
Application Design and Interoperability for Managing
Personal Information in the Semantic Desktop?

Huiyong Xiao Isabel F. Cruz

Department of Computer Science
University of Illinois at Chicago
{hxiao | ifc }@cs.uic.edu

Abstract. A number ofsemantic desktopframeworks have been proposed that
address different issues in personal information management, including the or-
ganization, manipulation, and visualization of personal data. Our approach com-
prises a layered multi-ontology based framework, MOSE. In this paper, we de-
scribe how the architecture of MOSE supports an application centered seman-
tic approach to personal information management. In particular, we introduce a
method based on the Model-View-Controller paradigm forpersonal information
application(PIA) development, as enabled by the underlying semantic data or-
ganization and specified by thePIA designer. We also introduce the notion of
parameterized channeland describe how it supports the interaction among mul-
tiple visualizations in a PIA. We give a definition ofdesktop servicebased on the
concept of parameterized channel and the benefits provided by the separation of
PIA definition and implementation. Finally, we discuss two cases of the execution
of desktop services in MOSE that highlight application interoperability.

1 Introduction

With the development of computer device manufacturing, storage is no longer a bottle-
neck for computer users. As users will not have to remove outdated data from storage,
the increasingly large amount of data poses a critical problem: the organization of the
personal information space so as to enable efficient and effective data management.

Typically, personal information in a desktop is characterized by: (1) Disparate mod-
els: the personal data tend to be of different formats and use different models for data
storage and presentation. (2) Unstructured contents: in addition to structured data (e.g.,
a relational database in an Microsoft Access file) and to semi-structured data (e.g., XML
files), most data is stored as unstructured (nontextual and textual) files. (3) Latent se-
mantics: many types of files (e.g., a saved email message) present their contents in
natural language, where the semantics of the data is latent and implicit (e.g., “my pic-
ture in the attachment” in a message referring to the attached picture of the sender).
(4) Lack of semantic associations: existing desktop operating systems store data as files
that are classified and organized in hierarchical directories.

The directory based model creates a limitation on the access to personal data and
justifies the need for a semantically rich way of personal information organization. In

? This work was partially supported by NSF Awards ITR IIS-0326284 and IIS-0513553.

1945, Vannevar Bush put forward the first vision of personal information management
(PIM) system, Memex, by pointing out that the human mind “operates by associa-
tions” [5]. Hypertext systems, which flourished in the 80’s [7], reinforced this vision
and yielded the current World Wide Web. Recently, with the Semantic Web vision [3],
a number of PIM systems associated with that vision, hence calledsemantic desktop,
have been proposed, which support at least some of the following features:

Semantic data organization.Almost all existing approaches are trying to go beyond
the hierarchical directory model. The critical factors of semantic data organization
include adequate annotations, explicit semantics, meaningful associations, and a
uniform representation [23].

Flexible data manipulation. A PIM system should enable the integration, exchange,
navigation, and query processing of personal information in a flexible way. It should
also be able to communicate (or interoperate) seamlessly with external sources
(such as other PIM systems), e.g., in peer-to-peer (P2P) way [22].

Customizable rich visualization. As multiple visualizations can help the user under-
stand pieces of data, a PIM system is supposed to support data visualization from
different perspectives, e.g., the association-centric visualization [21] and the time-
centric visualization [13, 12]. Ideally, users should be able to tailor such visualiza-
tions.

We have proposed a layered framework using multiple ontologies to organize per-
sonal information [24]. This layered framework enables a flexible and reusable system,
by decoupling the domain and application ontologies, thus providing certain advantages
over the use of a single domain model (e.g., [10]). In this paper, we describe in detail
the architecture of our semantic desktop system, named MOSE (Multiple Ontology
basedSemantic DEsktop) and the challenges that we are addressing in the course of its
implementation.

Another contribution that we make in this paper is with respect to thepersonal
information application(PIA) development, and hence to the inter-desktop information
sharing and data integration by means of PIA-baseddesktop services. All these are
motivated by the following example.

