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Preface

The advent of the Semantic Web promises machine readable semantics and a
machine-processable next Generation of the Web. The first step in this direction
is the annotation of static data on the Web by machine processable information
about knowledge and its structure by means of Ontologies. The next step in this
direction is the annotation of dynamic applications and services invocable over
the Web in order to facilitate automation of discovery, selection and composition
of semantically described services and data sources on the Web by intelligent
methods, which is called Semantic Web Services.

This volume contains the papers presented at the international workshop
on Applications of Logic Programming in the Semantic Web and Semantic Web
Services (ALPSWS2006) held on August 16th, 2006 in Seattle, Washington as
part of the 22nd International Conference on Logic Programming (ICLP06).

Many previous workshops and conferences were dedicated to these promising
areas mostly with generic topics. With the ALPSWS2006 workshop we had a
slighlty different goal. Rather that bringing together people from a widespread
variety of research fields with different understandings of the topic we wanted
to focus on the various applications areas and approaches in this area from
declarative logic programming (LP).

The idea was to get a snapshot of the state of the work related to applications
of LP to Semantic Web and Semantic Web Services with the following main
objective major benefits:

– Bringing together people from different sub-disciplines of LP and focus on
technological solutions and applications from LP to the problems of the Web.

– Promoting further research in this interesting application field.

Overall, there were 13 submissions. Each submission was reviewed by at least
3 programme committee members. The committee decided to accept 7 papers (6
full-length papers and one short paper) for presentations. 5 of the papers which
could not be considered for full presentations, resubmitted extended abstracts
which have been presented as posters during the workshop and are also included
in this volume.

August 2006 Axel Polleres
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Forgetting in Managing Rules and Ontologies!

Thomas Eiter1, Giovambattista Ianni1, Roman Schindlauer1, Hans Tompits1, and
Kewen Wang1,2

1 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstrasse 9-11, A-1040 Vienna, Austria

{eiter,ianni,roman,tompits,kewen}@kr.tuwien.ac.at
2 School of Information and Communication Technology, Griffith University,

Brisbane, QLD 4111, Australia

Abstract. The language of HEX-programs under the answer-set semantics is de-
signed for interoperating with heterogeneous sources via external atoms and for
meta-reasoning via higher-order literals in the context of the Semantic Web. As
an important technique in managing knowledge bases, the notion of forgetting
has received increasing interest in the knowledge-representation area. In this pa-
per, we introduce a semantics-based theory of forgetting for HEX-programs and,
in turn, for a class of OWL/RDF ontologies which allows to fully employ se-
mantic information in managing ontologies like editing, merging, aligning, and
redundancy removal.

1 Introduction

An ontology is a formal representation of concepts and relationships between them,
making global interoperability possible. Managing ontologies is a central task for many
Semantic-Web applications. However, it is often acknowledged that the Ontology Layer
of the Semantic Web [1] is insufficient in its reasoning abilities. In particular, more and
more ontologies are available on the Web and they are often very large in size and
heterogeneous in location.

This phenomenon brings up a good deal of challenges to researchers in the Seman-
tic Web. For example, when an ontology design is involved, we have to consider some
issues like how to tailor an ontology or how to merge ontologies. Recently, these and re-
lated issues of managing ontologies have received considerable interests [12, 17, 18, 9,
10, 7]. Related issues include ontology editing, ontology segmentation, ontology merg-
ing, ontology aligning, ontology reusing, ontology update, and ontology redundancy
removal. To some extent, all of these issues can be reduced to the problem of extracting
relevant segments out of large ontologies for the purpose of effective management of
ontologies so that the tractability for both humans and computers is enhanced. Such
segments are not mere fragments of ontologies, but stand alone as ontologies in their
own right. The intuition here is similar to views in databases: an existing ontology is

! This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-
N04, and by the European Commission through the IST Networks of Excellence REWERSE
(IST-2003-506779).
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tailored to a smaller ontology so that an optimal ontology is produced for specific ap-
plications. Although this problem has been identified and a number of approaches are
proposed, like, e.g., [8, 20], a general framework for tailoring ontologies in a purely
semantic way is still missing.

On the other hand, the notion of forgetting [4, 15, 14] is a promising technique
for adequately handling a range of classical tasks such as query answering, planning,
decision-making, reasoning about actions, or knowledge update and revision. The idea
of forgetting consists, informally, in the intelligent and “painless” removal of infor-
mation from a given knowledge base. In other words, one may select some literals,
predicates, or concepts, for being discarded (or forgotten) in a given knowledge base.
However, the information selected for elimination is usually logically connected with
other portions of the same knowledge base. It is thus important to preserve, to the best
extent, soundness and completeness of the information entailed after removal.

This is similar in nature to the aforementioned problem in the design and engineer-
ing of Web-based ontology languages. Consider a scenario from [8]: Suppose we start
to design an ontology about various pets (like cats or dogs, but not lions or tigers). As
currently there are numerous ontologies on the Web, suppose we searched the Web and
found a large ontology on various animals including cats, dogs, tigers and lions. It may
not be appropriate to adopt and use the whole ontology. For example, we may wish to
discard (or “forget”) tigers and lions from it.

While a literature on forgetting in logic programming exists (see, e.g., [22, 4]),
and although forgetting takes relevance also in ontology-description formalism such
as OWL, an explicit notion of forgetting has not been given yet for this class of lan-
guages. In this respect, the relationship between a notion of forgetting in ontologies and
of forgetting in rule-based formalisms has not satisfactorily been investigated yet, and
is thus matter of new research.

The problem of forgetting in ontologies can indeed be solved by exploiting the
connection between ontology-description formalisms and logic programming. That is,
given a sound notion of forgetting for logic programming, a knowledge base L, for-
mulated under a generic semantics (e.g. RDFS, OWL, etc.) can be transposed to an
equivalent logic program PL, formulated under a different (and usually, nonmonotonic)
semantics. Then, logic programming forgetting techniques are applied to PL and a mod-
ified program, forget(PL, l), is obtained and translated back to a knowledge base L′,
where l is the information to be discarded, which can be either a propositional atom, a
concept, or a predicate.

Nonetheless, in order to fulfill the above approach, several issues, some of which
already tackled in the literature, have to be solved and accommodated:

– A systematic way for translating L to PL must be given. Attempts in this direction
are several: for instance, Grosof et al. [11] translate a fragment of OWL-DL to
Horn logic, whereas Swift [21] and Motik, Volz, and Maedche [16] port significant
fragments of description logics to positive disjunctive logic programs.

– The pre-existing forgetting semantics [22, 4] mainly concentrates on discarding
propositional information from ground programs. However, often PL might be a
non-ground program and l a non-propositional value (such as a predicate whose
entire extension must be discarded). Also, many ontology description languages
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(such as RDF and RDFS) include the possibility of exchanging the notion of class
with the notion of individual, in order to enable meta-reasoning. In such a setting,
PL is better mapped to a higher-order logic program.

– Also it is unclear in which cases forget(PL, l) can be mapped back to a valid knowl-
edge base L′.

In the present paper, we aim at answering some of the questions above.
The logic programming language of choice is HEX, as defined in previous work [3].

This is a rule-based, fully declarative formalism which allows both for higher-order
atoms and external atoms, under a well-defined generalization of the answer-set seman-
tics [6].

Intuitively, a higher-order atom allows to quantify values over predicate names and
to freely exchange predicate symbols with constant symbols, like in the rule

C (X) ← subClassOf (D,C), D(X).

An external atom facilitates the assignment of a truth value of an atom through an
external source of computation. For instance, the rule

t(Sub,Pred ,Obj )← &rdf [uri ](Sub,Pred ,Obj )

computes the predicate t taking values from the predicate &rdf . The latter extracts RDF
statements from the set of URIs specified by the extension of the predicate uri ; this task
is delegated to an external computational source (e.g., an external deduction system, an
execution library, etc.). External atoms allow for a bidirectional flow of information
to and from external sources of computation such as description-logic reasoners. By
means of HEX-programs, powerful meta-reasoning becomes available in a decidable
setting, e.g., not only for Semantic-Web applications, but also for meta-interpretation
techniques in answer-set programming (ASP) itself, or for defining policy languages.

The contributions in this paper can be summarized as follows:

1. We introduce the notion of semantic forgetting for HEX-programs. Forgetting in
logic programs has been previously considered by Eiter and Wang [4], who de-
fined forgetting of a given literal l in the context of propositional disjunctive logic
programs. This notion is extended in order to deal with external and higher-order
atoms, as well as with positive non-ground programs.

2. We develop an algorithm for forgetting which is useful in the setting of ontology
management. The basic idea of this algorithm is that certain rules that are locally
redundant may become relevant afterwards and thus they are kept in the program.

3. We show how semantic forgetting of ontologies can be performed using an equiv-
alent logic program, whose modified versions (after forgetting) are translated back
to ontologies. In particular, that fragment of OWL-DL is taken into account which
can be translated to description-logic programs [11]. The approach can be currently
generalized to all those ontology languages for which a sound and complete map-
ping to positive logic programs is known.

Our approach is illustrated on some example application. For this, we use an ontol-
ogy “Person-Relationship” in the paper, which can be scaled as large as one wishes.
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The rest of the paper is organized as follows. Section 2 briefly recalls syntax and
semantics of HEX-programs. Section 3 introduces the notion of semantic forgetting for
HEX-programs and a novel algorithm for computing forgetting. As well, forgetting for
non-ground positive programs is defined. Section 4, then, discusses a method for for-
getting OWL/RDF-ontologies in terms of a transformation technique. Finally, Section 5
wraps up the paper with some concluding remarks.

2 HEX-Programs

2.1 Syntax

HEX programs are built on mutually disjoint sets C, X , and G of constant names, vari-
able names, and external predicate names, respectively. Unless stated otherwise, ele-
ments from X (resp., C) are written with first letter in upper case (resp., lower case),
and elements from G are prefixed with “ & .” Constant names serve both as individual
and predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms and n ≥ 0 is its arity. Intuitively, Y0 is
the predicate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is
ordinary, if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary
atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output
list, respectively), and &g is an external predicate name.

