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Abstract.  We present a case study in engineering a large knowledge base to meet the 
requirements of a personal assistant.  The agent is designed to function as part of a semantic 
desktop application with the goal of helping a user manage and organize his information as 
well as support the user in performing day today tasks. We discuss our development 
methodology and the knowledge engineering challenges we faced in the process. 

1 Introduction 
The use of ontologies, metadata annotations, and semantic web protocols on desktop computers will 

allow the integration of desktop applications and the web, enabling a much more focused and integrated 
personal information management as well as focused information distribution and collaboration on the Web 
beyond sending emails.  In this paper, we present our experience in constructing a large knowledge base 
(KB) designed specifically to support a personal assistant called CALO (Cognitive Assistant that Learns 
and Organizes).  CALO is a multidisciplinary project funded by DARPA to create cognitive software 
systems that can reason, learn from experience, be told what to do, explain what they are doing, reflect on 
their experience, and respond to surprises.  

CALO KB uses an upper ontology called Component Library (CLIB) (Barker, Porter et al. 2001) and 
off-the-shelf standards such as iCalendar, as starting points and extends them to meet the requirements of 
CALO. The primary contribution of this paper is in providing a comprehensive description of the process 
of engineering a large knowledge base.  CALO offers unique functionality by integrating an impressive 
array of AI technologies (more than 100 major software components spanning machine learning, planning, 
and reasoning written in about 10 different programming languages spanning Lisp, Prolog, and Java), and 
the effort of pulling them together into a semantic whole is unprecedented.  The CALO KB effort as 
presented here has been a key ingredient in accomplishing the goal of semantic integration in CALO, and 
much can be learned from the description of this experience by others interested in undertaking efforts to 
construct large knowledge bases. 

We begin this paper by identifying the knowledge requirements of CALO and then describe how we 
developed the KB. We then give an overview of the knowledge content, and discuss three ontological 
challenges in some detail.  We give a review of tools that we used in the process and conclude with a 
comparison to related work and by identifying research issues suggested by this experience. 

2 Knowledge Requirements in Project CALO 
CALO’s role is to know and do things for its user, and therefore it must have knowledge about the 

environment in which the user operates and the user’s tasks.  It is best to understand the knowledge 
requirements of CALO in terms of the major six functions it performs. Details of implementing the 
functions are not the focus of the present paper.  

2.1 Organize and Manage Information 
From a user’s information about emails, contacts, calendar, files, and to-do lists, CALO learns an 

underlying relational model of the user’s world that provides the basis for higher-level learning.  The 
relational model contains information such as the projects a user works on, which project is associated with 
which email, the people a user works with, and in what capacity.  Providing such functionality requires 
vocabulary to relate information across the email, contact records, calendar entries, information files, to-do 
lists, and people.   Since much of the learned information is probabilistic, there is a need to provide a way 
to absorb and maintain this knowledge with the symbolic knowledge.  



2.2 Prepare Information Products 
CALO puts together a portfolio of information, for example, emails, files, and Web pages to support a 

project or a meeting.  The vocabulary needed to support this functionality is similar to that required support 
the functionality to organize and manage information. 

2.3 Observe and Mediate Interactions 
CALO observes and mediates interactions whether they are electronic (in an email) or direct (in a 

meeting). For example, it can summarize, prioritize, and classify an email. CALO identifies the action 
items, and produces an annotated meeting record. During a meeting, CALO captures the action items that 
were identified, and produces an annotated meeting record.  To support this functionality, we need 
vocabulary to specify priorities on emails, classifications for emails, and speech acts one may want to 
identify within an email. To support observation during a meeting, we need to provide representations for 
the dialog structure of a meeting, and for objects mentioned in the dialog, e.g., a Gantt chart.  

2.4 Monitor and Manage Tasks  
CALO aids the user with task management in two ways.  First, it provides tools to assist a user in 

documenting and tracking ‘to do’ tasks for which she is responsible.  Second, it can automatically perform 
a range of tasks that have been delegated to it by the user. This automation spans both frequently occurring, 
routine tasks (e.g., meeting scheduling, expense reimbursement) and tasks that are larger in scope and less 
precisely defined (e.g., arranging a client visit) and that require ongoing user interaction. 