Example 1.A PhD student majoring in Chemistry has collected quite a few publica-
tions related to her research area and is now compiling a literature survey. The publica-
tions are stored as PDF files in different directories. For the literature survey she looks
at a group of selected papers. For each of those papers, she would like to read some
of the interesting papers that are referenced in that paper, which have already been
downloaded and stored in the local desktop. To locate those papers, she can browse the
directory hierarchy, use the search capacity provided by the operating system (if she
can remember the file names), or use desktop search tools, such as the Google Desktop
Search1 or MSN Desktop Search.2

As the literature survey progresses, the student becomes tired of switching between
windows, and wants to develop a bibliography management system such that the above

1 http://desktop.google.com
2 http://toolbar.msn.com

2

mentioned functionalities are integrated in a single interface. However, she finds it chal-
lenging to implement such a system, which requires several components, including a
database to store and retrieve the citation relationships between pairs of publications.
She asks the help of a friend majoring in Computer Science, who develops for her such
a standalone application in Java. Now, the student is able to browse through her publica-
tions and the citation network easily. However, she would like to share that application
with her advisor and with the other students in the project but is not able to do that.
Furthermore, she would have liked to be able to access the publications that the other
group members have discovered and stored, but cannot do that either.

When all the papers have been discovered and interrelated she would finally like
to integrate the bibliography application with an application for paper composition.
The paper composition application would gather several pieces of information such
as related literature, experimental results, and comments/corrections from the advisor.
However, she discovers that the two applications do not interoperate and she has to
manually “import” the information that is gathered by the bibliography application into
the paper composition application.

There are several key considerations in the design of a PIA development tool. First,
end users may either be ignorant of programming skills or be reluctant to write such
programs in the context of organizing the information in their desktop. Therefore, the
PIA development environment, if provided, should hide the programming details from
the user. The second consideration has to do with the flexibility and expressiveness of
the designer. Even though we do not expect to invent another programming language,
there are some fundamental functionalities that we need to make available, such as
data access, data presentation, and business logic. Finally, there is the need to share the
information related to the same application (or task) between two end users, as well as
the need to reuse and to interoperate among existing PIAs.

Based on its semantic data organization, MOSE provides a semantic tool for end
users to develop PIAs—thePIA designer. In this paper, we describe how we exploit the
MVC (Model-View-Controller) methodology [16] for the personal information devel-
opment in the PIA designer, which addresses the issues above illustrated. In particular,
we discuss how PIAs can be formalized asdesktop servicesand how such services can
facilitate the data interoperation and intergration across semantic desktops.

The rest of the paper is organized as follows. After describing related work in Sec-
tion 2, we present the system architecture and its main components in Section 3. Section
4 presents in detail the PIA development using the MVC method and the implementa-
tion of the PIA designer. In Section 5, we discuss desktop interoperation as provided
by desktop services, whose definition we propose. We also discuss two cases of desk-
top service execution in MOSE. Finally, we present our conclusions and directions for
future work in Section 6.

2 Related Work

The term ofsemantic desktopwas first coined by Decker and Frank, who also stated the
need for a “networked semantic desktop” that is enabled by several key emerging tech-
nologies including: the Semantic Web, P2P computing, and online social networking

3

[9]. The state-of-the-art of semantic desktop has been comprehensively summarized by
Sauermann [23].

Among the existing approaches to PIM in desktops, the Gnowsis project aims at a
semantic desktop environment that supports P2P data management based ondesktop
services[22]. Similarly to MOSE, Gnowsis uses ontologies for expressing semantic
associations and RDF for data modeling. SEMEX is another personal data integra-
tion framework that uses a fine-grained annotation based on schemas, similar to our
ontology-based framework [10]. However, a single domain model is provided as the
unified interface for all data access, while we propose a layered framework using multi-
ple ontologies to organize personal information. Our framework enables a flexible and
reusable system, by decoupling the domain and application ontologies. MyLifeBits
[13], Haystack [21], and Placeless Documents [11] are three PIM systems that support
annotations and collections. The concept ofcollection is essentially the same as the
conceptualization (using ontologies) of resources in our framework.

Our previous work uses ontologies to organize personal information and supports
query processing within and across personal information applications (PIAs) based on a
query rewriting algorithm. This algorithm requires that both PIAs have their ontologies
mapped to each other [24]. In this paper, we propose PIA communication through the
composition of desktop services.

Existing interfaces provide a workspace for the end user to develop applications.
Such applications have their own data model, data presentation, and control logic. Of
such interfaces, Haystack’s end user interface [2] is the closest to the PIA designer
that we introduce in this paper. Both interfaces support parameterizable channels that
are collections of items retrieved by executing the channels (essentially queries). Their
channel parametrization is oriented to individual channels, while ours can take the input
from other channels so that two channels (with their associated views) can interact.
Furthermore, the definition of view (i.e., data visualization) in both systems is different.
We define aview as a visual component associated with a channel, which can be, for
example, a graph, a list, or a text fragment. In comparison, their data views are the
results of the execution of channel in the form of text. Finally, both Haystack and our
approach allow for the reuse of previously defined channels and views. However, in our
system, the channels and views are bound to thedesktop servicesdefined in terms of
PIAs, so that the reusability is naturally implemented by desktop service composition,
whereas Haystack does not provide a way to compose distributed desktop services.

