws:assign>

<bpws:copy><bpws:from part=”sendWithExactlyOnceSemanticsReturn” variable=”outputMessage”/>

<bpws:to part=”newmessage” variable=”newsoapmessage”/></bpws:copy>

</bpws:assign>

</bpws:sequence>

</advice>

</aspect>

Listing 2. A container aspect for reliable messaging

3.3 The Middleware Web Services

The middleware Web Services are not part of the AO4BPEL engine. They are
based on open source implementations of WS-* specifications.

The reliable messaging service [10] provides operations that are called by the
container to enforce a delivery assurance for messaging activities (e.g., exactly-
once) and to support the in-order delivery of messages even between more than
two endpoints. Our implementation of this service is based on Apache Sandesha
[1], which was extended to support mutli-party reliable messaging [10].

The security service [8] provides two port types: one for secure messaging
according to WS-Security and one for secure conversations according to WS-
SecureConversation with operations such as createContext, encryptWithContext,
etc. The implementation of this service is based on Apache WSS4J [2].



The transaction service provides operations that are called by the container to
enforce atomic transactions [12] such as begin(transid), participate(transid, soap),
and commit(transid). The implementation of this service is based on Apache
Kandula [3], an implementation of WS-Coordination and WS-AtomicTransaction.

4 The Demo

In this demo, we will use a travel agency scenario with several BPEL processes
that compose the Web Services of airline companies and hotel chains. We will
deploy these processes on the AO4BPEL engine and specify a deployment de-
scriptor file that defines the middleware requirements of the process activities.

Once the process is deployed, the audience will see how AO4BPEL container
aspects will be generated automatically and activated. Then, we will start some
instances of the deployed processes and use a tool to monitor the SOAP messages
that are exchanged between the processes and their partners. Thus, we verify
that the middleware Web Services are called correctly by the process container
and the requirements of the different activities are fulfilled.

5 Conclusion

In this paper, we presented a user-friendly implementation of a container frame-
work for the specification and enforcement of the middleware requirements of
BPEL processes. The framework was inspired from enterprise component mod-
els and it can be reused with other BPEL engines. The engine has to provide a
process container that is able to intercept the execution of BPEL activities and
call the middleware Web Services. The deployment descriptor and the middle-
ware Web Services could be reused without any changes.

The AO4BPEL engine presented here provides support for many BPEL-
specific middleware requirements and paves the way toward a new breed of
BPEL engines that we devise application servers for BPEL.

References

1. Apache. Sandehsa 1.0, July 2005.
2. Apache. Wss4j, March 2005.
3. Apache. Kandula 0.2, May 2006.
4. C. Ferris and D. Langworthy (Eds.). Web Services Reliable Messaging Protocol

(WS-ReliableMessaging), February 2005.
5. C. Sharp (Eds.). Web Services Policy Attachment (WS-PolicyAttachment), Sep-

tember 2004.
6. Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition with

AO4BPEL. In Proceedings of the European Conference on Web Services (ECOWS),
volume 3250 of LNCS, pages 168–182. Springer, September 2004.

7. Anis Charfi and Mira Mezini. An Aspect-based Process Container for BPEL.
In Proceedings of the 1st Workshop on Aspect-Oriented Middleware Development
(AOMD), November 2005.



8. Anis Charfi and Mira Mezini. Using Aspects for Security Engineering of Web
Service Compositions. In Proceedings of the IEEE International Conference on
Web Services (ICWS), Volume I, pages 59–66. IEEE Computer Society, July 2005.

9. Anis Charfi and Mira Mezini. AO4BPEL: An Aspect-Oriented Extension to BPEL.
World Wide Web Journal: Recent Advances on Web Services (special issue), to
appear, 2006.

10. Anis Charfi, Benjamin Schmeling, and Mira Mezini. Reliable messaging in bpel
processes. In Proceedings of the 3rd IEEE International Conference on Web Ser-
vices (ICWS), to appear, September 2006.

11. F. Curbera, Y. Goland, J. Klein, et al. Business Process Execution Language for
Web Services (BPEL4WS) Version 1.1, May 2003.

12. D. Langworthy (Eds.). Web Services Atomic Transaction (WS-
AtomicTransaction), November 2004.

13. D. Langworthy (Eds.). Web Services Business Activity (WS-BusinessActivity),
November 2004.

14. M. Gudgin and A. Nadalin (Eds.). Web Service Secure Conversation Language
(WS-SecureConversation) Version 1.0, February 2005.

15. IBM. The BPEL4WS Java Run Time, August 2002.
16. J. Schlimmer (Eds.). Web Services Policy Framework (WS-Policy)., September

2004.
17. OASIS. Web Services Reliable Messaging TC WS-Reliability 1.1, 15 November

2004.
18. OASIS. Web Services Security: SOAP Message Security Version 1.0, March 2004.
19. Stefan Tai, Rania Khalaf, and Thomas Mikalsen. Composition of coordinated web

services. In Proceeding of ACM/IFIP/USENIX International Middleware Confer-
ence (Middleware), volume 3231 of LNCS, pages 294–310. Springer, October 2004.