 Support for both types of task management requires a vocabulary for specifying tasks that includes 
representation for the parameters, their types, and the roles that they play in achieving a task.  In addition, 
‘life-cycle’ properties of tasks must be tracked as the task is performed, by either the user or the system 
(e.g., task status, priority). Task automation further requires an explicit representation of the processes to be 
performed to achieve a task.  

2.5 Schedule and Organize in Time 
At a user’s request, CALO can schedule meetings for the user by managing scheduling constraints, 

handling conflicts, and negotiating with other parties.  To support this function, we need a representation of 
the schedule and scheduling constraints as well as a model of preferences that a user may have over 
individual scheduling requirements.  

2.6 Acquire and Allocate Resources 
CALO can discover new sources of information that are relevant to its activities.  For example, it is 

capable of discovering new vendors that sell a particular product.  It can also learn about the roles and 
expertise of various people and use them for answering questions.  To meet this requirement, CALO must 
be able to extend its vocabulary as new sources of information are discovered. 

3. Developing CALO Knowledge Base 
The requirements identified in the previous section illustrate the range of knowledge that needs to be 

captured in the KB.  Here, we describe the development process we used to meet these requirements.  

3.1 Choosing a Starting Point 
We chose the Component Library (CLIB) as the primary upper ontology for the following reasons: (1) 

CLIB provides a small set of carefully chosen representations with broad coverage of required concepts. (2) 
CLIB uses a STRIPS model for representing actions that seem close to what was needed for supporting the 
function of monitoring and managing tasks. (3) CLIB provides a well-thought-out model of communication 
that seems to be a good fit for an Observe and Mediate Interactions capability. 

Numerous specialized vocabularies exist for modeling information such as emails, contacts, and 
calendars.  Instead of reinventing, we reused them. Specifically, we made extensive use of the iCalendar  
(Dawson and Stenerson 1998) standard for representing the calendar and to-do information.  We leveraged 
the DAML-Time ontology as an inspiration for representing time (Hobbs and Pan 2004).  To develop 
ontologies for office products, we drew inspiration from online Web stores such as Gateway.com and 
CompUSA.com. 



Given the heterogeneity in the system, it was clear that no single knowledge representation language was 
going to be adequate to meet all the needs.  We accomplished the bulk of the ontology representation work 
using the Knowledge Machine (KM) representation language (Clark and Porter 1999).  The choice of KM 
followed from the choice of using the CLIB as the upper ontology.  Once developed, the ontology was 
exported into OWL via a KM to OWL translator.   We chose OWL as an interchange language because 
several tools in the system were Java based, and several off-the-shelf tools were available to read OWL.  

We represent knowledge for performing automated tasks in the SPARK procedure language (Morley and 
Myers 2004), which is similar to the hierarchical task network (HTN) representations used in many 
practical AI planning systems (Erol, Hendler et al. 1994).  The SPARK language extends standard HTN 
languages through its use of a rich set of task types (e.g., achievement, performance, waiting) and advanced 
control constructs (conditionals, iteration).  The expressiveness in SPARK was  essential for representing 
the complex process structures necessary for accomplishing office tasks.  We represent the uncertain 
knowledge extracted by the learning algorithms using weighted first-order logic rules that are processed 
using a Max-SAT solver.  The weights are assigned by the learning modules, and the rules use vocabulary 
drawn from the CALO KB. 

  Thus, the CALO KB uses a mixture of representations each of which is well-suited for a specific 
function.  These representations are semantically linked together by the vocabulary provided in the KB. 

3.2 Knowledge Base Development Process 
The CALO development team is large and distributed with over twenty research groups contributing to 

the project.  Some contributors had never before worked with a formal KB. To initiate KB development, 
we solicited requirements from the contributors. The requirement specifications varied in form, depending 
on the background and experience of the contributors. Some contributors specified their requirements as a 
listing of concepts and relations, while others provided an axiomatic specification of their requirements.  
Knowledge engineers implemented these requirements. 

In the early development phase, we stove for a large-scale reuse of existing ontologies.  For example, we 
imported the whole iCalendar specification into our system.  This led to a multitude of problems. It made 
the ontology very large, and the contributors complained that they had difficulty in finding the terms they 
were looking for, and it negatively impacted the system performance. Therefore, the initial reuse phase was 
followed by an ontology simplification phase where we retained only terms that were of direct use to the 
system. We determined such terms by looking for the usage of each term throughout the system’s code 
base.  