It is possible to specify molecules of atoms similar as in F-Logic [13]. For instance,
gi [father → X, Z → iu] is a shortcut for the conjunction father(gi, X), Z(gi, iu).

A HEX-program1 is a set of rules of the form

α ← β1, . . . ,βn,not βn+1, . . . ,not βm, (2)

where m ≥ 0, α is a higher-order atom, and β1, . . . ,βm are either higher-order atoms
or external atoms. The operator “not” is negation as failure (or default negation). For
a rule r as in (2), we define head(r) = α and body(r) = body+(r) ∪ body−(r),
where body+(r) = {β1, . . . ,βn} and body−(r) = {βn+1, . . . ,βm}. If r contains only
ordinary atoms, then r is ordinary. Furthermore, r is quasi-negative if n = 0. A HEX-
program is quasi-negative if it contains only quasi-negative rules. An ordinary rule is
positive iff m = n, i.e., if it contains no negation as failure. A program is positive iff all
rules in it are positive.

We mention that higher-order features in logic programs have also been considered,
e.g., by Chen, Kifer, and Warren [2] and Ross [19].

1 In contrast to the original definition in [3], here we consider only HEX-programs without dis-
junctions in rule heads.
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2.2 Semantics

The semantics of HEX-programs [3] is defined by generalizing the answer-set seman-
tics [6]. The Herbrand base of a program P , denoted HBP , is the set of all possible
ground versions of atoms and external atoms occurring in P obtained by replacing vari-
ables with constants from C. The grounding of a rule r, grnd(r), is defined accordingly,
and the grounding of program P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless speci-

fied otherwise, C, X , and G are implicitly given by P .
An interpretation relative to P is any subset I ⊆ HBP containing only atoms.

We say that an interpretation I is a model of an atom a ∈ HBP iff a∈ I . Further-
more, I is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm) iff
f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where f&g is an (n+m+1)-ary Boolean function
associated with &g, called oracle function, assigning each element of 2HBP × Cn+m

either 0 or 1. We write I |= a to express that I is a model of a.
Let r be a ground rule. We define (i) I |= body(r) iff I |= a for all a∈ body+(r) and

I (|= a for all a∈ body−(r), and (ii) I |= r iff I |=head(r) whenever I |= body(r). We
say that I is a model of a HEX-program P , denoted I |=P , iff I |= r for all r∈ grnd(P ).

The Faber-Leone-Pfeifer reduct [5] (or short FLP-reduct) of P with respect to
I ⊆HBP , denoted fP I , is the set of all r ∈ grnd(P ) such that I |= body(r). I ⊆HBP

is an answer set of P iff I is a minimal model of fP I . By AS(P ) we denote the set of
all answer sets of P .

A HEX-program is consistent if it has at least one answer set. We call two HEX-
programs, P and Q, equivalent, symbolically P ≡ Q, iff AS(P ) = AS(Q).

In practice, it is useful to differentiate between two kinds of input attributes for
external atoms. For an external predicate &g (exploited, say, in an atom &g[p](X)), a
term appearing in an attribute position of type predicate (in this case, p) means that the
outcomes of f&g are dependent from the current interpretation I , for what the extension
of the predicate named p in I is concerned. An input attribute of type constant does not
imply a dependency of f&g from some portion of I . An external predicate whose input
attributes are all of type constant does not depend from the current interpretation.

Example 2.1. The external predicate &rdf introduced before is implemented with a
single input argument of type predicate, because its associated function finds the RDF-
URIs in the extension of the predicate uri :

tr(S, P,O)← &rdf [uri](S, P,O),
uri(“file://foaf .rdf ”)← .

Should the input argument be of type constant, an equivalent program would be:

tr(S, P,O)← &rdf [“file://foaf .rdf ”](S, P,O)

or
tr(S, P,O)← &rdf [X](S, P,O), uri(X),

uri(“file://foaf .rdf ”)← .

*+
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3 Forgetting in HEX-Programs

As we have explained in Section 1, the technique of forgetting is useful in managing
ontologies. So it is natural and interesting to generalize forgetting to HEX-programs. In
fact, since HEX-programs have higher-order syntax but first-order semantics, it allows
us to adapt the notion of forgetting to HEX-programs. In this section, we introduce the
notion of forgetting for HEX-programs. The intuition behind the forgetting of an atom
l in a HEX-program is to obtain a HEX-program which is equivalent to the original
HEX-program if we ignore the existence of l.

In the next subsection, we assume that HEX-programs are ground and consistent.
When a HEX-program with variables is given, it is a shorthand for its ground version. As
we will see in Section 4, forgetting in an RDF ontology is defined in terms of forgetting
in the corresponding logic program, which is a non-ground positive program. So, in
Subsection 3.2, forgetting in non-grounded positive programs is considered.

3.1 Forgetting in Ground HEX-Programs

We call a set X ′ an l-subset of a set X , denoted X ′ ⊆l X , if X ′ \ {l} ⊆ X \ {l}.
Similarly, a set X ′ is a strict l-subset of X , denoted X ′ ⊂l X , if X ′\{l} ⊂ X\{l}. Two
sets X and X ′ of literals are l-equivalent, denoted X ∼l X ′, if (X \X ′)∪ (X ′ \X) ⊆
{l}.

Definition 3.1. Let P be a consistent HEX-program, let l be a (ground) atom in P , and
let X be a set of atoms.

1. For a collection S of sets of atoms, X ∈ S is l-minimal in S if there is no X ′ ∈ S
such that X ′ ⊂l X .

2. An answer set X of a HEX-program P is an l-answer set if X is l-minimal in
AS(P ).

Example 3.1. Let P = {p ← not q; q ← not p; s ← p; s ← q}. It is easy to see that
P has two answer sets, viz. X = {p, s} and X ′ = {q, s}. Then, X is a p-answer set but
X ′ is not. *+

Having defined the notion of minimality about forgetting an atom, we are now in a
position to define the result of forgetting about an atom in a HEX-program.

Definition 3.2. Let P be a consistent HEX-program and let l be a (ground) atom. A
HEX-program P ′ is a result of forgetting about l in P , if P ′ represents l-answer sets of
P , i.e., such that the following conditions are satisfied:

1. At(P ′) ⊆ At(P )−{l}, where, for any program Q, At(Q) denotes the set of atoms
occurring in Q.

2. For any set X ′ of atoms with l /∈X ′, X ′ is an answer set of P ′ iff there is an l-
answer set X of P such that X ′ ∼l X .

6



Note that the first condition implies that l does not appear in P ′. We use forget(P, l) to
denote a possible result of forgetting about l in P .

Since an atom that does not appear in the head of a rule in a HEX-program is au-
tomatically assumed to be false in the process of forgetting for ordinary programs, all
external atoms would be removed from the program. For this reason, the native algo-
rithm for forgetting [4] is not helpful for HEX-programs. Thus, we introduce a new
algorithm, which is inspired by Algorithm 4 in the system LPForget.2

Preparatory for describing the algorithm, below we introduce some program trans-
formations for HEX-programs, which are generalizations of respective ones for ordinary
programs [4].

In the following, let P and P ′ be HEX-programs.

Elimination of Tautologies: P ′ is obtained from P by elimination of tautologies iff
there is a rule r in P such that head(r) ∈ body+(r) and P ′ = P − {r}.

Elimination of Head Redundancy: P ′ is obtained from P by elimination of head re-
dundancy iff there is a rule r in P such that head(r) ∈ body−(r) and P ′ =
(P − {r}) ∪ {← body(r)}.

Positive Reduction: P ′ is obtained from P by positive reduction iff there is a rule r in
P such that body−(r) contains some c which does not occur in the head of any rule
in P and P ′ is obtained from P by removing not c from r.

Negative Reduction: P ′ is obtained from P by negative reduction iff there are two
rules r and r′ : b′ ← in P such that b′ ∈ body−(r) and P ′ = P − {r}.

Elimination of Implications: Let r and r′ be two distinct rules in a logic program. We
say that r′ is an implication of r if head(r) = head(r′) and body(r) ⊂ body(r′).
Then, P ′ is obtained from P by elimination of implications iff there are two distinct
rules r and r′ of P such that r′ is an implication of r and P ′ = P − {r′}.

Unfolding: For two rules r and r′ with head(r′) ∈ body+(r), the unfolding of r with
r′, denoted unfold(r, r′), is the rule head(r) ← (body(r)−{head(r′)}), body(r′).
Then, P ′ is obtained from P by unfolding if there is a rule r such that

P ′ = (P − {r}) ∪ {unfold(r, r′) | r′ ∈ P, head(r′) ∈ body+(r)}.

A special case of unfolding is when there is no rule r′ such that r′ is resolved with
r. In this case, P ′ = P − {r}.

We use T to denote the set of program transformations introduced above.

Lemma 3.1. Using program transformations in T , every HEX-program can be trans-
formed into a quasi-negative program such that no atom appears in both head and body
of a rule.

