
Detecting Changes in Ontologies via
DAG Comparison

Johann Eder1 and Karl Wiggisser2

1 University of Vienna, Dep. of Knowledge and Business Engineering
johann.eder@univie.ac.at

2 Alps Adria University Klagenfurt, Dep. of Informatics-Systems
wiggisser@isys.uni-klu.ac.at

Abstract. Ontologies are shared conceptualizations of a certain do-
main. As such domains may change, also changes in the ontologies have
to be considered, as otherwise there is no way to state which knowledge
was valid at an arbitrary point in time. Various ontology version manage-
ment systems deal with this problem. But often, the differences between
two versions of an ontology are not known, thus, it is not possible to
incorporate changes into the versioning system. In this paper we present
our graph based ontology change detection approach, an evaluation of
the prototypic implementation and a comparison to existing change de-
tection systems.

1 Introduction

According to Gruber [1], an ontology is an explicit specification of a conceptu-
alization. Ontologies nowadays are often used to represent knowledge about a
certain real world domain, e. g. curricula at a university. But as the real world
tends to change, the ontologies have to change as well. In [2] we presented a graph
based approach for ontology versioning. Incorporating changes in such a tempo-
ral ontology is easy if one knows the changes, but can be a very complex task if
the differences are not exactly known. Furthermore, ontology development is a
very federated process, thus changes are often made by many different people.
Collecting and integrating all these changes is a highly complex task. In other
situations, differences may be known, but the task of manually tagging them is
very long lasting and error prone. In this paper we present our semiautomatic
graph based approach for comparing two versions of an ontology.

There are some approaches for ontology comparison, e. g. PromptDiff [3], as
part of the Protégé framework or OntoView [4], a web based system. We compare
these approaches to our algorithm in Sect. 3.

2 Comparing Ontology Graphs

Generally speaking, ontologies can be represented by arbitrary graphs. The nodes
of the graph represent the concepts and the edges represent the relations between



the concepts. When looking more closely on such graphs, we can see that many
ontologies comprise a generalization hierarchy, which typically builds a directed
acyclic graph (DAG). Now comparing two DAG is much easier than comparing
two arbitrary graphs. Thus, we based our ontology comparison on the change
detection in rooted directed acyclic graphs (RDAG), which are DAG with exactly
one node not having any parents.

We can obtain such a RDAG from any graph as follows: We define two
types of edges for our ontology graph: acyclic edges, for which it is guaranteed
that they do not create a cycle, for instance is-a or part-of. We call all other
edges, which are not defined to be acyclic, cyclic edges. Such an edge can, for
instance, be is-friend-of. If a single root does not exist yet, we insert a new
node virtualRoot and connect it to all nodes not having any parents with an
acyclic virtualEdge. To represent cyclic edges we use so called slots. These are
attributes assigned to a node, holding the edge type and the node on the other
end of the edge. Edges, which are transformed to slots are removed from the
graph. When a node is disconnected from the graph during this process, we
connect it to the virtualRoot via a virtualEdge. Thus, when finished, we have
a RDAG representing exactly the same ontology as the initial graph.

In our approach, the old and the new version of the ontology are represented
each by one RDAG. We now want to find an edit script, which transforms the
old graph into the new graph, hence holds a representation for the changes. We
use the following operations for the graph: Insert and Delete of nodes, edges
and slots, Update and Rename of nodes, and Update of edge type. Our RDAG
comparison is inspired by the tree comparison algorithm of Chawathe et al. [5].

The node matching between the graphs is based on the nodes’ names, their
hierarchical position in the graph, i. e. wether the nodes are leaves or inner
nodes, the contained slots, and node attributes, for instance a description of the
concept. The renaming detection component is adapted from our previous work
[6] in the area of Data Warehousing. Nodes, which are not matched, could have
been renamed. As matching and renaming both touch the identity problem, they
can only be handled using heuristics. Hence, the user has to acknowledge the
results.

After matching and renaming has finished, the change detection takes place.
Node inserts and updates, edge changes and slot changes can be detected dur-
ing one topological traversal of the new version graph. Each node which is not
matched yet has been inserted. If a node is matched, we compare it with its coun-
terpart from the old version graph. If the attributes of matched nodes differ, an
update has occurred. If two matched nodes have parents which do not match,
edges have been inserted or deleted. And if matched nodes have different slots,
deletes and inserts of slots have happened. Detecting node deletes needs one
extra bottom up traversal of the old version graph, where every still unmatched
node is considered as deleted. Each operation is added to the edit script and
immediately applied to the old version. Thus, when the algorithm is finished,
the old graph has been transformed to be equal to the new graph and the edit



Calculation Time of different Phases

0

2000

4000

6000

8000

10000

0 5000 10000 15000 20000

Number of Nodes

T
im
e
 (
m
s
) Precalculations

Matching

Renaming

Editscript

Errorrate for various degrees of difference

0

0,2

0,4

0,6

0,8

1

1,2

0 5000 10000 15000 20000

Number of Nodes

E
rr
o
rr
a
te
 (
%
)