As the project proceeded, it became clear that the centralized KB development model needed to be 
relaxed as it was not possible for the knowledge engineering team to keep up with all the requests. 
Furthermore, members of the software development team needed to try out ontologies without yet fully 
committing to the ontology changes. Therefore, we switched to a two-stage model: Individual contributors 
took responsibility for a section of the KB; their changes were then reviewed by the knowledge engineering 
team before incorporating them throughout the system. We used Protégé for doing the distributed 
knowledge engineering work (Gennari, Musen et al. 2003). 

Portions of the KB were localized to specific modules in the system and were accessed only via the 
shared vocabulary.  For example, the KB includes a library of SPARK-based process models that provide a 
range of capabilities in the areas of visitor planning, meeting scheduling, expense reimbursement, and 
communication and coordination.  These models were private to SPARK, but could be queried using the 
vocabulary provided by the ontology. (We discuss the query tools in a later section of the paper.) 

4. Knowledge Engineering Challenges 
In describing the knowledge engineering challenges we faced in developing the ontology, we begin this 

by giving an overview of the knowledge content and then explain in detail three specific technical problems 
that we addressed. 

4.1 Overview of the Knowledge Content  
The CALO ontology consists of a collection of ontologies that reference each other. Some of the key 

ontologies in the collection are ontologies for People, Organization, Calendar, Meetings, Contacts, 
Schedules, Tasks, and processes.   



The Person ontology provides a basic representation of person that includes first name, last name, 
middle name, prefix, suffix, age, and sex.  The Contact ontology specifies the vocabulary for ways to 
contact a person, e.g., postal addresses, phone number, and ZIP code.  There can be multiple kinds of 
addresses, e.g., home address, work address, primary, secondary, and emergency.  The Organization 
ontology is a collection of roles specifying the variety of roles people can play in an organization, such as 
manager, employee, program manager, job candidate, and vendor.  For each of the roles, it also specifies its 
relevant properties.   

The Calendar ontology provides a vocabulary for specifying calendar entries, their start and end times, 
whether they repeat, and the attendees for each entry.  It references the People ontology and the Time 
ontology. 

The Meeting ontology provides vocabulary for specifying different kinds of meetings (e.g., job 
interview, conferences), discussion topics, different roles in meetings (e.g., moderator, leader, listener), and 
different phases of a meeting (e.g., start, end, presentation, discussion). The Task ontology specifies 
different states a task could be in (e.g., initiated, terminated) and a specification of roles that different 
entities might play in a task.  

The current ontology has about 1000 classes and 500 relations.  The process model library contains about 
50 process models that capture the execution of office tasks. 

4.2 Leveraging Off-the-Shelf iCalendar Ontology 
The iCalendar format is a standard (RFC 2445 or RFC2445 Syntax Reference) for calendar data 

exchange. The standard is sometimes referred to as "iCal", which also is the name of the Apple Computer 
calendar program that provides one implementation of the standard.  

To incorporate the iCalendar standard into CALO KB, we undertook three steps: (1) pruning the 
relations needed by the application, (2) defining symbol name mappings, and  (3) linking with the rest of 
the ontology.  We begin with an overview of the content in the iCalendar standard, and then give more 
detail on each of the steps in the process. 

The top-level object in iCalendar is the Calendaring and Scheduling Core Object. This is a collection of 
calendaring and scheduling information. Typically, this information will consist of a single iCalendar 
object. However, multiple iCalendar objects can be sequentially grouped together. The body of the 
iCalendar object (the icalbody) consists of a sequence of calendar properties and one or more calendar 
components. The calendar properties are attributes that apply to the calendar as a whole. The calendar 
components are collections of properties that express a particular calendar semantic. For example, the 
calendar component can specify an event, a to-do, a journal entry, time zone information, free/busy time 
information, or an alarm. 

It is straightforward to define mappings from the iCalendar standard into classes, relations, and 
properties, which gives 6 classes, 35 relations, and 14 property values.   