Other interfaces for personal data management are based on Wikis and include Sem-
perWiki [19] and WikSAR [1]. However, they resemble a hypertext composer (or con-
tent manager) providing the user with a means to put pieces of information together as
a Wiki page.

3 System Architecture

Figure 1 presents the architecture of MOSE (MultipleOntology basedSemantic DEsktop).
The following describes the primary components of the framework, including the com-
ponents related to semantic data organization (on the server side) and those related to
semantic data manipulation (on the client side).

4

File description R-F index
Ontology and

resource repository

File system

Wrapper library (for PDF, PPT, and DOC. etc)

Annotator

Indexer

Classifier

Application APIs

Jena APIOntology matcher

PIA BrowserPIA Designer

User Interfaces

Data flow

Control flow

Ontology designer

files

text text

<property,value>

<property,value>

resources

R-F associations resources triples

Query processor

Resource Browser

files

Semantic Desktop Server

Data and Metadata Repositories

triples

Fig. 1. The architecture of MOSE.

3.1 Semantic Data Organization

Our framework goes beyond the hierarchical directory based organization by means
of two types of ontologies: domain ontologies and application ontologies. The former
represent the conceptualization of different domains, thus providing a foundation for
personal data classification. The latter are designed to serve as the data model under-
lying personal information applications (PIAs), which are developed by the end user.
More details of how these ontologies cooperate to enable a semantically powerful data
manipulation in the semantic desktop are given in Section 4.

File wrappers. The semantic organization is mainly based on a series of analysis and
processing on text documents in the personal information space. That is, we do not
consider the non-textual features of a file, although such features may facilitate data
annotation [4]. Afile wrapperis used to retrieve text from various types of files, such
asPDF, PPT, andDOC. The other functionality of file wrappers is to obtain from the
file system the system-defined properties of a file, e.g., its MIME type, size, and date.

Annotator. The annotator is responsible for creating and enhancing the annotation (or
metadata) of a file. It is fed with the results of file wrappers, including the retrieved text
and its standard properties, based on which it associates the file with property-value
pairs. Most of current data annotators need input from users, although sometimes part
of the annotations can be obtained from the file content. In practice, a semi-automatic
annotator is often provided, such as the “easy” annotation mechanism of MyLifeBits
[13]. In MOSE, the annotations are stored in a database, calledfile description.

5

Classifier.The classifier is one of the most important components for the semantic or-
ganization in the framework. Given a file and its file description, the classifier provides
the following operations: (1) Identification of the file as a resource with a unique URI
(Universal Resource Identifier); (2) Examination of the file content to explore the re-
sources that arecontainedor referred toby the file; (3) Population of domain ontologies
with all discovered resources; (4) Determination of the associations between resources,
calledresource-resource (R-R) associations. These resources and their associations are
maintained in aresource repository.

Indexer. After being classified, a file is indexed in terms of the resources discovered
in itself (e.g., the names of the authors in a publication). Such resource-file indices
are stored in a repository, calledR-F index, for the future use for query answering.
There are three types of R-F indices (also called R-F associations):identification, con-
tainment, andreference, which are obtained by the first and second operations of the
classifier. Given a query of keywords posed by the user, the query processor of MOSE
can first locate the corresponding resources and then find the files that are identified as,
containing, or referring to such resources, by means of the R-F index.

Ontology designer and matcher.At the center of the framework of MOSE are the
multiple application and domain ontologies stored in theontology repository. We pro-
vide anontology designerfor the management of concepts and roles of individual on-
tologies, and anontology matcherfor the maintenance of inter-ontology relationships
(i.e., ontology mappings). Considering that most semantic desktop end users may lack
the knowledge of particular ontology languages (e.g., RDFS or OWL), the ontology
designer should hide the details of such languages but enable users to work with the
conceptualization of their domains of interest. In addition, to improve the precision of
an automatic ontology mapping process, the ontology matcher may be able to combine
different ontology matching strategies [8, 15].

