
Repository for Business Processes
and Arbitrary Associated Metadata

Jussi Vanhatalo12, Jana Koehler1, and Frank Leymann2

1 IBM Research GmbH, Zurich Research Laboratory,
Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{juv, koe}@zurich.ibm.com
2 Institute of Architecture of Application Systems, Universität Stuttgart,

Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@informatik.uni-stuttgart.de

Abstract. We have published a repository for storing business processes
and associated metadata. The BPEL Repository is an Eclipse plug-in
originally built for BPEL business processes and other related XML data.
It provides a framework for storing, finding and using these documents.
Other research prototypes can reuse these features and build on top of
it. The repository can easily be extended with new types of XML doc-
uments. It provides a Java API for manipulating the XML files as Java
objects hiding the serialization and de-serialization from a user. This has
the advantage that the user can manipulate the data as more convenient
Java objects, although the data is stored as XML files compliant with the
standard XML schemas. The data can be queried as Java objects using
an object-oriented query language, namely the Object Constraint Lan-
guage (OCL). Moreover, the flexible design allows the OCL query engine
to be replaced with another engine based on other query language.

1 Introduction

Interoperability based on several XML standards is one of the corner stones
of Web services. The Business Process Execution Language for Web Services
(BPEL) [2] is the defacto industry standard for representing business processes.
It is tightly related to other XML standards, such as the Web Service Definition
Language (WSDL) and XML Schema. In addition, arbitrary metadata repre-
sented in XML format may be associated to business processes depending on
the context and applications that use the data.

XML data is commonly used by different applications. However, currently
managing the documents and searching information from their contents is labo-
rious and inefficient. It is beneficial to store the data in a repository that takes
care of data access and executes queries. Although it is important for interoper-
ability to exchange data in XML format across organizations and systems, it is
often more convenient for a developer to manipulate the data as Java objects,
instead of XML. Our goal was to build a business process repository that stores
data as documents compliant to the XML standards, but allows applications to
be implemented directly on the Java representation of the data model.



We have implemented the BPEL Repository, which is an Eclipse plug-in built
to store business processes together with other XML data. It provides a frame-
work for storing, finding and using these documents. Other research prototypes
can reuse these features and build on top of it. The repository can easily be
extended with additional XML schemas because of its flexible architecture. By
default it supports the common Web service standards, such as BPEL, WSDL
and XML schema, and it can easily be extended to support other XML schemas
for business processes and other data.

The object-oriented approach frees developers from the burden of the under-
lying XML data model and allows them to concentrate on the object model of
their application, which they usually know well. The Eclipse Modeling Frame-
work (EMF) [10] is used to hide data serialization and de-serialization from the
user. The framework takes care of representing the XML data as EMF objects
that are Java objects. As a novel feature, it is possible to query the XML files as
EMF objects using an object-oriented query language, namely the Object Con-
straint Language (OCL) [7] that is part of the UML specification. Native XML
databases support typically XQuery as their query language. A major advantage
of OCL over an XQuery is its ability to navigate through the data model and
follow all the associations of an object model. In contrast, XQuery forces the
user to formulate the queries based on the tree structure of the underlying XML
schema.

In contrast to our file system based solution, there are other business process
repositories [12] [14] that are built on top of a database system. However, their
database schemas are created manually. Flexibility is an advantage of the BPEL
Repository, because EMF is used to automatically generate support for new and
modified XML schemas. In research projects, data structures are often modified
and new ones are introduced. The automatization makes adapting these changes
easier. Nevertheless, repositories based on a database have typically better per-
formance and scalability than our solution.

The BPEL Repository was recently published in IBM alphaWorks [16] with
special licensing terms for academic use. The software has been integrated with
a change management system called CHAMPS [3], [13].

2 Solution

The architecture of the BPEL Repository is presented in Figure 1. All compo-
nents are plug-ins on the Eclipse platform. The core component of the solution
is the Repository API, which provides an application programming interface for
external software to build on.

The Repository User Interface (UI) is an example implementation that uses
the Repository API. However, it is also a useful graphical user interface to man-
age the contents of the repository. The user interface is integrated in the Eclipse
workbench and built on the Standard Widget Toolkit (SWT) and JFace libraries.

The Data Handler is a sub-component that takes care of the data access
on a file system. It abstracts the choice of the storage medium from the other



��������	
�
	�������

������
������	���

��������������

�������������

����������������

��� 	 �����

	
�!"��!��#

�������	
�
	������

�$
�#%&�
	�����'�����

�$
�#%&�	���

(���#%&
	�����'�����

(���#%&
	���

���

��)���	
�
��������

*�� �

��)���
+����������

�����,�'���

	
��	'����

	
���'�����

Fig. 1. Repository architecture showing components and technologies used.

components. The data access component could be replaced with another one
storing data in a database by using a technology such as the Service Data Objects
[10]. The Data Handler uses the Eclipse Modeling Framework to serialize EMF
objects into XML files and de-serialize the files back to EMF objects. Thus, all
repository components manipulate data as EMF objects rather than of XML.