To support uniformity and usability, we use naming conventions in the CALO KB. For example, the 
iCalendar standard defines a slot called calendar-dtstart to denote the starting time of a meeting.  If we use 
the naming conventions in the KB, this slot will map to calendarEntryDTStartIs. We defined mappings for 
the relation names in the KB so that we can retain the uniformity within KB, but at the same time be able to 
map this information out to other information sources that might use the iCalendar standard. 

In several places the iCalendar ontology references things that are defined elsewhere in the ontology.  
For example, the range of the relation representing the attendee of a meeting is a Person defined elsewhere 
in the KB.  The range of the relation defining the start of a meeting is Time-Instant that is defined as part of 
the DAML-Time ontology. 

4.3 Representing Meetings  
We designed the meeting ontology in the CALO KB to support the requirement Observe and manage 

interactions. The meeting ontology extends the model of communication in CLIB to support the needs of 
meetings that involve multimodal dialog.  We review the model of communication in CLIB, and then 
discuss how we extended it. A more detailed description is available elsewhere (Niekrasz and Purver 2005). 

4.3.1 Model of Communication in CLIB 
The model of communication in CLIB consists of three layers representing physical, symbolic, and 

informational components of individual communicative actions. The events in these three layers occur 
simultaneously, transforming the communicated domain-level Information into an encoded symbolic 



Message, and from this Message into a concrete signal.  We show a graphical representation of these layers 
in Figure 1. Events are depicted using ovals and entities using darker rectangles.  Arrows signify relations.   
The events Communicate, Convey, and Transmit correspond to the informational, symbolic, and physical 
layers. 

4.3.2 Modeling Multimodal Communication 
To represent a meeting with multimodal communication, we had to extend the basic model of 

communication in CLIB.  First, the CLIB model assumes a one-to-one correspondence across the three 
layers.  This assumption breaks down when there is multimodal co-expression of speech.  To support this, 
we extended the Encode concept to produce multiple messages each in their own Language, and each of 
which can generate their own Signal in some Medium.  Second, CLIB provides the concept of Message 
between the physical signal and its domain interpretation.  We extended this to represent by defining a 
Message to be a LinguisticUnit that is built out of LinuisticAtoms.  For written language, examples of 
LinguisticAtoms are Words and Sentences.   Finally, we extended the communication roles in CLIB that 
naturally arise in meetings, for example, Addressee and Overhearer.  

4.3.3 Modeling Discourse Structure 
Discourse structure allows us to express relationships among individual communication acts ⎯both at 

the level of modeling the dialog structure and at the level of argumentation and decision making.  To 
represent the dialog structure, we consider individual Communicate events as dialogue moves, expressed 
via membership of particular subclasses and with their interrelation expressed via the properties associated 
with these subclasses.  For example, we define classes such as Statement, Question, Backchannel, and 
Floorholder. Each Communicate event can have an antecedent. The graph structure on Communicate 
events defined by the antecedent relation is limited to a tree.  The argument structure is modeled at a level 
coarser than the individual Communicate acts considered in the discourse structure.  For example, the 
argument structure is represented using actions such as raising an issue, proposal, acceptance, and 
rejection.  Each action in the argument structure consists of a series of individual communicate acts. 

4.3.4 Modeling the Meeting Activity 
A meeting consists of subevents, the majority of which are Discourse events.  Meetings may include 

non-Communicative acts e.g., note taking) and multiple discourses (e.g., simultaneous side conversations).  
Therefore, we provide two ways to segment a Meeting activity in a top-down, coarser-grained way: along a 
physical state or an agenda state. The physical state depends only on the Physical activities of the 
participants (e.g., sitting, standing, talking).  The agenda state refers to the position within a previously 
defined meeting structure, whether specified explicitly as an agenda or implicitly via the known rules of 
order for formal meeting types. 

4.4 Representing Tasks 
The task ontology is represented in a fairly standard way, with an individual task class modeled in terms 

of a task type, a set of input and output parameters for the task, whether they are required or optional, and 
constraints on allowed input tasks.  