3.2 Semantic Data Manipulation

Based on the semantic data organization using multiple ontologies, MOSE provides
the following interfaces for the user to manipulate personal information: a desktop-
wide browser calledresource explorer, and two other UIs, thePIA designerandPIA
browser, for PIA development and execution, respectively. The functionalities of the
PIA designer and browser are described in Section 4. The functionalities of the resource
explorer are:
Context-aware browsing.The context of the data being browsed include the associated
annotations, related domain ontologies, and other associated information (e.g.,person
andtime).
Navigation by categorized associations.The ontology-based data classification and
resource discovery establish various sorts of associations among the personal infor-
mation items. The resouce explorer facilitates the viewing of such associations as or-
ganized in different categories. More details about the navigation functionality of the
resource explorer, called3D navigation, can be found elsewhere [24].
Customizable visualization.The resource explorer provides a pane that shows the data
that relates to the data currently being viewed. By default, the related instances are

6

IDEAS04-camera.pdf JoDS05.pdfIDEAS04.ppttalk.jpeg IDEAS photos.eml

Publication

Person

editor

title
Article

InProceedings

Literal

Literal

Literal

volume

pages

Publication Ontology

Email

Receiver

attends

Sender

sentBy

title sentOn

attached

Email Ontology

Person

DateLiteral

Attachment

Talk

Email

Conference

PaperPerson

ConferenceTalk

Talk

InvitedTalk

Talk Ontology

Conference

Date
Person

Ontology for attending a conference

presentedAt

writtenBy

publishedAt

receivedBy

sentBy

receivedBy

ideas03talkphoto ideas04conf ideas04talk

cruz xiao

Literal
title

programOf

presentedBy presentedOn

sentBy

receivedBy

presentedBy

editor

editor

programOf

attached

presentedBy

extends

Journal

extendedVersion

A
p

p
li

c
a

ti
o

n
 L

a
y

e
r

D
o

m
a

in
 L

a
y

e
r

R
e

s
o

u
rc

e
 L

a
y

e
r

mapping

rdfs:subClassOf

User-defined property

ideas04papercamera

jods05

extends

P
I

ideasphotomsg

rdf:type

R-F association

revises

revises

Fig. 2.An application ontologies is constructed for the PIA of conference attendance. The domain
layer contains three ontologies for the domains ofEmail, Talk, andPublication, respectively.
The resource layer presents all the triples (in graphs) representing the resource-file and resource-
resource associations.

displayed in the form of the thumbnails, but other visualizations can be defined by the
user.

4 Personal Information Applications

In this section, we first present the layered ontologies-based model, which lays a seman-
tically rich foundation for the application design in MOSE. We then describe in detail
the PIA development environment, thePIA designer, which supports flexible personal
data management in MOSE.

4.1 The Layered Model with Multiple Ontologies

The following are the three layers of ontologies in MOSE, which act as a basis of the
development of PIAs.
Resource layer.This layer comprises the low-level functions for maintaining the re-
sources, the file description, the R-R associations, and the R-F index, thus acting as an
intermediate layer connecting the personal data with the domain ontologies in the up-
per domain layer. The connections thus established result from the data classification
process.

7

Domain layer. The domain ontologies in this layer have a double role. First, they are
used as categorization of the resources in the resource layer. These domain ontologies
are typically designed for different domains such asConference, Person, Photo, and
Email. There are a number of such ontologies available on the Web, for example, in
the DAML Ontology Library,3 the Semantic Web Ontologies,4 or the OWL ontologies
provided by the Protéǵe project.5 Second, they serve as the basis for the construction of
the application ontologies (in the application layer) through ontology mappings. In this
sense, we say that the domain layer isloosely coupledwith the application layer, thus
providing flexibility and reusability.
Application layer. This layer contains the application ontologies, each of which may
underly a PIA. As mentioned before, these application ontologies are defined as views
over the domain ontologies. Different PIAs may have different application ontologies
and are functionally independent from one another, since it is unlikely that a single
ontology can cover various applications. However, PIAs (even if developed by different
users in different PIM systems) can interoperate by means of mappings between their
application ontologies, so as to integrate relevant information.

As a concrete example, Figure 2 shows a fragment of ontologies and instances in the
layered model. We note that the ontologies and resources may be represented in differ-
ent languages as long as they can be parsed by some available API. For example, Jena
API, which is used by MOSE, is able to parse both RDFS and OWL (Web Ontology
Language) ontologies.