1% Differences 5% Differences 10 % Differences

Overall calculation time

0

3000

6000

9000

12000

0 5000 10000 15000 20000

Number of Nodes

T
im
e
 (
m
s
)

1% Differences 5% Differences 10% Differences

(a) Overall Calculation Time

Calculation Time of different Phases

0

2000

4000

6000

8000

10000

0 5000 10000 15000 20000

Number of Nodes

T
im
e
 (
m
s
) Precalculations

Matching

Renaming

Editscript

Errorrate for various degrees of difference

0

0,2

0,4

0,6

0,8

1

1,2

0 5000 10000 15000 20000

Number of Nodes

E
rr
o
rr
a
te
 (
%
)

1% Differences 5% Differences 10 % Differences

Overall calculation time

0

3000

6000

9000

12000

0 5000 10000 15000 20000

Number of Nodes

T
im
e
 (
m
s
)

1% Differences 5% Differences 10% Differences

(b) Error Rate

Fig. 1: Evaluation Results

script contains a list of operations, representing the differences between old and
new version.

3 Evaluation

3.1 Evaluation Environment

We implemented our approach with Java 1.5 under Windows XP. All perfor-
mance tests were done on a Intel Pentium IV with 2.6 GHz and 1GB RAM, of
which 512 MB were assigned to the Java Virtual Machine. For evaluating the
graph comparison, we generated a set of random graphs, with size from 1 000
nodes up to 20 000 nodes. We tested our approach at difference rates of 1%, 5%,
and 10%, meaning, for a graph with 10 000 nodes there were 100, 500, and 1 000
differences, respectively. The differences were also generated randomly. For each
graph size and difference rate we did 20 rounds with newly created graphs and
calculated the average time and error rate.

3.2 Evaluation Results

In the evaluation of the algorithm there are two major points to look at: run-
ning time and correctness. Figure 1a shows the average overall running time for
the algorithm for various difference rates and graph sizes. It can be seen that
difference rate has a greater impact on the running time than the graph size.

Figure 1b shows the percentage of errors in the detected edit scripts with
respect to the generated differences. This error rate does not only cover the
absolute number of found edit operations, but each operation is checked for its
correctness. It can be seen, that the error rate grows with the percentage of
difference but does not strongly depend on the number of nodes in the graph.
We also calculated the overall average error rates which are about 0.21% for 1%
differences, 0.43% for 5% differences and 0.78% for 10% differences.



3.3 Comparison to other Approaches

The first point to compare between the approaches is the quality of the heuristics,
i. e. the error rate of the change detection. Noy and Musen did an evaluation
for their PromtDiff algorithm, where they compared ontologies from size 320
to 1900 and a difference rates between 4.4% and 0.3%. They give the precision
of their approach with 93%, i. e. 7% of the differences detected by PromptDiff
where not correct. Unfortunately, we did not find any numbers on the precision
of OntoView. Figure 1b shows the error rate of our approach, with respect to
ontology size and difference rate. We can see, that the average error rate is far
below 1%.

Second, we would like to compare the time complexity. Figure 1a shows
the time calculation time for our approach, with respect to ontology size and
difference rate. Unfortunately we did not find any numbers on time complexity,
neither for OntoView nor for PromptDiff. So no comparison is possible here.

4 Conclusions

Ontologies holding knowledge from a real world domain are always subject to
change. For incorporating such changes into an ontology versioning system, one
has to know them. In this paper we presented our approach for detecting changes
between two versions of an ontology. We described, how to obtain the rooted di-
rected acyclic graph, needed for our purpose from an arbitrary graph, represent-
ing an ontology. Furthermore we presented a sketch of our comparison algorithm.
The evaluation of our prototypic implementation gives promising numbers, which
outrun the results from existing approaches, like PromptDiff.

References

1. Gruber, T.: A translation approach to portable onotology specification. Knowledge
Acquisition 5 (1993) 1993

2. Eder, J., Koncilia, C.: Modelling changes in ontologies. In: Proceedings of On The
Move - Federated Conferences, OTM 2004, Springer (2004) LNCS 3292.

3. Noy, N., Musen, M.: Promptdiff: A fixed-point algorithm for comparing ontology
versions. In: Proceedings of the Nat’l Conf. on Artificial Intelligence. (2002)

4. Klein, M., Fensel, D., Kiryakov, A., Ognyavov, D.: Ontology versioning and change
detection on the web. In: Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web, 13th International Conference. (2002)

5. Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection
in hierarchically structured information. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. (1996) 493–504

6. Eder, J., Koncilia, C., Wiggisser, K.: A Tree Comparison Approach to Detect
Changes in Data Warehouse Structures. In: Proc. of the 7th Int’l Conf. on Data
Warehousing and Knowledge Discovery. (2005) 1–10