The algorithm for computing the result of forgetting, referred to as Algorithm 1,
is depicted in Figure 1. This algorithm can be easily implemented using the system
LPForget. Note that the current form of Algorithm 1 is incomplete with respect to
the semantic forgetting for some special cases while it is intuitive and can be seen an

2 See http://www.cit.gu.edu.au/∼kewen/LPForget/.
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Algorithm 1 (Computing a result of forgetting)
Input: HEX-program P and an atom l in P .
Output: Program forget(P, l) as a result of forgetting l from P .
Method:
Step 1. Positive Splitting: Initially take Q as the set of all rules in which l appears. For every rule
r in P such that either head(r) or some literal of body−(r) appears in Q, add r to Q. Repeat this
process until no new rule can be added. The resulting program is still denoted Q.
Step 2. Fully apply on Q the program transformations T and then obtain a quasi-negative program
Q′. During this process, we keep record of the set RU(Q, l) of all rules removed by unfolding
but containing no appearance of l.
Step 3. Suppose that Q′ has n rules with head l:

rj : l ← not lj1, ...,not ljmj ,

where n ≥ 0, j = 1, . . . , n and mj ≥ 0 for all j.
If n = 0, then let Q′′ denote the program obtained from Q′ by removing all appearances of not l.
If n = 1 and m1 = 0, then l ← is the only rule in Q′ having head l. In this case, remove every
rule in Q′ whose body contains not l. Let Q′′ be the resulting program.
For n ≥ 1 and m1 > 0, let D1, . . . , Ds be all possible conjunctions (l1k1 , · · · , lnkn), where
0 ≤ k1 ≤ m1, ..., 0 ≤ kn ≤ mn. Replace each occurrence of not l in Q′ by all possible Di. Let
Q′′ be the result.
Step 4. Output Q′′ ∪RU(Q, l) ∪ Q̄ as forget(P, l), where Q̄ = P \ Q.

Fig. 1. Algorithm 1 for computing a result of forgetting.

ideal approximation to the semantic forgetting. A complete algorithm is obtained by
replacing Step 3 with Step 3 of Algorithm 2 given by Eiter and Wang [4].

For a consistent HEX-program P and an atom l, some program P ′ as in Defini-
tion 3.2 always exists. However, different such programs P ′ might exist. It follows
from the above definition that they are all equivalent under the answer-set semantics.

Proposition 3.1. Let P be a HEX-program and l an atom in P . If P ′ and P ′′ are two
results of forgetting about l in P , then P ′ ≡ P ′′.

Example 3.2. Suppose that L is a knowledge base on the Web consisting of various ax-
ioms about persons and their relationships. In particular, L contains assertions depicted
in Figure 2.

Let P now be the following HEX-program, where &dlC and &dlR are external
atoms that query the extensions of a specified concept resp. role from a single descrip-
tion logic ontology:3

sibling(X, Y )← &dlR[siblingOf ](X, Y );
sibling(X, Y )← &dlR[childOf ](X, Z),&dlR[childOf ](Y, Z);
inEurope(Y )← sibling(“Bob”, Y ),not inAmerica(Y );

inAmerica(Y )← sibling(“Bob”, Y ),not inEurope(Y ).

3 For the sake of readability, we use a simplified version of the actual and implemented dl-atoms
for HEX-programs here.
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Male % Person
Female % Person
& % ∀knows−.Person
& % ∀knows.Person
friendOf % knows
childOf % knows
siblingOf ≡ siblingOf −

siblingOf + % siblingOf
siblingOf % knows

parentOf (Alice,Bob)
parentOf (Alice,Carl)
parentOf (Bob,Emma)
sameProject(Bob,Dennis)

spouseOf % knows
spouseOf ≡ spouseOf −

worksWith ≡ worksWith−

worksWith+ % worksWith
worksWith % knows
parentOf ≡ childOf −

parentOf % ancestorOf
ancestorOf % knows
ancestorOf + % ancestorOf
sameProject % worksWith

Fig. 2. Example ontology L.

To apply forgetting, we first have to obtain the ground program grnd(P ). In order to
keep the example readable, we omit those ground rules whose bodies are not satisfied
by L:

sibling(“Bob”, “Carl”)← &dlR[childOf ](“Bob”, “Alice”),
&dlR[childOf ](“Carl”, “Alice”);

sibling(“Carl”, “Bob”)← &dlR[childOf ](“Carl”, “Alice”),
&dlR[childOf ](“Bob”, “Alice”);

inEurope(“Carl”)← sibling(“Bob”, “Carl”),not inAmerica(“Carl”);
inAmerica(“Carl”)← sibling(“Bob”, “Carl”),not inEurope(“Carl”).

Thus, grnd(P ) has two answer sets, viz.

X1 = {sibling(“Bob”, “Carl”), sibling(“Carl”, “Bob”), inEurope(“Carl”)} and
X2 = {sibling(“Bob”, “Carl”), sibling(“Carl”, “Bob”), inAmerica(“Carl”)}.

If we allow to forget about sibling(“Carl”, “Bob”) in grnd(P ), then the result of for-
getting is obtained from grnd(P ) by removing the first rule. *+

The above definitions of forgetting about an atom l can be extended to forgetting
about a set F of atoms. Specifically, we can similarly define X1 ⊆F X2, X1 ∼F X2,
and F -answer sets of a HEX-program. In fact, the properties of forgetting about a single
atom can be generalized to the case of forgetting about a set. Moreover, the result of
forgetting about a set F can be obtained by forgetting each atom one by one in F .

Proposition 3.2. Let P be a consistent HEX-program and F = {l1, . . . , lm} a set of
atoms. Then, forget(P, F ) ≡ forget(. . . (forget(forget(P, l1), l2), . . .), lm).

Since higher-order atoms and external atoms can be treated as ordinary atoms in the
process of forgetting, we can prove the above result similarly to the proof of Proposi-
tion 6 given by Eiter and Wang [4].
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For HEX-programs, the notion of ordinary forgetting may not be sufficient for some
applications in managing ontologies. In some cases, we need to forget a predicate. This
can be easily accomplished by forgetting the set of all atoms with the same predicate.

Due to the presence of higher-order terms, we may need also to forget some other
atoms when we want to forget a specific atom. This is illustrated in the following ex-
ample.

Example 3.3. Suppose we want to forget the predicate “brotherOf ” in the following
program:

subRelation(brotherOf , siblingOf )←
brotherOf (john, al)←
siblingOf (john, joe)←
siblingOf (al ,mick)←

R(X, Y )← subRelation(P ,R),P(X ,Y )

Here, we should also forget subRelation(brotherOf , siblingOf ). *+

For the above discussion, it is natural to define the following variant of forgetting,
which is more intuitive for most applications.

Definition 3.3. Let P be a HEX-program and l an atom in P . Denote by sup(l) the
set of all atoms in P that contain the predicate name of l. Then the result of enforced
forgetting about l in P , written Forget(P, l), is defined as forget(P, sup(l)).

In Example 3.3, Forget(P, brotherOf ), given by

forget(P, {brotherOf (john, al), subRelation(brotherOf , siblingOf )}),

is the following program:

siblingOf (john, al)← ;
siblingOf (john, joe)← ;
siblingOf (al ,mick)← .

3.2 Forgetting in Non-Ground Positive Programs

As we will see in Section 4, the logic program PL translated from an OWL/RDF on-
tology is non-ground in general and thus forgetting as defined by Eiter and Wang [4]
cannot be directly applied here. However, since PL has a special form and, in partic-
ular, has no negation as failure, we are able to lift the notion of forgetting for ground
programs to this kind of non-ground programs.

To this end, we first need to define weak unfolding for logic programs.
Let r : a ← b, B and r′ : b′ ← B′ be normal rules, where a, b, b′ are atoms,

and B, B′ are conjunctions of literals. Note that no higher-order atoms occur here.
When necessary, we can rename the variables of r′ such that r and r′ have no common
variables. If the head b′ of r′ and b have a most general unifier (mgu) θ, then the rule
(a ← B,B′)θ is called a resolvent of r with r′.
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Algorithm 2 (Computing forgetting for non-ground positive logic programs)
Input: Positive logic program P and a predicate R.
Output: Program forget(P, R) as the result of forgetting R from P .
Method:

1. Fully apply weak unfolding on P .
2. Remove all rules containing R.
3. Output the resulting program as forget(P, R).

Fig. 3. Computing forgetting for non-ground programs without negation as failure.

Weak Unfolding. A logic program P ′ is obtained from P by weak unfolding iff there
are two rules r and r′ in P such that r′′ is a resolvent of r with r′ and P ′ = P∪{r′′}.

For a positive logic program the result of forgetting can be easily obtained by Algo-
rithm 2 depicted in Figure 3.

The following result shows that this lifting algorithm for forgetting is sound with
respect to semantic forgetting for ground programs.

Theorem 3.1. Let P be a non-ground positive program and R a predicate in P .
For any extensional database E (i.e., a set of facts), we have

forget(P,R) ∪ E ≡ forget(grnd(P ∪ E), const(R)),

where const(R) = {R(a) | a is a constant in P ∪ E}.

Proof. (Sketch) First, we observe the following two properties:

(α) If r′′ is an instance of unfold(r, r′) in P ∪E, then r′′ = unfold(r̄, r̄′), where r̄ and
r̄′ are instances of r and r′, respectively.

(β) If r′′ = unfold(r̄, r̄′), for r̄ and r̄′ in grnd(P ∪ E), then r′′ is an instance of
unfold(r, r′) in P ∪ E, where r̄ and r̄′ are instances of r and r′, respectively.

Let Q1 = forget(P,R)∪E and Q2 = forget(grnd(P ∪E), const(R)). Since P is
positive, AS(grnd(Q1)) and AS(Q2) are singletons.

Let TQ be the consequence operator of a positive program Q. Then, the unique
answer set of Q is its least Herbrand model

⋃
k≥0 TQ ↑ k.

The unique element of AS(grnd(Q1)) is ∪k≥0Tgrnd(Q1) ↑ k, and the unique ele-
ment of AS(Q2) is

⋃
k≥0 TQ2 ↑ k. Using Properties (α) and (β), we can easily show

that Tgrnd(Q1) ↑ k=TQ2 ↑ k, by induction on k ≥ 0. So, AS(grnd(Q1))=AS(Q2). *+

Algorithm 2 may be refined by applying Step 1 only to a subset of the rules and
facts P which is relevant to R, while the rest of the program remains untouched. In this
way, the cost of computing forgetting can be reduced radically.