4.2 MVC-based PIA Development

The resource explorer allows for the “global” exploration of the resources and ontolo-
gies in a desktop. However, views need to be tailorable for the users’ diverse tasks, as
we see in Example 1. To this end, MOSE provides a tool, the PIA designer, whose main
objective is its flexibility.

Each PIA can work in a standalone mode, with its own application ontology, user
interface, and work flows, aiming at a specific task (e.g., bibliography management,
paper composing, or trip planning). Meanwhile, different PIAs can communicate with
each other as in a P2P network, by means of the connections (mappings) established
between their application ontologies. In MOSE, a PIA can present two modes:devel-
opment modeandexecution mode. The interfaces corresponding to these two modes are
respectively thePIA designer(for the development mode) and thePIA browser(for the
execution mode), which can switch from one to another at anytime.

The development of a PIA uses the MVC (Model-View-Controller) methodology.
In particular, in the development of a PIA, the “Model” can be an application ontology
that has been composed as a view over domain ontologies; the “View” consists of one
or more components that present data in different forms such as graph, text, and list;
the “Controller”, which is the business logic of the PIA, is a set of “if-then” rules,
which enable the interaction and synchronization between different data components.

3 http://www.daml.org/ontologies/
4 http://www.schemaweb.info
5 http://protege.stanford.edu/plugins/owl/owl-library/

8

The data associated with components to be displayed are retrieved from the repositories
of ontologies and instances by queries namedparameterized channels.

The specifications of a PIA, as defined by the user by means of the PIA designer,
including the model, view, and business logic, can be serialized in XML. It is called the
PIA definition. Now, the user can run a PIA in the PIA browser, which interprets and
executes the PIA in either an “online” mode (by directly switching from the designer
to the browser) or an offline mode (by loading from the PIA’s permanent serialization).
The separation of the declarative specifications from the interpretative execution greatly
benefits the communication between semantic desktops in terms of PIA interoperation,
as we will see in the following sections.

4.3 Implementation

We have implemented a prototype of PIA designer using Java, as shown in Figure 3. Fol-
lowing the three basic elements of an application, the following describes three stages
of the application development.

Fig. 3. The PIA designer.

Modeling. In the first stage, the user loads the application ontology from the ontology
repository, which represents the model underlying the PIA to be designed; it will be

9

graphically shown in theData Modelpane. The application ontology is mapped to the
domain ontologies, under which the resources representing personal information are
classified. Actually, the application ontology is constructed as a view over the domain
ontologies in a “global as view” (GaV) approach [17]. This mapping process should not
require the users’ programming expertise, but only their awareness of the task and their
knowledge of the domain.

Visualization. The second stage involves the design of the layout of the PIA, with one
or more visual components, each of which can be associated with a stream of data for
its presentation. The user drags the desired visual components from theVisual Compo-
nentpane to thePIA Browser Workspacepane. Examples of such components include
TextPane, List, Table, Graph, andFile. The associated data can be resources, strings,
files, and whatever as instances of the ontologies; they are retrieved by queries, called
channels(introduced in [21]), on the application ontology. Some components, such as
Button, Label, TextInput, andMessageBox, are used to facilitate the interaction be-
tween the user and the PIA browser. A special component calledServices is used for
desktop service composition, as discussed in Section 5.

Controller and parameterized channels.In the final stage, the controller (or business
logic) of a PIA is specified so as to realize rich interactions between the data and their
views, and to synchronize several visualizations. These controllers manage all possible
updates of the model and handle the events from the user interface, using “if-then” rules
(more sophisticated controls will be considered in future work) of the following form:

if Component 1.event 1(x1) and ... and Component n.event n(xn)
then Component 1.action 1(y1) ; ...; Component m.action m(ym) ;
endif

wherexi, i ∈ [1..n], are parameters passed from the events, andyi, i ∈ [1..m], are the
channelsthat result in the actions. It often happens that the response of a component to
some event needs to takexi as a parameter to executeyi, especially when updating the
data that is sensitive toxi in a visual component. For this purpose, we introduce the con-
cept ofparameterized channel, which are channels that have their contents determined
by the parameters at runtime. In MOSE, where channels are queries over ontologies, the
parameter of a channel can be bound to a variable or a constant in the query. By means
of parameterized channels, an event started from a component can pass any values to
another component, thus enabling interactions between different components.