Information about task instances that are currently active in the system, whether they are performed by 
the user or automated, is important for a wide range of functions within CALO.  For instance, knowledge 
about the current set of user task instances is employed to focus activity recognition modules that seek to 
understand what the user is trying to accomplish at any point in time.  Knowledge of overall user task 

Figure 1. Model of Communication in CLIB 



workload can be used to inform the scheduling process.  Information about status on task instances and 
resource usage is used to support execution monitoring and dynamic task reallocation. For this reason, it 
was necessary for us to define a system-wide vocabulary for representing task instances that could serve  as 
the basis of semantic integration. 

 We derived the representation for task instances from the VTODO construct for ‘to dos’ in the 
iCalendar representation. We reuse some of the iCalendar constructs, drop some, and add new ones to 
meet our requirements. 

 For a task instance, we represent its intrinsic properties, its relationship to other tasks or entities 
elsewhere in the system, and information about its status and dynamics. The heart of the representation 
consists of descriptive properties of a task instance (such as a formal specification of the task, priority, 
documentation, source, location, and resource allocation and usage), temporal properties (such as creation 
time, start/completion time, deadline), and state properties (such as status).  

We extended the iCalendar representation to include expected duration (to enable reasoning of projected 
task completion times), resources consumed (to enable effective resource management), creation 
information for a task such as the source (i.e., the person who created task) and the context (e.g., a meeting 
or an email), a possible result for a task, information about the delegation of tasks to other individuals, and 
change management properties (such as a modification history).  

4.5 Ensuring Interoperability 
The representation language KM is broadly expressive. To ensure interoperability for the information that 
had to be shared across modules, we had to limit the knowledge engineering efforts to use only the 
representation constructs offered by OWL.  We consider two such examples here. 
 OWL does not support n-ary relationships.  We need to represent signatures of the procedures 
used in the SPARK library in our ontology.  Since the order of arguments to a procedure was significant, an 
n-ary relation representation would have been the most natural.  But, because of the limitation of OWL, we 
had to reify each procedure parameter to indicate its position in the list of arguments to that procedure  
(Noy and Rector 2004). 
 In OWL, one cannot define subclasses of primitive data types such as STRING.  There were 
several compelling situations where such a feature was critical.  For example, a learning algorithm may 
deduce that a string such as  “94025-3493” is an instance of the class of strings representing US Postal 
Codes, and that a string such as “650-555-1212” is an instance of the class representing phone numbers in 
United States.  Once deduced, there is a need to enforce it as a constraint on the legal values of postal code 
and phone numbers.  To support this requirement, we introduced a collection of classes termed as Pseudo 
Ranges that were not a subclass of the built-in OWL class String. For example, PostalCodeString is a 
pseudo range class that is a string, and defines legal strings for US Postal Code. 

5. Deploying the Ontology 
Recall that we developed the ontology using the KM representation language that was then translated 

into OWL for distribution. We distributed Javadoc-style documentation pages generated using OWLDOC, 
which is a Protégé plugin. There were at least two different classes of users of this ontology.  First, the 
users simply loaded the whole OWL file into their modules.  Second, the users did not load the OWL file, 
but simply made references to the terms in the ontology. For both cases, we needed to provide ways using 
which users and system modules could access knowledge in the system, update it, and evolve the system as 
the ontology changes.   

We supported access to the distributed knowledge in the system a query manager using which users and 
system modules can pose their queries to the knowledge system using the KB vocabulary (Ambite, 
Chaudhri et al. 2006).  The query manager then decomposes the query into pieces that can be answered by 
a module, queries them, and produces the final answer.  This turns out to be a useful service because the 
information access within the whole system is transparent to the users.  

While it made good sense to provide transparent access for querying the knowledge in the systems, a 
similar model for updating the knowledge in the system was not feasible because the updates require access 
to knowledge that is at a level deeper than what can be exposed using the vocabulary in the ontology.  For 
example, to update a SPARK procedure, one needs to operate at the level of full expressiveness of the 
native language and SPARK, and thus a transparent solution is infeasible.  Therefore, for updating the 
knowledge in the system, custom update modules needed to be provided. 



Even though the updates are decentralized, there is a need for modules to know about changes in other 
modules.  To support that requirement, we devised a publish-and-subscribe scheme, using which the 
modules can advertise their updates.  The encoding of messages in the publish-and-describe facility uses 
the vocabulary from the ontology. 