For P and R in Algorithm 2, let Q initially be the set of all rules in which R
appears. Then, add each rule r from P to Q such that head(r) appears in Q, and repeat
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L !! PL

""
L′ forget(PL, l)##

Fig. 4. Forgetting in ontologies via a logic program.

this process until no new rules can be added. Let the resulting program be denoted by
QP,R. Intuitively, Q̄ consists of rules that are irrelevant to R. For forgetting in a positive
program, it is done by a series of unfolding and then removing some rules relevant to
R. So, rules in Q̄ are essentially unchanged during the process of forgetting.

Theorem 3.2. Let P be a non-ground positive program P and let R be a predicate in
P . For any extensional database E, it holds that

forget(P,R) ∪ E ≡ forget(QP,R, R) ∪ Q̄ ∪ E,

where Q̄ = P \ QP,R.

It should be noted that although the process of forgetting for non-ground programs
is realized by the removal of certain rules, it has a semantic justification as Theorem 3.2
shows.

4 Forgetting in OWL/RDF-Ontologies

To apply forgetting purely to an ontology expressed in OWL or RDFS, we reuse the
techniques defined for forgetting in logic programs. Figure 4 shows the general prin-
ciple of this approach. First, an ontology L is translated into a rule representation PL,
taking the specific ontology semantics into account. Then, for any atom l in PL, we can
compute forget(PL, l). Finally, we translate the result back into an ontology.

The translation of description-logic axioms into a logic program is shown in Ta-
bles 1 and 2. This translation covers most of the expressiveness of OWL Lite and corre-
sponds to the translation given by Grosof et al. [11], mapping some subset of a descrip-
tion logic to positive equality-free datalog programs. Note that some description-logic
constructs have no direct representation in logic-programming rules, such as cardinal-
ity constraints. Also, existential and universal quantification is restricted to the left-hand
side resp. right-hand side of a subclass axiom. In general, a transformation from a set
of rules back to ontology statements requires the rules in forget(PL, l) to be in a form
according to Tables 1 and 2.

Example 4.1. Consider again the ontology L in Figure 2. The translation of L into a
logic program according to PL is depicted in Figure 5. Suppose we do not want to
keep the concepts worksWith , then we can use Theorem 3.1 to simplify the process of
forgetting.

Take Q as a subprogram of PL:
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Table 1. Mapping of ontology statements to rules.

Statement DL syntax Rule representation
subClassOf D % C C(X) ← D(X).
subPropertyOf P % Q Q(X, Y ) ← P (X, Y ).
domain & % ∀P−.C C(X) ← P (X, Y ).
range & % ∀P .C C(Y ) ← P (X, Y ).
class-instance a : C C(a) ← .
property-instance 〈a, b〉 : P P (a, b) ← .
class-equivalence D ≡ C D(X) ← C(X);

C(X) ← D(X).
property-equivalence P ≡ Q P (X, Y ) ← Q(X, Y );

Q(X, Y ) ← P (X, Y ).
inverseOf P ≡ Q− P (X, Y ) ← Q(Y, X);

Q(X, Y ) ← P (Y, X).
transitiveProperty P+ % P P (X, Y ) ← P (X, Z), P (Z, Y ).

Table 2. Mapping of ontology class constructors to rules.

Constructor DL syntax Rule representation
conjunction C1 + C2 % D D(X) ← C1(X), C2(X).

C % D1 +D2 D1(X) ← C(X);
D2(X) ← C(X).

disjunction C1 , C2 % D D(X) ← C1(X);
D(X) ← C2(X).

existential restriction ∃P.C % D D(X) ← P (X, Y ), C(Y ).
universal restriction D % ∀P.C C(Y ) ← P (X, Y ), D(X).

sameProject(“Bob”, “Dennis”)← ;
worksWith(X, Y )← worksWith(Y, X);
worksWith(X, Z)← worksWith(X, Y ),worksWith(Y, Z);

knows(X, Y )← worksWith(X, Y );
worksWith(X, Y )← sameProject(X, Y ).

We can apply Algorithm 2 on the logic program Q by forgetting worksWith . First,
fully apply weak unfolding on Q and obtain Q′:

sameProject(“Bob”, “Dennis”)← ;
worksWith(X, Y )← worksWith(Y, X);
worksWith(X, Z)← worksWith(X, Y ),worksWith(Y, Z);

knows(X, Y )← worksWith(X, Y );
worksWith(X, Y )← sameProject(X, Y );

knows(X, Y )← sameProject(X, Y );
worksWith(“Bob”, “Dennis”)← ;

knows(“Bob”, “Dennis”)← .
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parentOf (“Alice”, “Carl”) ← .
female(“Alice”) ← .

sameProject(“Bob”, “Dennis”) ← .
male(“Bob”) ← .

parentOf (“Carl”, “Emma”) ← .
person(“Carl”) ← .

person(“Dennis”) ← .
knows(X, Y ) ← childOf (X, Y ).

childOf (X, Y ) ← parentOf (Y, X).
male(X) ← father(X).

person(X) ← female(X).
friendOf (X, Y ) ← friendOf (Y, X).

knows(X, Y ) ← ancestorOf (X, Y ).
ancestorOf (X, Z) ← ancestorOf (X, Y ),

ancestorOf (Y, Z).
knows(X, Y ) ← friendOf (X, Y ).

person(X) ← knows(X, Y ).
person(Y ) ← knows(X, Y ).
person(X) ← male(X).
female(X) ← mother(X).

ancestorOf (X, Y ) ← parentOf (X, Y ).
parentOf (X, Y ) ← childOf (Y, X).
siblingOf (X, Y ) ← siblingOf (Y, X).

knows(X, Y ) ← siblingOf (X, Y ).
spouseOf (X, Y ) ← spouseOf (Y, X).

knows(X, Y ) ← spouseOf (X, Y ).
worksWith(X, Y ) ← worksWith(Y, X).
worksWith(X, Z) ← worksWith(X, Y ),

worksWith(Y, Z).
knows(X, Y ) ← worksWith(X, Y ).

worksWith(X, Y ) ← sameProject(X, Y ).

Fig. 5. Translation of L into a logic program PL.

Thus, the result of forgetting about worksWith is the program

forget(Q,worksWith) ∪ Q̄,

where Q̄ = PL \ Q and forget(Q,worksWith) is as follows:

sameProject(“Bob”, “Dennis”)← ;
knows(X, Y )← sameProject(X, Y );

knows(“Bob”, “Dennis”)← .

Translating this fragment back into the original description logic results in the fol-
lowing statements:

sameProject(“Bob”, “Dennis”);
sameProject 0 knows;
knows(“Bob”, “Dennis”).

The property worksWith does not occur in the modified description-logic knowl-
edge base any more, while the subproperty relation between sameProject and knows
is preserved. *+

Combining the approaches to forgetting of Sections 3 and 4, we are now able to
forget any set of ordinary atoms, higher-order atoms, whole external atoms, and parts
of external atoms in a HEX-program.

5 Related Work and Concluding Remarks

The notion of forgetting for HEX-programs introduced in this paper generalizes a re-
spective notion for ordinary logic programs defined in previous work [4]. Forgetting for
HEX-programs provides a means to handle forgetting at the user-view level, since HEX-
programs are tailored to access sources like OWL/RDF ontologies at the extensional
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level through external atoms, but does not go back to changes in these sources, as is
done in the view-update problem of databases, for instance. However, such ontologies
have been cast to a class of logic programs which constitute a small fragment of HEX-
programs, and thus semantic forgetting for OWL/RDF may be facilitated through this
mapping, as we have shown. Our work therefore provides a uniform basis for a frame-
work for extracting ontology segments from a custom ontology, which is exploited at
the user level. This approach is in an active area of semantic integration in ontologies
(see [17] for a survey). However, the emphasis of our work is on conflict resolving in
semantic integration of ontologies rather than on ontology mapping.

Forgetting for OWL/RDF ontologies can be used for various tasks in ontology man-
agement including the following:

– Ontology segmentation: This approach is to obtain segments from a custom ontol-
ogy, thus having the same purpose as forgetting. Seidenberg and Rector [20] present
a series of strategies for extracting ontology segments. However, it lacks a general
semantic justification.

– Ontology merging: Given two ontologies O1 and O2, they could first be prepro-
cessed by techniques in ontology mapping and then be merged into one ontology.
In many cases, conflicts may be present in the process of merging. If the conflict
is caused by some concept C, a natural approach is to forget C from one of these
two ontologies or from both. Grau, Parsia, and Sirin [8] propose to use so-called
“E-connections” for merging ontologies. In this approach, merging ontologies is
defined in terms of link properties. However, it is difficult to find related link prop-
erties.

Similar to other approaches to semantic integration, it is a hard issue to determine
the set of concepts which should be forgotten if they are not explicitly specified by the
user. This issue could be solved by employing heuristics and techniques from machine
learning. Exploring this is left for future work.
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Abstract. We address the problem of answering Web ontology queries
efficiently. An ontology is formalized as a Deductive Ontology Base (DOB),
a deductive database that comprises the ontology’s inference axioms
and facts, and we present a cost-based query optimization technique
for DOB. A hybrid cost model is proposed to estimate the cost and car-
dinality of basic and inferred facts. Cardinality and cost of inferred facts
are estimated using an adaptive sampling technique, while techniques
of traditional relational cost models are used for estimating the cost of
basic facts and conjunctive ontology queries. Finally, we implement a
dynamic-programming optimization algorithm to identify query evalua-
tion plans that minimize the number of intermediate inferred facts. We
modeled a subset of the Web ontology language OWL Lite as a DOB,
and performed an experimental study to analyze the predictive capacity
of our cost model and the benefits of the query optimization technique.
Our study has been conducted over synthetic and real-world OWL on-
tologies, and shows that the techniques are accurate and improve query
performance.