Example 2.As shown in Figure 3, at the top left corner, the user loads the application
ontology (for publications), to develop a PIA for bibliography management. The ap-
plication’s user interface uses aGraph for displaying the citation network of papers, a
TextPane for the paper’s details, aList for the paper’s authors, and aTextPane for the
author’s details.

To associate data with their proper visualization, the user defines the following
channels, in the syntax of RDQL (RDF Data Query Language), which has an SQL-
like grammar [14]. Each channel is in the form of string, which can then be fed into an
RDQL interpreter (e.g., provided by the Jena API) for execution.

10

1. ch 1(): “SELECT ?a, ?b WHERE (?a, cites, ?b)”
2. ch 2(x): “SELECT ?a, ?b, ?c, ?d WHERE (” +x + “, title, ?a), (” + x + “,

writtenBy, ?b), (” + x + “, year, ?c), (” + x + “, citedAs, ?d)”
3. ch 3(x): “SELECT ?a WHERE (” +x + “, writtenBy, ?b), (?b, name, ?a)”
4. ch 4(x): “SELECT ?a, ?b WHERE (” +x + “, institute, ?a), (” + x + “, email,

?b)”

As an example of parameterized channel, the second query,ch 2(x), returns the
title, author, year, and citation entry of a publication, which is bound to parameterx.

The data computed by executing a channel will present different forms depending
on what visual component is used to visualize this data. For example, aGraph shows
the data represented as a graph, where nodes are resources and edges are their asso-
ciations. To construct such a graph, the nodes representing the same resource will be
merged into a single one.

The following rules are defined to specify the controller, in which the first rule has
no preconditions, thus being triggered at the very beginning of the PIA’s run.

1. PaperGraph.update(ch1())
2. if PaperGraph.isSelected(x) thenPaperDetail.update (ch2(x))
3. if PaperGraph.isSelected(x) thenAuthorList.update (ch3(x))
4. if AuthorList.isSelected(x) thenAuthorDetail.update (ch4(x))

5 Services-based Desktop Interoperation

As mentioned before, two PIAs can communicate in a P2P fashion based on the ap-
plication ontology mappings established between them. It is required in this case that
the two PIAs are designed for a similar task, for which they have their application on-
tologies partially or fully overlapping. We say that this way of PIA interoperation (or
integration) is on the semantic level and is oriented to data models. Previous work has
discussed such P2P ontology-based query processing [6, 25, 26]. In this section we dis-
cuss another type of PIA interoperation, which is realized by means of desktop services,
thus called service-oriented interoperation.

The notion ofdesktop servicewas first introduced into the vision of semantic desk-
top by the Gnowsis system [22]. However, to our best knowledge, there has been no
definition and formalization of desktop services. Next we give our own definition of
what constitutes a desktop service in terms of parameterized channels, and describe
how this service-based mechanism facilitates the data interoperation and integration in
our semantic desktop vision. We assume PIA-based desktop services in our discussion,
and use both terms, PIA and desktop service, interchangeably.

In general, a service (e.g., Web service6) must have its interface (i.e., input and
output) defined, while keeping the implementation of its operation hidden from the
service consumer. Intuitively, a PIA in MOSE consists of a set of visual components
bound to parameterized channels. In this sense, we can see a channel as the minimal
unit of service, taking the parameters as input and its resulting data as output. Starting

6 http://www.w3.org/2002/ws/

11

AO-2

PIA-2

PIA Browser

PIA-1

SemDesk 2

AO-4

PIA-4

PIA-3

SemDesk 4

PIA-2

AO-3

SemDesk 3

PIA-3

AO-1

SemDesk 1

PIA-1

AO-2

PIA-2

PIA Browser

PIA-1

SemDesk 2

AO-4

PIA-4

PIA-3

SemDesk 4

AO-3

SemDesk 3

PIA-3

AO-1

SemDesk 1

PIA-1

PIA-2

PIA-1

(a) Remote execution of services (b) Local execution of services

Request

Response

PIA-# PIA definition

PIA-# PIA implementation

Fig. 4. Desktop services composition and execution.

from this point, we are able to give a definition of service based on the definition of
parameterized channel.