2.1 Flexibility of Manipulating Data as EMF Objects

In the repository, data is represented as EMF objects. Therefore, all data must
have an EMF model. However, the EMF model can be automatically generated
from an XML schema, a UML class diagram or Java classes [4], [10]. As in the
business process management context data is often stored as XML conforming
standardized XML schemas, it is trivial to obtain EMF models for XML files.
The repository can be extended to support a new data type by plugging in the
EMF model of this new data type.

The components providing EMF models for the repository are shown on the
left-hand side of the Repository API in Figure 1. The Default EMF Extensions
plug-in contains EMF models for BPEL, WSDL and XML schema standards.
Thus, the repository supports the respective file types by default. This compo-
nent can be replaced by another component supporting a different version of
these standards or completely different file types. Because the Eclipse plug-in
mechanism is used, this does not require any modifications in the other parts of
the repository.



Similarly, other EMF extensions can be plugged into the repository. In the
evolving research community, extensibility is an asset. For instance, in the con-
text of combining business process management with semantic Web, the reposi-
tory can easily be extended to support a new document type containing metadata
related to a business process.

The Sample EMF Extension contains an EMF model that is used in the user
guide [16] to illustrate, step by step, how to create an EMF model and plug it
into the repository. It is also explained how EMF can be used to automatically
generate a graphical editor for the instances of an EMF model.

First, the data structure can be modeled as a UML class diagram, which
is usually much faster than describing the same structure as an XML schema.
Next, the UML class diagram is transformed to an EMF model. An editor can be
automatically generated for the EMF model. An XML schema can be generated
from the EMF model, if desired. In any case, instances of an EMF model can be
serialized to interoperable XML files. Instances of the model can be generated
for testing purposes with the editor, which takes care of proper syntax. Finally,
the EMF model is plugged into the repository, which persists the data and
provides capabilities for querying data. A chief advantage is that queries can
be formulated using the same object-oriented model as was used to create the
data structure in the first place. Thus, the XML representation is used only for
interoperability with other systems, and the developers need not bother with
the concrete XML syntax.

2.2 Query Engines

We used existing query engines with the repository. The repository handles the
iteration over the queried objects, but each sub-query is executed in the query
engine plugged into to the repository. It is possible to change the query engine
to another pre-registered one between queries. The available query engines are
shown on the right-hand side of the Repository API in Figure 1. The repository
has been tested with two OCL query engines, that query Java objects with an
object-oriented query language, namely OCL.

If the repository is installed on top of the IBM Rational Software Architect
(RSA) product, the OCL engine of the latter can be used. However, as we did
not want to limit the repository to a single commercial query engine or a specific
query language, the query engine interface has been built generic. Therefore, the
IBM OCL engine is plugged into the repository using an adapter. The IBM OCL
Engine Adapter is delivered together with the repository.

Another OCL engine was built at the University of Kent [1]. It is an open
source tool that can be plugged into the repository using the Kent OCL Engine
Adapter. The Eclipse Modeling Framework Technology project [11] is building
another open source OCL engine that could also be adapted to the repository. We
have not yet implemented the corresponding adapter because this OCL engine
is still under development.

It is straightforward to plug a new query engine into the repository or adapt
an existing query engine for it. An example of how to adapt an OCL engine



is included in the user guide [16]. The Dummy Query Engine is an example
implementation to show how a new query engine can directly be integrated into
the repository. Thus, also query engines based on another query languages can
be used.

The repository is not aware of the query language that is used. The repository
merely passes the query and other parameters from the user interface or external
software to the query engine selected together with the EMF object that is to
be queried. Thus, any query engine that can execute queries on EMF objects
can be plugged into the repository.

One limitation of the query mechanism is that the performance is only linear
compared with the number of documents that are queried. Indexing data or other
ways to improve the query performance are not used. However, this performance
has been sufficient for research prototypes. For example, querying 100 BPEL files
took 3 seconds on a laptop in our performance tests [15]. One way to improve
OCL queries would be to map them to a query language, such as XQuery, that
is natively supported by a database system. In that case, the repository would
also be built directly on top of the database system. Some work on mapping
OCL to XQuery already exists [5], [6].

2.3 Data Structure

The data is organized in a tree of organizations. The organizations are mapped to
directories in a file system. Each organization may contain a business process and
associated metadata grouping the related files together. In addition to these data
documents, a descriptor document is stored in each organization. It contains the
file type and the role of each data document in the organization. This information
is used to make the conversion between EMF objects and XML files. In addition,
the role describes how the data document is related to the other documents in the
organization. For instance, a WSDL file stored with the repository may contain
the public interface or the partner links of the BPEL business process.

Queries can be applied to files with a specified role in an organization, a list
of organizations, or a list of sub-trees in the organization hierarchy. Related files
can be searched based on their roles.