1 Introduction

Ontology systems usually provide reasoning and retrieval services that identify
the basic facts that satisfy a requirement, and derive implicit knowledge using the
ontology’s inference axioms. In the context of the Semantic Web, the number of
inferred facts can be extremely large. On one hand, the amount of basic ontology
facts (domain concepts and Web source annotations) can be considerable, and
on the other hand, Open World reasoning in Web ontologies may yield a large
space of choices. Therefore, efficient evaluation strategies are needed in Web
ontology’s inference engines.

In our approach, ontologies are formalized as a deductive database called
a Deductive Ontology Base (DOB). The extensional database comprises all the
ontology language’s statements that represent the explicit ontology knowledge.
The intensional database corresponds to the set of deductive rules which define
the semantics of the ontology language. We provide a cost-based optimization
technique for Web ontologies represented as a DOB.
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Traditional query optimization techniques for deductive databases systems
include join-ordering strategies, and techniques that combine a bottom-up eva-
luation with top-down propagation of query variable bindings in the spirit of the
Magic-Sets algorithm [17]. Join-ordering strategies may be heuristic-based or
cost-based; some cost-based approaches depend on the estimation of the join se-
lectivity; others rely on the fan-out of a literal [22]. Cost-based query optimization
has been successfully used by relational database management systems; however,
these optimizers are not able to estimate the cost or cardinality of data that do
not exist a priori, which is the case of intensional predicates in a DOB.

We propose a hybrid cost model that combines two techniques for cardinality
and cost estimation: (1) the sampling technique proposed in [10, 11] is applied
for the estimation of the evaluation cost and cardinality of intensional predicates,
and (2) a cost model à la System R cost model is used for the estimation of the
cost and cardinality of extensional predicates and the cost of conjunctive queries.

Three evaluation strategies are considered for ”joining” predicates in con-
junctive queries. They are based on the Nested-Loop, Block Nested-Loop, and
Hash Join operators of relational databases [16]. To identify a good evaluation
plan, we provide a dynamic-programming optimization algorithm that orders
subgoals in a query, considering estimates of the subgoal’s evaluation cost.

We modeled a subset of the Web ontology language OWL Lite [12] as a DOB,
and performed experiments to study the predictive capacity of the cost model
and the benefits of the ontology query optimization techniques. The study has
been conducted over synthetic and real-world OWL ontologies. Preliminary re-
sults show that the cost-model estimates are pretty accurate and that optimized
queries are significantly less expensive than non-optimized ones.

Our current formalism does not represent the OWL built-in constructor Com-
plementOf. We stress that in practice this is not a severe limitation. For example,
this operator is not used in any of the three real-world ontologies that we have
studied in our experiments; and in the survey reported in [23], only 21 ontologies
out of 688 contain this constructor.

Our work differs from other systems in the Semantic Web that combine a
Description Logics (DL) reasoner with a relational DBMS in order to solve the
scalability problems for reasoning with individuals [3, 6, 7, 15]. Clearly, all of
these systems use the query optimization component embedded in the relational
DBMS; however, they do not develop cost-based optimization for the implicit
knowledge, that is, there is no estimation of the cost of data not known a priori.

Other systems use Logic Programming (LP) to reason on large-scale ontolo-
gies. This is the case of the projects described in [5, 8, 13] . In Description Logic
Programs (DLP) [5], the expressive intersection between DL and LP without
function symbols is defined. DL queries are reduced to LP queries and efficient
LP algorithms are explored. The project described in [8, 13] reduces a SHIQ
knowledge base to a Disjunctive Datalog program. Both projects apply Magic-
Sets rewriting techniques but to the best of our knowledge, no cost-based opti-
mization techniques have been developed. The OWL Lite− species of the OWL
language proposed in [2] is based in the DLP project; it corresponds to the por-
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tion of the OWL Lite language that can be translated to Datalog. All of these
systems develop LP reasoning with individuals, whereas in the DOB model we
develop Datalog reasoning with both, domain concepts and individuals.

In [4], an efficient bottom-up evaluation strategy for HEX-programs based
on the theory of splitting sets is described. In the context of the Semantic Web,
these non-monotonic logic programs contain higher-order atoms and external
atoms that may represent RDF and OWL knowledge. However, their approach
does not include determining the best evaluation strategy according to a certain
cost metric.

In the next section we describe our DOB formalism. Following this, we de-
scribe the DOB-S System architecture, Then, we model a subset of OWL Lite
as a DOB and present a motivating example. Next, we develop our hybrid cost
model and query optimization algorithm. We describe our experimental study
and, finally, we point out our conclusions and future work.

2 The Deductive Ontology Base (DOB)

In general, an ontology knowledge base can be defined as:

Definition 1 (Ontology Knowledge Base) An ontology knowledge base
O is a pair O = 〈F , I〉, where F is the set of ontology facts that represent the
explicit ontology structure (domain) and source annotations (individuals), and
I is the set of axioms that allow the inference of new ontology facts regarding
both domain and individuals.

We will model O as a deductive database which we call a Deductive Ontology
Base (DOB). A DOB is composed of an Extensional Ontology Base (EOB) and
an Intensional Ontology Base (IOB). Formally, a DOB is defined as:

Definition 2 (DOB) Given an ontology knowledge base O = 〈F , I〉, a DOB
is a deductive database composed of a set of built-in EOB ground predicates
representing F and a set of IOB built-in predicates representing I, i.e. that
define the semantics of the EOB built-in predicates.

IOB predicates and DOB queries are defined as follows:

Definition 3 (Intensional Predicate) Given a DOB composed of an EOB
and an IOB, an Intensional Predicate is a rule R:H(X) ← ∃Y B(X,Y ),
where H is the head, B is the body that corresponds to a conjunction of pre-
dicates, and X and Y are called distinguished variables and non-distinguished
variables, respectively. H belongs to the IOB. Predicates in B can belong to the
EOB or to the IOB (no negations are allowed).

Definition 4 (DOB Query) A DOB query is defined as a rule q : Q(X) ←
∃Y B(X,Y ), where B is the query’s goal.

Next, we provide the definitions related to query-answering for DOBs.
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Definition 5 (Valuation) Given a set of variables V and a set of constants C,
a mapping or valuation γ is a function γ : V → C.

Definition 6 (Valid Instantiation) Given a Deductive Ontology Base O, a
set of constants C in O, a set of variables V, a rule R, and an interpretation I
of O that corresponds to its Minimal Perfect Model [1], a valuation γ is a valid
instantiation of R if and only if, γ(R) evaluates to true in I.

Definition 7 (Intermediate Inferred Facts) Given a Deductive Ontology Base
O, and a query q : Q(X) ← ∃Y B(X,Y )). A proof tree for q wrt O is defined as
follows:
– Each node in the tree is labeled by a predicate in O.
– Each leaf in the tree is labeled by a predicate in O’s EOB.
– The root of the tree is labeled by Q
– For each internal node N including the root, if N is labeled by a predicate

A defined by the rule R, A(X) ← ∃Y C(X,Y )), where C(X,Y )) is the con-
junction of the predicates C1, ..., Cn, then, for each valid instantiation of R,
γ, the node N has a sub-tree whose root is γ(A(X)) and its children are
respectively labeled γ(C1),..., γ(Cn).

The valuations needed to define all the valid instantiations in the proof tree co-
rrespond to the Intermediate Inferred Facts of q.

The number of intermediate inferred facts measures the evaluation cost of
the query Q. Additionally, since the valid instantiations of Q in the proof tree
correspond to the answers of the query, the cardinality of Q corresponds to the
number of such instantiations.

Note that the sets of EOB and IOB built-in predicates of a DOB define an
ontology framework, so our model is not tied to any particular ontology language.
To illustrate the use of our approach we focus on OWL Lite ontologies.

3 The DOB-S System’s Architecture

DOB-S is a system that allows an agent to pose efficient conjunctive queries to
ontologies. The system’s architecture can be seen in Figure 1.

A subset of a given OWL ontology is translated into a DOB using an OWL
Lite to DOB translator. EOB and IOB predicates are stored as a deductive
database. Next, an analyzer generates the ontology’s statistics: for each EOB
predicate, the analyzer computes the number of facts or valid instantiations
in the DOB (cardinality), and the number of different values for each of its
arguments (nKeys); for each IOB predicate, an adaptive sampling algorithm
[10] is applied to compute cardinality and cost estimates.

When an agent formulates a conjunctive query, the DOB-S system’s opti-
mizer generates an efficient query evaluation plan. A dynamic-programming
optimizer is based in a hybrid cost model: it uses the ontology’s EOB and
IOB statistics, and estimates the cost of a query according the different evalua-
tion strategies implemented. Finally, an execution engine evaluates the query
plan and produces a query answer.
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4 OWL Lite DOB

An OWL Lite ontology contains: (1) a set of axioms that provides information
about classes and properties, and (2) a set of facts that represents individuals in
the ontology, the classes they belong to, and the properties they participate in.

Restrictions allow the construction of class definitions by restricting the va-
lues of their properties and their cardinality. Classes may also be defined through
the intersection of other classes. Object properties represent binary relationships
between individuals; datatype properties correspond to relationships between in-
dividuals and data values belonging to primitive datatypes.

The subset of OWL Lite represented as a DOB does not include domain
and range class intersection. The someValuesFrom restriction is not included as it
involves an existential quantifier and cannot be translated to Datalog. Primitive
datatypes are not handled; therefore, we do not represent ranges for Datatype
properties1.
1 EquivalentClasses, EquivalentProperties, and allDifferent axioms, and the
cardinality restriction are not represented as they are syntactic sugar for other
language constructs.
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4.1 OWL Lite DOB Syntax

Our formalism, DOB, provides a set of EOB built-in predicates that represents
all the axioms and restrictions of an OWL Lite subset.

EOB predicates are ground, i.e., no variables are allowed as arguments. A set
of IOB built-in predicates represents the semantics of the EOB predicates. We
have followed the OWL Web Ontology Language Overview presented in [12].

Table 1 illustrates the EOB and IOB built-in predicates for an OWL Lite
subset2. Note that some predicates refer to domain concepts (e.g. isClass,

areClasses), and some to individuals (e.g. is isIndividual, areIndividuals).

