
Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 29 of 81

© 2006 for the individual papers by the papers' authors. Copying permitted for private and
scientific purposes. Re-publication of material on this page requires permission by the
copyright owners.

5 Navigation Consistency, or the Lack Thereof, in
Cross-Platform User Interfaces
Mir Farooq Ali, Human Interaction Research,Motorola Labs, 1295 E. Algonquin Rd.,
Schaumburg, IL 60196, USA farooq.ali@motorola.com

There are many different aspects of consistency with regard to cross-platform user
interfaces and their design. One of the important factors in using a cross-platform user
interface is its navigation capability across platforms. In many instances, it is impossible to
provide navigation consistency due to the inherently different nature of the user interfaces
(UIs) on different platforms. In this position paper, we discuss that even while using the
same representation of a UI as a starting point, the design of a cross-platform UI
necessitates having different navigation operators. We discuss a development process that
uses a few navigation operators to provide different navigation capabilities for different
platforms.

INTRODUCTION
There are many different aspects of consistency with regard to cross-platform user interfaces and
their design. Denis and Karsenty [6] introduce a term “inter-usability” to describe the ease with which
users can reuse their knowledge and skills for a given functionality when switching from one device
to a different device. A related term that they introduce is called “inter-device consistency”. This is
related to the consistency when switching between devices. They describe this consistency at four
levels across devices: perceptual, lexical, syntactic and semantic.

One of the other important aspects of this consistency across devices is the navigation capability that
is provided to the end user on each of the different devices. Navigation, as performed by the end-
user, is inherently a part of accomplishing some task. This navigation capability could differ dramati-
cally from device to device depending on their capabilities and also the way the user interface is
designed. It also plays an important role in situations, where the end-user starts a task on one
device, then switches to another device to complete or resume the task. Ideally, consistency across
devices would imply that the navigation capability is the same across devices. However, this is not
necessarily the case and forcibly ensuring consistency, especially in automatically generated UIs,
could lead to poor usability.

This paper discusses a design process [2] that allows the UI developer to flexibly create UIs that
could have different navigation capabilities on different platforms. The developer has to work with
CTT task models [10, 12] and the UIML specification language [1]. This process is semi-automatic
and requires developer intervention to help guide the UI design/generation process.

RELATED WORK
Some of the common design mechanisms for cross-platform or multi-platform user interfaces involve
model-based design processes and tools that use abstract models as a starting point [2, 4, 5, 8–10,
12] and/or the use of specification languages including UIML [1–3], USiXML [8, 9] and XIML [13].
Some other approaches to ensure consistency of UIs across devices involve UNIFORM [11], which is
used to automatically generate consistent remote control UIs, and SUPPLE [7].

PREVIOUS WORK IN THIS AREA
As mentioned earlier, we use the User Interface Markup Language (UIML) as the underlying
language for building UIs [1]. Details about the UIML language and its pros and cons with respect to
cross-platform UI development can be found elsewhere [1]. The CTT task model notation notation
represents a hierarchical tree of tasks and sub-tasks [10]. Each of the tasks in the task tree is



Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 30 of 81

categorized as either user, interaction, application or abstraction. In addition to the tasks, there are
temporal operators in the CTT notation that specify some relationship between sibling tasks.

This section discusses some of our past work in creating a design process for multi-platform user
interfaces and how some specific operators help aid the developer in customi¬zing the navigation
capability to different devices. The de¬veloper initially has to start developing a CTT task model. This
task model specifies the different tasks that the end-user performs with the system. The developer
then has to add so¬me navigation operators to the task model. This is done at the level of each task
in the task model. UIML is generated from the CTT task model after the developer has completed
anno¬tating it. The UIML could be further customized for each platform, keeping in mind different
aspects of consistency desired.It should be noted again that depending on the particular target
device for which the UI is being generated, the navigation operators might vary. As an example, the
desired navigation style for a mobile platform family might incorporate a more menu-style navigation
style, since the typical UIs for small mobile devices are structurally hierarchical, while there might be
more considerably less menu-like navigation used for a desktop family, which might not necessarily
be very hierarchical.

Navigation operators: We next describe the navigation operators that could be added to each task by
the developer. Each task can have one of three navigation operators. These operators are applicable
only for non-leaf level task nodes in the task model tree. The navigation operators are menustyle,
contains and independent.

Each operator is explained next.

• Menustyle: This navigation operator for a task indicates that it has to be organized in the
form of a menu with selection of each menu-item leading to the particular subtask. An
example of this is given below in Figure 1. The figure indicates that a menu is created with
three menu-items, each of which leads to a separate container for the sub-tasks. The dashed
lines indicate the navigation paths from the menu to the subtask containers and back. There
might also be more navigation paths between the subtask containers based on the temporal
operators between the subtasks. These are shown in Figure 3 below

. 