Formally speaking, aparameterized channelq is a triple〈M, I, O〉, whereM is the
underlying model (i.e., application ontology),I is a set of parameters (i.e., input),O is
the set of tuples resulted from execution of the channel (i.e., output). Adesktop service
s is a 5-tuple〈Q, I,O, V, C〉, where

– Q = {q1, ..., qm, s1, ...sn}, is a set of channelsq1, ..., qm or servicess1, ...sn,
wherem ≥ 0, n ≥ 0, m + n ≥ 1, andsi 6= s, i ∈ [1..n];

– I ⊆ I1 ∪ ...∪ Im ∪ I ′1 ∪ ...∪ I ′n is the input, whereIi is the input ofqi, i ∈ [1..m],
andI ′i is the input ofsi, i ∈ [1..n].

– O ⊆ O1 ∪ ... ∪ Om ∪ O′1 ∪ ... ∪ O′n is the output, whereOi is the output ofqi,
i ∈ [1..m], andO′i is the output ofsi, i ∈ [1..n].

– V = {v1, ..., vl} is the set of visual components, withvi being the component of
oi, whereoi ∈ O, i ∈ [1..l].

– C = {c1, ..., ck} is a set of rules representing the control flows among the compo-
nents.

The above recursive definition, based on the units of channels, allows for a flexible
composition of desktop services. Besides its self-defined channelsqi, i ∈ [1..m], a PIA
can reuse any servicessi, i ∈ [1..n], and embed them in itself, by establishing which
channelsoj of si to be shown in which viewvj , j ∈ [1..l]. Then, the controllerC con-
sisting of if-then rules is used to specify the composition (control and data flows) among
these channels or services in the PIA. Because of space limitations, we do not elaborate
on the different types of service composition (e.g., “sequential” and “parallel” flows)
[20]. Instead, we describe next how the service-oriented inter-desktop communication
is implemented, by means of service composition and execution, in the two cases that
are depicted in Figure 4.

12

The first case, as shown in Figure 4(a), is calledremote executionof desktop ser-
vices. In the example, there are four services (PIA-1 to PIA-4), with their respective
application ontologies (AO-1 to AO-4). Suppose thatPIA-4 is the starting point of the
service execution, where the user interacts with the PIA browser. All requests for both
the data and the execution of other services (defined and implemented in other desk-
tops, but composed by the current service) are driven by events from such interactions.
Whenever a nested remote service (e.g.,PIA-2 or PIA-3) is triggered by the current
service, a request for execution will be sent to the remote desktop (e.g.,SemDesk 2 or
SemDesk 3), where the remote service will be executed. As a response to the request,
the remote service returns its execution results to the current service.

While the first case is similar to what happens with Web services, the second case
of desktop service execution (calledlocal execution, as shown in Figure 4(b)) is quite
different. In particular, whenever a service nested in the current service is activated,
it will be locally interpreted and executed by the PIA browser in the current desktop.
However, the local execution of a remote service (e.g.,PIA-2) needs permission to
access relevant data (e.g.,AO-2) from a remote desktop. If so, the data is then duplicated
in the local desktop via a secure data transfer.

We note that the essential difference between the two cases of desktop service exe-
cution is related to a tradeoff between control permission and data access. This flexibil-
ity is important in a semantic desktop setting. Depending on their available resources,
some desktops may be reluctant to take a heavy workload while some others may be
concerned with the privacy of their data. Therefore, a desktop (when acting as a server)
can choose whether to contribute its computing power or share its data.

6 Conclusions and Future Work

In this paper, we show how the multi-layered and ontology-based architecture of our
semantic desktop, MOSE, enables a semantically rich environment for personal infor-
mation management. We also stress the importance of a flexible and reusable system
as supported by decoupling the domain and application ontologies. In particular, we
described an MVC-based approach for personal information application (PIA) devel-
opment in MOSE. We have formalized the concept of desktop service, building on the
notion of parameterized channel, as proposed in this paper. Furthermore, we discussed
how desktop services can facilitate data interoperation and integration across distributed
semantic desktops.

While the envisioned semantic desktop can be seen as a miniature of the prospec-
tive semantic web, it has its particular features as well as challenges, such as auto-
matic classification of personal information into ontologies, context-aware information
search, and flexible tools for data manipulation and application development. In the fu-
ture, we will work along the following two directions: (1) We would like to make the
outlined functionality accessible to most end users, for example, by allowing natural
language specifications to automatically formulate channels. In this context, the pre-
vious work on conversion of natural language questions to formal queries is of great
interests [18]. (2) We will also work on mechanisms for defining, publishing, discov-
ering, and composing desktop services so as to extend their current capabilities. Our

13

goal is to provide a semantic platform, where Web services and desktop services can
be semantically integrated in a seamlessly way, so as to achieve data integration and
application interoperability across semantic desktops.