EOB PREDICATE DESCRIPTION
isOntology(O) An ontology has an Uri O
isImpOntology(O1,O2) Ontology O1 imports ontology O2
isClass(C,O) C is a class in ontology O
isOProperty(P,D,R) P is an object property with domain D and range R
isDProperty(P,D) P is a datatype property with domain D
isTransitive(P) P is a transitive property
subClassOf(C1,C2) C1 is subclass of C2
AllValuesFrom(C,P,D) C has property P with all values in D
isIndividual(I,C) I is an individual belonging to class C
isStatement(I,P,J) I is an individual that has property P with value J
IOB PREDICATE DESCRIPTION
areSubClasses(C1,C2) C1 are the direct and indirect subclasses of C2
areImpOntologies(O1,O2) O1 import the ontologies O2 directly and indirectly
areClasses(C,O) C are all the classes of an ontology and its imported ontologies O
areIndividuals(I,C) I are the individuals of a class and all of its direct and indirect

superclasses C; or
I are the individuals that participate in a property and belong to
its domain or range C, or are values of a property with all values in C

Table 1. Some built-in EOB and IOB Predicates for a subset of OWL Lite

OWL ABSTRACT SYNTAX EOB PREDICATES
Ontology(O) isOntology(O)
Individual(O1 value(owl : imports O2)) impOntology(O1, O2)
Ontology(O), Class(C partial isClass(C,O)
Class(A partial C) subClassOf(A,C)
Class(C1 partial restriction(P allV aluesFrom(C2))) allValuesFrom(C1,P,C2)
Class(A partial C1 . . . Cn) subClassOf(A,C1),...,

subClassOf(A,Cn)
ObjectProperty(P domain(D)), isOProperty(P,D,R)
ObjectProperty(P range(R))
DatatypeProperty(P domain(D)) isDProperty(P,D)
Property(P Transitive) isTransitive(P)
Individual(I type(C)) isIndividual(I,C)
Individual(I value(P J)) isStatement(I,P,J)

Table 2. Mapping OWL Lite subset to EOB Predicates

2 We assume that the class owl:Thing is the default value for the domain and range
of a property.
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OWL LITE INFERENCE RULES IOB RULE DEFINITIONS
If subClassOf(C1,C2) and subClassOf(C2,C3) areSubClasses(C1,C2):-subClassOf(C1,C2).
then subClassOf(C1,C3) areSubClasses(C1,C2):-subClassOf(C1,C3),

areSubClasses(C3,C2).
If impOntology(O1,O2) and impOntology(O2,O3) areImpOntologies(O1,O2):-impOntology(O1,O2).
then impOntology(O1,O3) areImpOntologies(O1,O2):-impOntology(O1,O3),

areImpOntologies(O3,O2).
If isClass(C1,O2) and impOntology(O1,O2) areClasses(C,O):-isClass(C,O).
then isClass(C1,O1) areClasses(C,O1):-isClass(C,O2),

areImpOntologies(O1,O2).
If isSubClassOf(C1,C2) and isIndividual(I,C1) areIndividuals(I,C):-isIndividual(I,C).
then isIndividual(I,C2) areIndividuals(I,C2):-isIndividual(I,C1),

areSubClasses(C1,C2).
If isStatement(I,P,J) and isOProperty(P,C,R) areIndividuals(I,C):-isOProperty(P,C,R),
then isIndividual(I,C) areStatements(I,P,J).
If isStatement(I,P,J) and isOProperty(P,D,C) areIndividuals(J,C): isOProperty(P,D,C),
then isIndividual(J,C) areStatements(I,P,J).
If isStatement(I,P,J) and isDProperty(P,C) areIndividuals(I,C):-isDProperty(P,C),
then isIndividual(I,C) areStatements(I,P,J).
If AllValues(C1,P,C) and isStatement(I,P,J) areIndividuals(J,C):-isIndividual(I,C1),
and isIndividual(I,C1) then isIndividual(J,C) allValuesFrom(C1,P,C),

areStatements(I,P,J).
Table 3. Mapping OWL Lite subset Inference Rules to IOB Predicates

4.2 OWL Lite DOB Semantics

A model-theoretic semantics for an OWL Lite (subset) DOB is as follows:

Definition 8 (Interpretation) An Interpretation I = (∆I ,PI , .I) consists
of:

– A non-empty interpretation domain ∆I corresponding to the union of the
sets of valid URIs of ontologies, classes, object and datatype properties, and
individuals. These sets are pairwise disjoint.

– A set of interpretations PI , of the EOB and IOB built-in predicates in Table
1.

– An interpretation function .I which maps each n-ary built-in predicate pI ∈
PI to an n-ary relation

∏n
i=1 ∆I .

Definition 9 (Satisfiability) Given an OWL Lite DOB D, an interpretation
I, and a predicate p ∈ D, I |= p iff:

– p is an EOB predicate p(t1, ..., tn) and (t1, ..., tn) ∈ pI .
– p is an IOB predicate R:H(X) ← ∃Y B(X,Y ), and whenever I satisfies each

predicate in the body B, I also satisfies the predicate in the head H.

Definition 10 (Model) Given an OWL Lite DOB D and an interpretation I,
I is a model of D iff for every predicate p ∈ D, I |= p.

4.3 Translation of OWL Lite to OWL Lite DOB

A definition of a translation map from OWL Lite to OWL Lite DOB is the
following:
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Definition 11 (Translation) Given an OWL Lite theory O and an OWL Lite
DOB theory D, an OWL Lite to DOB Translation T is a function T : O →
D.

Given an OWL Lite ontology O, an OWL Lite DOB ontology D is defined as
follows:

– (Base Case) If o is an axiom or fact belonging to the sets of axioms or facts of
O, then an EOB predicate T (o) is defined according to the EOB mappings
in Table 2.

– If o is an OWL Lite inference rule, then an IOB predicate T (o) is defined
according to the IOB mappings in Table 3.

The translation ensures that the following theorem holds:

Theorem 1 Let O and D be OWL Lite and OWL Lite DOB theories respec-
tively, and T be an OWL Lite to DOB Translation such that, T (O) = D, then
D |= O.

5 A Motivating Example

Consider a ’cars and dealers’ domain ontology carsOnt and Web source on-
tologies source1 and source2. Source source1 publishes information about all
types of vehicles and dealers, whereas source2 is specialized in SUVs.

The OWL Lite ontologies can be seen in Table 4.

Ontology carsOnt Ontology source1 Ontology source2
Class vehicle partial Thing) imports carsOnt imports carsOnt
SubClassOf(suv,vehicle) individual(s123 type(suv))
SubClassOf(car,vehicle)
Property(price domain(vehicle))
Class dealer partial Thing)
Property(sells domain(dealer))
Property(sells range(vehicle))
Property(traction domain(suv))
Property(model domain(vahicle))

Table 4. Example OWL Lite ontology

A portion of the example’s EOB can be seen in Table 5.

EOB PREDICATES
isOntology(carsOnt) isOntology(source1) isOntology(source2)
impOntology(source1,carsOnt) impOntology(source2,carsOnt) isClass(vehicle,carsOnt)
isClass(vehicle,carsOnt) isClass(dealer,carsOnt) subClassOf(car,vehicle)
subClassOf(suv,vehicle) isOProperty(sells,dealer,vehicle) isDProperty(model,vehicle)
isDProperty(price,vehicle) isDProperty(traction,suv) isIndividual(s123,suv)

Table 5. Example DOB ontology
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To illustrate a rule evaluation, we will take a query q that asks for the Web
sources that publish information about ’traction’:

q(O):-areClasses(C,O),isDProperty(traction,C).

The answer to this query corresponds to all the ontologies with classes characte-
rized by the property traction, i.e., ontologies source1, source2 and carsOnt.

If we invert the ordering of the first two predicates in q, we will have an
equivalent query q’:

q’(O):-isDProperty(traction,C),areClasses(C,O).

The cost or total number of inferred facts for q is larger than the cost for
q’. In q, the number of instantiations or cardinality for the first intensional
predicate areClasses(C,O) is twelve, four for each ontology, as source1 and
source2 inherit the classes in carsOnt. The cost of inferring these facts is de-
pendent on the cost of evaluating the areClasses rule. In q’, for the first subgoal
isDProperty(traction,C), we have one instantiation: isDProperty(traction,suv).
Again, the cost of inferring this fact depends on the cost of the isDProperty pred-
icate.

Note that statistics on the size and argument values of the EOB isDProperty

predicate can be computed, whereas statistics for the IOB areClasses predi-
cate will have to be estimated as data is not known a priori. Once the cost of
each query predicate is determined, we may apply a cost-based join-ordering
optimization strategy.

6 DOB Hybrid Cost Model

The process of answering a query relies on inferring facts from the predicates
in the DOB. Our cost metric is focused on the number of intermediate facts
that need to be inferred in order to answer the query. The objective is to find
an order of the predicates in the body of the query, such that the number of
intermediate inferred facts is reduced. We will apply a join-ordering optimization
strategy à la System R using Datalog-relational equivalences [1]. To estimate the
cardinality and evaluation cost of the intensional predicates, we have applied
an adaptive sampling technique. Thus, we propose a hybrid cost model which
combines adaptive sampling and traditional relational cost models.

6.1 Adaptive Sampling Technique

We have developed a sampling technique that is based on the adaptive sampling
method proposed by Lipton, Naughton, and Schneider [10, 11]. This technique
assumes that there is a population P of all the different valid instantiations of a
predicate P , and that P is divided into n partitions according to the n possible
instantiations of one or more arguments of P . Each element in P is related to
its evaluation cost and cardinality, and the population P is characterized by the
statistics mean and variance.

25



The objective of the sampling is to identify a sample of the population P,
called EP, such that the mean and variance of the cardinality (resp. evaluation
cost) of EP are valid to within a predetermined accuracy and confidence level.