Figure 1. A menu in HTML with three options, each leading to one of the
subtasks



Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 31 of 81

Figure 2. A container with three subtasks

• Contains: This type of navigation operator indicates that the parent task is mapped to some
container that contains whatever parts its subtasks are mapped to. And example of this is
shown in Figure 2.

• Independent: This navigation strategy indicates that each subtask of a particular task can be
in an independent container. Figure 3 shows how this structure might look like. The lines in
the figure indicate the navigation paths between the three containers. The name for this
particular navigation style indicates independence from the parent container. The navigation
paths vary between the various subtasks since the temporal operators between them are
different.

Figure 3. A container with three subtasks.

It should be noted that these navigation operators have been applied to the same initial task model
yielding different navigation styles in the final generated UI.

SUMMARY
We have presented in this paper our position that, depending on the desired target platforms,
different navigation styles might not just be desired – they might be a necessity. We presented some
ways of specifying these in conjunction with the CTT task model and UIML specification language as
an aid to the developer. The entire developement process is transformation based and involves many
phases [2]. We have just touched on one particular aspect of this process involving specification of
navigation operators that is relevant to this workshop.

Note: This work was done as part of the author’s Ph.D. dissertation research at Virginia Polytechnic
Institute and State University

REFERENCES
[1] Abrams, M., Helms, J., 2002. User Interface Markup Language (UIML) Specification:

Language Version 3.0 (Draft).http://www.uiml.org/specs/docs/ uiml30-revised-02-12-02.pdf



Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 32 of 81

[2] Ali, M. F., A Transformation-based Approach to Building Multi-Platform User Interfaces Using a
Task Model and the User Interface Markup Language, Ph.D. Dissertation, Virginia Tech, 2005,
http://scholar.lib.vt.edu/theses/ available/etd-05172005-041721/

[3] Ali, M. F., Pe´rez-Quin˜ones, M., Abrams, M., 2004. Building Multi-Platform User Interfaces
with UIML. In: Seffah, A., Javahery, H. (Eds.), Multiple User Interfaces: Cross-Platform
Applications and Context-Aware Interfaces. John Wiley & Sons, Ltd, West Sussex, England,
Ch. 6, pp. 95–118.

[4] Bandelloni, R., Paterno`, F., January 2004. Flexible Interface Migration. In: Ninth International
Conference on Intelligent User Interfaces: IUI’2004. Madeira, Funchal, Portugal, pp. 148–155.

[5] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J., June 2003.
A Unifying Reference Framework for Multi-target User Interfaces. Interacting with Computers
15 (3), 289–308.

[6] Denis, C., and Karsenty, L. Inter-Usability of Multi-Device Systems – A Conceptual
Framework, In: Seffah, A., Javahery, H. (Eds.), Multiple User Interfaces: Cross-Platform
Applications and Context-Aware Interfaces. John Wiley & Sons, Ltd, West Sussex, England,
Ch. 17, pp. 381–383.

[7] Gajos, K., and Wu, A and Weld, D. CrossDevice Consistency in Automatically Generated User
Interfaces, in Proceedings of the 2nd Workshop on Multi-User and Ubiquitous User Interfaces.
2005. San Diego: pp. 7-8.

[8] Limbourg, Q., 2004. Multi-Path Development of User Interfaces. Ph.D. thesis, Universite´
catholique de Louvain, Louvain-la-Neuve, Belgium.

[9] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., Trevisan, D., May 2004.
USIXML: A User Interface Description Language for Context-Sensitive User Interfaces. In:
Luyten, K., Abrams, M., Vanderdonckt, J., Limbourg, Q. (Eds.), Developing User Interfaces
with XML: Advances in User Interface Description Languages. Gallipoli (Lecce), Italy, pp.
55–62.

[10] Mori, G., Paterno`, F., Santoro, C., August 2004. Design and Development of Multidevice User
Interfaces through Multiple Logical Descriptions. IEEE Transactions on Software Engineering
30 (8), 507–520.

[11] Nichols, J., and Myers, B., and Rothrock, B., UNIFORM: Automatically Generating Consistent
Remote Control User Interfaces, To Appear in Proceedings of CHI’2006. April 22-26. Montreal,
Canada.

[12] Paterno`, F., 2004. ConcurTaskTrees: An Engineered Notation for Task Models. In: Diaper, D.,
Stanton, N. (Eds.), The Handbook of Task Analysis for Human-Computer Interaction.
Lawrence Erlbaum Associates, publishers, Mahwah, New Jersey, Ch. 24, pp. 483–502.

[13] Puerta, A., Eisenstein, J., 2004. XIML: A Multiple User Interface Representation Framework for
Industry. In: Seffah, A., Javahery, H. (Eds.), Multiple User Interfaces: Cross-Platform
Applications and Context-Aware Interfaces. John Wiley & Sons, Ltd, West Sussex, England,
Ch. 7, pp. 119–148.