References

1. D. Aumueller and S. Auer. Towards a Semantic Wiki Experience – Desktop Integration and
Interactivity in WikSAR. InProc. of the 1st ISWC Workshop on The Semantic Desktop,
2005.

2. K. Bakshi and D. R. Karger. End-User Application Development for the Semantic Web. In
Proc. of the 1st ISWC Workshop on The Semantic Desktop, pages 123–137, 2005.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.Scientific American, May
2001.

4. S. Bloehdorn, K. Petridis, C. Saathoff, N. Simou, V. Tzouvaras, Y. S. Avrithis, S. Handschuh,
I. Kompatsiaris, S. Staab, and M. G. Strintzis. Semantic Annotation of Images and Videos
for Multimedia Analysis. InESWC 2005, pages 592–607, 2005.

5. V. Bush. As We May Think.The Atlantic Monthly, 176(1):101–108, 1945.
6. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. What to Ask to a

Peer: Ontolgoy-based Query Reformulation. InProc. of the 9th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2004), pages 469–478, 2004.

7. J. Conklin. Hypertext: An Introduction and Survey.IEEE Computer, 20(9):17–41, 1987.
8. I. F. Cruz, W. Sunna, and A. Chaudhry. Semi-Automatic Ontology Alignment for Geospatial

Data Integration. InProc. of the 3rd Int. Conf. on GIScience, pages 51–66, 2004.
9. S. Decker and M. Frank. The Social Semantic Desktop. InProc. of the WWW Workshop

Application Design, Development and Implementation Issues in the Semantic Web, 2004.
10. X. Dong and A. Y. Halevy. A Platform for Personal Information Management and Integra-

tion. In CIDR 2005, pages 119–130, 2005.
11. P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping, K. Petersen, M. Salisbury, D. B. Terry,

and J. Thornton. Extending Document Management Systems with User-specific Active Prop-
erties.ACM Transaction of Information System, 18(2):140–170, 2000.

12. E. Freeman and D. Gelernter. Lifestreams: A Storage Model for Personal Data.SIGMOD
Record, 25(1):80–86, 1996.

13. J. Gemmell, G. Bell, R. Lueder, S. M. Drucker, and C. Wong. MyLifeBits: Fulfilling the
Memex Vision. InACM Multimedia 2002, pages 235–238, 2002.

14. HP Labs. RDQL - RDF Data Query Language. http://www.hpl.hp.com/semweb/rdql.htm,
2005.

15. Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: the State of the Art.The Knowledge
Engineering Review, 18(1):1–31, 2003.

16. G. E. Kramer and S. T. Pope. A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80.Journal of Object-Oriented Programming, 1(3):26–49,
August/September 1988.

17. M. Lenzerini. Data Integration: A Theoretical Perspective. InPODS 2002, pages 233–246,
Madison, Wisconsin, June 2002. ACM.

18. Y. Li, H. Yang, and H. V. Jagadish. NaLIX: an Interactive Natural Language Interface for
Querying XML. InSIGMOD 2005 (Poster).

19. E. Oren. SemperWiki: a Semantic Personal Wiki. InProc. of the 1st ISWC Workshop on The
Semantic Desktop, 2005.

20. C. Peltz. Web Services Orchestration and Choreography.Computer, 36(10):46–52, 2003.

14

21. D. Quan, D. Huynh, and D. R. Karger. Haystack: A Platform for Authoring End User Se-
mantic Web Applications. InISWC 2003, pages 738–753, 2003.

22. L. Sauermann. The Gnowsis Semantic Desktop for Information Integration. InWM 2005,
pages 39–42, 2005.

23. L. Sauermann, A. Bernardi, and A. Dengel. Overview and Outlook on the Semantic Desktop.
In Proc. of the 1st ISWC Workshop on The Semantic Desktop, 2005.

24. H. Xiao and I. F. Cruz. A Multi-Ontology Approach for Personal Information Management.
In Proc. of the 1st ISWC Workshop on The Semantic Desktop, pages 19–33, 2005.

25. H. Xiao and I. F. Cruz. Integrating and Exchanging XML Data Using Ontologies.LNCS
Journal on Data Semantics, Springer Verlag, 2006. (To appear).

26. H. Xiao and I. F. Cruz. Ontology-based Query Rewriting in Peer-to-Peer Networks. InProc.
of the 2nd International Conference on Knowledge Engineering and Decision Support, 2006.

15