To estimate the mean of the cardinality (resp. cost) of EP, say Y , within Y
d

with probability p, where 0 ≤ p < 1 and d > 0, the sampling method assumes
an urn model.

The urn has n balls from which m samplings are repeatedly taken, until the
sum z of the cardinalities (resp. costs) of the samples is greater than α × ( S

Y ),
where α = d×(d+1)

(1−
√

p)
. The estimated mean of the cardinality (resp. cost) is: Y = z

m .

The values d and 1

(1−
√

p)
are associated with the relative error and the con-

fidence level, and S and Y represent the cardinality (resp. cost) variance and
mean of P. Since statistics of P are unknown, the upper bound α× S

Y is replaced
by α× b(n).

To approximate b(n) for cost and cardinality estimates, we apply Double
Sampling [9]. In the first stage we randomly evaluate k samples and take the
maximum value among them:

b(n) = maxk
i=1(card(Pi)) (resp. b(n) = maxk

i=1(cost(Pi))), where 1 ≤ k ≤ n

It has been shown that a few samples are necessary in order for the distri-
bution of the sum to begin to look normal. Thus, the factor 1/(1−√p) may be
improved by central limit theorem [11]. This improvement allows us to achieve
accurate estimations and lower bounds.

Estimating cardinality. Given an intensional predicate P , the cardinality of
P corresponds to the number of the valid instantiations of P (Definition 6). In
our previous example, the number of ontology values obtained in the answer of
the query is estimated using this metric.

To estimate the cardinality of P , we execute the adaptive sampling algorithm
explained before, by selecting any argument of P , and partitioning P according
to the chosen argument. The cardinality estimation will be card(P ) = Y × n,
where n is the number of partitions, i.e. the number of different instantiations
for the chosen argument.

Note that once the cardinality of the non-instantiated P is estimated, we can
estimate the cardinality of the instantiated predicate by using the selectivity
value(s) of the instantiated argument(s).

Estimating cost. The cost of P measures the number of intermediate inferred
facts (Definition 7). For instance, to estimate the cost of a predicate P (X, Y ),
we consider the different instantiation patterns that the predicate can have,
i.e., we independently estimate the cost for P (Xb, Y b), P (Xb, Y f ), P (Xf , Y b) and
P (Xf , Y f ), where b and f indicate that the argument is bound and free, respec-
tively.

The computation of several cost estimates is necessary because in Datalog
top-down evaluation [1], the cost of an instantiated intensional predicate cannot
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be accurately estimated from the cost of a non-instantiated predicate (using
selectivity values). Instantiated arguments will propagate in the IOB rule’s body
through sideways-passing, and cost varies according to the binding patterns.
For example, the cost of areClasses(C1b,C2f) may be smaller than the cost of
areClasses(C1f,C2b), i.e., the bound argument C1 ”pushes” instantiations in the
definition of the rule:

areSubClasses(C1,C2):-isSubClass(C1,C3),areSubClasses(C3,C2).

making its body predicates more selective.
For P (Xb, Y b), P (Xb, Y f ) and P (Xf , Y b), we partition P according to the

bound arguments. In these cases we are estimating the cost of one partition.
Therefore, cost(P ) = Y×n

n = Y .
Finally, to estimate the cost of P (Xf , Y f ), we choose an argument of P and

partition P according to the chosen argument. To reduce the cost of comput-
ing the estimate, we choose the most selective argument. The cost estimate is
cost(P ) = Y × n.

Determining the number of partitions n. For both, cost and cardinality
estimates, we need to determine the number of possible instantiations, n, of
the chosen argument. This value depends on the semantics of the particular
predicate. For instance, for an interpretation I, areClasses(Class, Ont)I ⊆ C ×
O, where C is the set of valid class URIs and O is the set of valid ontology
URIs. |C| corresponds to the number of EOB predicates isClass(Class, Ont),
i.e. |C|=Card(isClass(Class, Ont)). Similarly, |O|=Card(isOntology(Ont)); these
cardinalities have been computed previously. We assume that the values are
uniformly distributed.

6.2 System R Technique

To estimate the cardinality and cost of two or more predicates, we use the cost
model proposed in System R. The cardinality of the conjunction of predicates
P1,P2 is described by the following expression:

card(P1, P2) = card(P1)× card(P2)× reductionFactor(P1, P2)

reductionFactor(P1, P2) reflects the impact of the sideways passing variables in
reducing the cardinality of the result. This value is computed assuming that
sideways passing variables are independent and each is uniformly distributed
[18]. For cost estimation, we consider three evaluation strategies:

1. Nested-Loop Join
Following a Nested-Loop Join evaluation strategy, for each valid instantiation
in P1, we retrieve a valid instantiation in P2 with a matching ”join” argument
value:

cost(P1, P2) = cost(P1) + card(P1)× costinst(P2)

costinst(P2) corresponds to the estimate of the cost of the predicate P2

where the ”join” arguments are instantiated in P2, i.e., all the sideways
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passing variables from P1 to P2 are bound in P2. These binding patterns
were considered during the sampling-based estimation of the cost of P2.

2. Block Nested-Loop Join
Predicate P1 is evaluated into blocks of fixed size, and then each block is
”joined” with P2.

cost(P1, P2) = cost(P1) + $ card(P1)
BlockSize

% × cost(P2)

3. Hash Join
A hash table is built for each predicate according to their join argument.
The valid instantiations of predicates P1 and P2 with the same hash key will
be joined together:

cost(P1, P2) = cost(P1) + cost(P2)

Although the sampling technique is appropiate for estimating a single pred-
icate, it may be inefficient for estimating the size of a conjunction of more than
two predicates.

The sampling algorithm in [10] suggests that for a conjunction of 2 predi-
cates, P,Q, if the size of P is n, the query is n-partitionable, that is, for each
valid instantiation p in P , the corresponding partition of Q is all the valid in-
stantiations q in Q such that q ”joins” p. Therefore, when the size of the first
predicate in a query is small, our sample size may be larger. This problem can
be extended to conjunctive queries with several subgoals, so when the number of
intermediate results is small, sampling time may be as large as evaluation time.

6.3 Query Optimization

In Figure 2 we present the algorithm used to optimize the body of a query. The
proposed optimization algorithm extends the System R dynamic-programming
algorithm by identifying orderings of the n EOB and IOB predicates in a query.
During each iteration of the algorithm, the best intermediate sub-plans are cho-
sen based on cost and cardinality. In the last iteration, final plans are constructed
and the best plan is selected in terms of the cost metric.

During each iteration i between 2 and n-1, different orderings of the predi-
cates are analyzed. Two subplans are considered equivalents if and only if, they
are composed by the same predicates. A subplan SPi is better than a subplan
SPj if and only if, the cost and cardinality of SPj are greater than cost and
cardinality of SPi. If SPi cost is greater than SPj cost, but SPj cardinality is
greater than SPi cardinality, i.e. they are un-comparable, then the equivalence
class is annotated with the two subplans.

7 Experimental Results

An experimental study was conducted for synthetic and real-world ontologies.
Experiments on synthetic ontologies were executed on a SunBlade 150 (650MHz)
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Algorithm Dynamic Programming
INPUT: Predicate: a set of predicates, P1,...,Pn.
OUTPUT: OrderedPredicate: an ordering of Predicate

1. SubPaths=Predicate;
2. For i=1 to n

(a) For each solution Subj in SubPaths
i. For each predicate Pz in Predicate

– If there are sideways passing variables from Subj to Pz ,
then add Sub= Subj ,Pz to NewSubPaths

(b) Remove from NewSubPaths any subpath Subk iff there is another subpath Subl in
NewSubPaths, such that, Subl and Subk are equivalent, and Subl is better than Subk.

(c) SubPaths=NewSubPaths
(d) Reset NewSubPaths

3. Return the path in SubPaths with lowest cost.

Fig. 2. Query Optimization Algorithm

with 1GB RAM; experiments on real-world ontologies were executed on a Sun-
Fire V440 (1281MHz) with 4GB RAM. Our system was implemented in SWI-
Prolog 5.6.1.

We have studied three real-world ontologies: Travel [19], EHR RM [21], and
Galen [14].

Our cost metrics are the number of intermediate facts for synthetic and
real-world ontologies, and the evaluation time for real-world ontologies. In our
experiments, the sampling parameters d (the error), p (the confidence level), and
k (the size of the sample for the first stage) were set to 0.2, 0.7 and 7, respec-
tively. Also, these experiments only considered the Nested-Loop Join evaluation
strategy.

Our study consisted of the following:

– Cost Model Predictive Capability: In Figure 3a, we report the correlation
among the estimated values and the actual cost for synthetic ontologies.
Synthetic ontologies were randomly generated following a uniform distribu-
tion. We generated ten ontology documents and three chain and star queries
with three subgoals for each ontology; the cost of each ordering was esti-
mated with our cost model, and each ordering was then evaluated against
the ontology; this gives us a total of six hundred queries. The correlation is
0.92.
In Figure 3b, we report the same correlation for the real-world ontology
Galen. Correlation values are 0.86 for Travel, 0.54 for EHR RM, and 0.62
for Galen.

– Cost improvements: We also conducted experiments to study cost improve-
ment using the optimizer. For each query, we evaluated all its orderings, then
we ran the optimizer and evaluated the optimized query. Figure 3c reports
the ratio of the cost of the optimal ordering to the cost of the worst ordering,
costOptimalOrdering
costWorstOrdering , for queries against synthetic ontologies. In Figure 3d, we

report this metric for Galen. Both in synthetic and real-world ontologies,
this ratio is less than 10% for most of the queries. We also computed the
proportion of the optimal ordering cost with respect to the median ordering
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Fig. 3. (a) Correlation of estimated cost to actual cost (log. scale) - Synt. ontologies; (b)
Correlation of estimated cost to actual cost (log. scale) - GALEN; (c) #Pred. optimal
ordering vs. #Pred. worst ordering - Synt. Ontologies; (d) #Pred. optimal ordering vs.
#Pred. worst ordering - GALEN

cost. The results for synthetic ontologies show that the optimal ordering cost
is less than 40% of the median for fifteen of twenty queries; this result can
be observed in Figure 4a.