During the course of the development, there are frequent changes in the ontology.  These changes will 
impact the instance data stored in the system.  Therefore, we implemented a program called Simple 
Ontology Update Program (SOUP) that accepts old and new ontology as input, computes the differences, 
and updates the instances in the system as the ontology changes.   

Recall that one of the functions of CALO is to Acquire and Allocate Resources.  In the process of doing 
this, the system may learn new classes and relations that must be added to the ontology at runtime.  To 
support this, we implemented an ontology update module that can add new classes and relations to the 
knowledge base.  The API for this update was modeled after the OKBC tell language. 

6. Open Research Challenges 
The development work on the knowledge base is not yetcomplete. In fact, the engineering and 

infrastructure work done so far has laid the foundation for investigating compelling research questions that 
have not been possible so far.  We consider here a few such challenges that also suggest directions for 
future work. 

In recent years, we have seen the phenomenon of tagging information resources become very popular.  
Users tag an information resource with keywords describing their content, which can be used by a search 
tool for retrieval of those documents.  Such tagging is used by several tools within CALO.  Furthermore, 
the machine learning algorithms annotate the documents on a user’s desktop using keywords.  Currently, 
there is no relationship between the tags or keywords and the ontology.  Furthermore, for understanding 
meetings, there is need to go from the natural language utterances and the terms in the ontology. 

Tags and keywords are usually words in natural language.  The CLIB has links from Wordnet to its 
concepts that gives us mappings from the words in natural language to the concepts in the ontology.  By 
making use of such links one can perform inferences using the ontology that could not be done using the 
words alone.   

In the current CALO system, most of the learning components perform a predefined set of tasks.  The 
learning capability in the system is, however, much more general than that to a point where the system 
could identify what it should learn and then go about learning it. A natural progression of such a capability 
in increasing order of difficulty is as follows.  (1) A CALO developer can apply a learning method to a new 
problem by writing a specification of the learning problem. (2) A CALO user specifies a high-level goal, 
and CALO can identify how to realize that goal by applying the learning methods at its disposal. (3) While 
observing the user, CALO can determine what it should learn, and it learns it. Achieving such capabilities 
requires developing an ontology of learning methods, and a way of reasoning with it.  

7. Comparison to Related Work 
One of the distinguishing features of the work reported here is that its development is strictly driven by 

the needs of a cognitive agent designed to function in an office environment.  In some sense, it makes it 
less general than other ontologies such as Cyc or SUMO, but on the other hand, given the wide 
applicability of the office work, its content is of interest to a large number of end users. 

Another important distinguishing feature is the CALO ontology’s adaptability. As a specific example, 
the CLIB generic communication model is an example of a highly reusable chunk of CLIB.  We showed in 
this paper how we were able to adapt this representation to apply to a multimodal representation of 
meetings. 

Another distinguishing feature of the CALO KB from others is the variety of languages and platforms 
used. Some of the knowledge engineering work is done in KM, and this gets automatically translated to 
OWL. Because OWL is the universal language of the semantic Web, we maximize accessibility. We 
develop in KM, so we can allow ourselves maximum expressiveness⎯for example, rules, which OWL 
does not have⎯where we need them.  Multitudes of reasoning platforms access this ontology.  These 
reasoning platforms include such languages as Lisp, Java, Prolog, and C.  The reasoning platforms also 
have many different styles of reasoning ranging from declarative reasoning to procedural reasoning and 
process execution.  In short, the CALO ontology embraces and integrates broad range of heterogeneous 
elements. 



8. Summary and Conclusions 
We presented a case study in engineering a large knowledge base to meet the requirements of a 

cognitive agent.  The cognitive agent is designed to perform tasks such as Organize and Manage 
Information and Monitor and Execute Tasks.  This created a wide set of requirements for the vocabulary 
and was further complicated by a large distributed team using many different platforms. We provided a 
comprehensive description of our development process. We described specific knowledge engineering 
challenges in reusing an existing ontology, and in modeling multimodal meetings and tasks. The 
knowledge base has served as the basis of semantic integration in the CALO system built out of more than 
100 artificial intelligence (AI) modules written in about 10 different programming languages. We believe 
that this work is an important contribution to the state of practice in engineering large knowledge systems, 
and can be instructive to others striving toward similar goals. 
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