Data can be accessed from the file system as XML files and through the
repository as EMF objects. Any directory in a file system can act as the root
organization of the repository contents. The data in the repository can be moved
to another location or a computer as simply as copying the directories.

2.4 Usage Scenario

The repository has been deployed with a change management system called
CHAMPS. As part of the solution, planning algorithms are used to facilitate
the automatization of the change and configuration management. The plans
are stored as BPEL files into the BPEL Repository. In addition, the plans are
analyzed and the results are stored as metadata associated to the plans. The



metadata includes information about the plan such as its number of activities,
degree of concurrency, execution duration and correctness [13].

Storing the analysis results as metadata enables reuse of the data, and unnec-
essary recomputing of the results can be avoided. The suitable plans are found
from the repository by querying the content of the plans and their associated
metadata. For example, the plans that are structurally correct can be found by
querying the metadata. Among these plans the ones that reach a specified goal
can be found with a subsequent query.

During the development of the system, trying out different alternatives of
the metadata schema was uncomplicated, since the data structure was designed
as a UML class diagram and the corresponding EMF classes were used as the
basis of the implementation and the OCL queries. The developers were able to
avoid completely working with the XML representation of the data, because it
was automatically generated and used only as the serialization format behind
the scenes.

3 Conclusion

The repository has already been proved useful for IBM internal research proto-
types [13]. By publishing the repository, we wanted to make it widely available
to the research community as we are interested in more user experience with
it. We would also be interested in finding out how convenient users find OCL
as a query language, because currently OCL is more common as a language to
express constraints rather than queries.

As next steps, we plan to contribute our experiences gained while building
the repository to the IP-SUPER project [8], [9] funded by European Union.
The project merges business process management with semantic Web services.
As part of the project, we plan to build a business process library, most likely
on a database system rather than a file system in order to improve the query
performance for more extensive querying purposes. This would also be beneficial,
when the repository is used for searches based on an ontology or as a component
of a business process execution engine.

References

1. Dave Akehurst and Octavian Patrascoiu. Object constraint language library. Web
site, June 2004. http://www.cs.kent.ac.uk/projects/ocl/.

2. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish
Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business Process Ex-
ecution Language for Web Services. OASIS Org., 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

3. Aaron B. Brown, Alexander Keller, and Joseph L. Hellerstein. A model of con-
figuration complexity and its application to a change management system. In
Proceedings of the 9th International IFIP/IEEE Symposium on Integrated Man-
agement (IM 2005), May, 2005.



4. Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework. The Eclipse Series. Addison-Wesley Profes-
sional, 2003.

5. Ahmed Gaafar and Sherif Sakr. Proposed framework for integrating XML/XQuery
and UML/OCL. In Proceedings of the 7th Conference in the UML series
(UML2004), pages 241–259, Lisbon, Portugal, 2004.

6. Ahmed Gaafar and Sherif Sakr. Towards a framework for mapping between
UML/OCL and XML/XQuery. In Proceedings of the IADIS e-Society 2004 Con-
ference (ES2004), pages 241–259, 2004.

7. Object Management Group. OCL 2.0 Specification. OMG, 2005.
http://www.omg.org/docs/ptc/05-06-06.pdf.

8. Martin Hepp, Frank Leymann, John Domingue, Alexander Wahler, and Dieter
Fensel. Semantic business process management: A vision towards using semantic
web services for business process management. In Proceedings of the IEEE ICEBE
2005, pages 535–540, Beijing, China, October 2005.

9. IP-SUPER. Semantics utilised for process management within and between enter-
prises. Web site, April 2006. http://www.ip-super.org/.

10. Eclipse Org. Eclipse modeling framework. Web site. http://www.eclipse.org/emf/.
11. Eclipse Org. Eclipse modeling framework technology. Web site, 2006.

http://www.eclipse.org/emft/projects/ocl/.
12. Minrong Song, John Miller, and Ismailcem Arpinar. RepoX: XML repository for

workflow designs and specifications. Technical Report #UGA-CS-LSDIS-TR-01-
011, University of Georgia, August 2001.

13. Biplav Srivastava, Jussi Vanhatalo, and Jana Koehler. Managing the life cycle of
plans. In Proceedings of the 17th Innovative Applications of Artificial Intelligence
Conference, pages 1569–1575, Pittsburgh, Pennsylvania, USA, 2005.

14. Tammo van Lessen. Konzipierung und Entwicklung eines Repository für
Geschäftsprozesse. Master’s thesis, Institute of Architecture of Application Sys-
tems, University of Stuttgart, March 2006.

15. Jussi Vanhatalo. Building and querying a repository of BPEL process specifica-
tions. Master’s thesis, Helsinki University of Technology, Institute Eurecom and
University of Nice – Sophia Antipolis, September 2004.

16. Jussi Vanhatalo. BPEL Repository. IBM alphaWorks, April 2006.
http://www.alphaworks.ibm.com/tech/bpelrepository.