Correlation results show that estimates produced by our cost model are quite
accurate. The lower correlation results for the EHR RM and Galen ontologies
are related to the uniform distribution assumption of our cost model.

Additionally, the results show a significant improvement in the evaluation
cost for the optimized queries with respect to the worst-case and median-case
query orderings. This property holds for synthetic and real-world ontologies.
However, for synthetic ontologies we notice that for star-shaped queries, the
difference between the median cost and the optimal cost is very small; this
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indicates that the form of the query may influence the cost improvement achieved
by the optimizer.
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Fig. 4. (a) #Pred. optimal ordering vs. #Pred. median ordering - Synt. Ontologies;
(b) Sampling Conjunctions - Query Eval. time and Sample Eval. time vs. # Inf. Pred.

Finally, we would like to point out that we also studied the use of an adaptive
sampling technique for the cost estimation of the conjunction of two or more
predicates (instead of System R cost model). Although, the sampling technique
gives a better correlation result than the combination of sampling and System
R cost model, the time required to compute the cost estimation may be as large
as the time needed to evaluate the query. In 4b we can observe that the time
difference is marginal.

8 Conclusions and Future Work

We have developed a cost model that combines System R and adaptive sampling
techniques. Adaptive sampling is used to estimate data that do not exist a priori,
data related to the cardinality and cost of intensional rules in the DOB. The
experimental results show that our proposed techniques produce in general a
significant improvement in the evaluation cost for the optimized query.

Currently we are concluding an experimental study that considers the three
evaluation strategies: Nested-Loop, Block Nested-Loop, and Hash Join; query
plans now include orderings with different combinations of these evaluation op-
erators. Initial results show correlation values among estimated and actual cost
of approximately 0.8 for real-world ontologies. We also plan to apply similar op-
timization techniques for conjunctive queries to DL ontologies. Initially, we will
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work on ABox queries extending the the techniques proposed in [20]. In a next
stage, we will consider mixed TBox and ABox conjunctive queries.
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Abstract. We briefly report about the development status of dlvhex, a reason-
ing engine for HEX-programs, which are nonmonotonic logic programs featur-
ing both higher-order atoms as well as external ones. Higher-order features are
widely acknowledged as useful for various tasks and are essential in the context
of meta-reasoning. Furthermore, the possibility to exchange knowledge with ex-
ternal sources in a fully declarative framework such as answer-set programming
(ASP) is particularly important in view of applications in the Semantic-Web area.
Through external atoms, HEX-programs can deal with external knowledge and
reasoners of various nature, such as RDF datasets or description-logic bases.

1 Introduction

Nonmonotonic semantics is often requested by Semantic-Web designers in cases where
the reasoning capabilities of the Ontology Layer of the Semantic Web turn out to be too
limiting, since they are based on monotonic logics. The widely acknowledged answer-
set semantics of nonmonotonic logic programs [5], which is arguably the most im-
portant instance of the answer-set programming (ASP) paradigm, is a natural host for
giving nonmonotonic semantics to the Rules, Logic, and Proof Layers of the Semantic
Web.

However, for important issues such as meta-reasoning in the context of the Seman-
tic Web, no adequate answer-set engines have been made available so far. Motivated
by this fact and the observation that, furthermore, interoperability with other software
is an important issue (not only in this context), in previous work [3], the answer-set
semantics has been extended to HEX programs, which are higher-order logic programs
(which accommodate meta-reasoning through higher-order atoms) with external atoms
for software interoperability. Intuitively, a higher-order atom allows to quantify values
over predicate names, and to freely exchange predicate symbols with constant symbols,
like in the rule C (X) ← subClassOf (D,C), D(X). An external atom facilitates the
assignment of a truth value of an atom through an external source of computation. For
instance, the rule t(Sub, Pred,Obj) ← &RDF [uri](Sub, Pred,Obj) computes the
predicate t taking values from the predicate &RDF . The latter predicate extracts RDF
! This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-

N04, and by the European Commission through the REWERSE IST Network of Excellence
(IST-2003-506779).
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statements from the set of URIs specified by the extension of the predicate uri ; this task
is delegated to an external computational source (e.g., an external deduction system, an
execution library, etc.). External atoms allow for a bidirectional flow of information
to and from external sources of computation such as description-logic reasoners. By
means of HEX-programs, powerful meta-reasoning becomes available in a decidable
setting, e.g., not only for Semantic-Web applications, but also for meta-interpretation
techniques in ASP itself, or for defining policy languages.

Other logic-based formalisms, like TRIPLE [10] or F-Logic [8], feature also higher-
order predicates for meta-reasoning in Semantic-Web applications. Our formalism is
fully declarative and offers the possibility of nondeterministic predicate definitions with
higher complexity in a decidable setting. This proved already useful for a range of ap-
plications with inherent nondeterminism, such as ontology merging (cf. [11]) or match-
making, and thus provides a rich basis for integrating these areas with meta-reasoning.

2 HEX-Programs

2.1 Syntax

HEX-programs are built on mutually disjoint sets C, X , and G of constant names, vari-
able names, and external predicate names, respectively. Unless stated otherwise, ele-
ments from X (resp., C) are written with first letter in upper case (resp., lower case),
and elements from G are prefixed with “ & ”. Constant names serve both as individual
and predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms and n ≥ 0 is its arity. Intuitively, Y0 is
the predicate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is
ordinary, if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary
atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output
list, respectively), and &g is an external predicate name.

It is possible to specify molecules of atoms in F-Logic-like syntax. For instance,
gi [father → X, Z → iu] is a shortcut for the conjunction father(gi, X), Z(gi, iu).

HEX-programs are sets of rules of the form

α1 ∨ · · · ∨ αk ← β1, . . . ,βn,not βn+1, . . . ,not βm, (2)

where m, k ≥ 0, α1, . . . ,αk are higher-order atoms, and β1, . . . ,βm are either higher-
order atoms or external atoms. The operator “not” is negation as failure (or default
negation).

2.2 Semantics

The semantics of HEX-programs is given by generalizing the answer-set semantics [3].
The Herbrand base of a program P , denoted HBP , is the set of all possible ground ver-
sions of atoms and external atoms occurring in P obtained by replacing variables with
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constants from C. An interpretation relative to P is any subset I ⊆ HBP containing
only atoms.

We say that an interpretation I ⊆ HBP is a model of an atom a ∈ HBP iff a∈ I .
Furthermore, I is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm)
iff f&g(I, y1 . . ., yn, x1, . . . , xm) = 1, where f&g is an (n+m+1)-ary Boolean function
associated with &g, called oracle function, assigning each element of HBP × Cn+m

either 0 or 1 (i.e., false or true, respectively).
This definition of satisfaction, together with a modified notion of a reduct as de-

fined by Faber et al. [4], enables us to define a conservative extension of the answer-set
semantics for HEX-programs. For more details, cf. [3].

Note that the answer-set semantics may yield multiple models (i.e., answer sets) in
general. Therefore, for query answering, brave and cautious reasoning (truth in some
resp. all models) is considered in practice, depending on the application.

2.3 Usability of HEX-Programs
An interesting application scenario, where several features of HEX-programs come into
play, is ontology alignment. Merging knowledge from different sources in the context
of the Semantic Web is a crucial task [2] that can be supported by HEX-programs in
various ways:

Importing external theories. This can be achieved as in the following manner:

triple(X, Y, Z)← &RDF [uri ](X, Y, Z),
triple(X, Y, Z)← &RDF [uri2 ](X, Y, Z),
proposition(P )← triple(P, rdf :type, rdf :Statement).

Searching in the space of assertions. In order to choose nondeterministically which
propositions have to be included in the merged theory and which not, statements
like the following can be used:

pick(P ) ∨ drop(P )← proposition(P ).

Translating and manipulating reified assertions. E.g., it is possible to choose how
to put RDF triples (possibly including OWL assertions) in an easier manipulable
and readable format, and to make selected propositions true such as in the following
way:

(X, Y, Z)← pick(P ), triple(P, rdf :subject , X), triple(P, rdf :predicate, Y ),
triple(P, rdf :object , Z),

C(X)← (X, rdf :type, C).

Defining ontology semantics. The semantics of the ontology language at hand can be
defined in terms of entailment rules and constraints expressed in the language itself
or in terms of external knowledge, like in

D(X)← subClassof (D,C), C(X) and ← &inconsistent [pick],

where the external predicate &inconsistent takes a set of assertions as input and
establishes through an external reasoner whether the underlying theory is inconsis-
tent.
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Performing default and closed-world reasoning. Assuming that a generic external
atom &DL[C](X) is available for querying the concept C in a given description
logics base, the closed-world assumption (CWA) can be stated as

C ′(X)← not &DL[C](X), concept(C), cwa(C,C ′),

where concept(C) is a predicate which holds for all concepts and cwa(C,C ′)
states that C ′ is the CWA of C, i.e., each individual not explicitly found in C
should be in C ′.
Inconsistency of the CWA can be checked by pushing back inferred values to the
external knowledge base:

set false(C,X)← cwa(C,C ′), C ′(X),
inconsistent ← &DL1 [set false](b),

where &DL1 [N ](X) effects a check whether a knowledge base, augmented with
all negated facts ¬c(a) such N(c, a) holds, entails the empty concept⊥ (entailment
of ⊥(b), for any constant b, is tantamount to inconsistency).

3 Implementation

The evaluation principle of dlvhex is to split the program according to its dependency
graph into components and alternately call an answer-set solver (DLV [9]) and the
external atom functions for the respective subprograms. The framework takes care of
traversing the tree of components in the right order and combining their resulting mod-
els. Composing the initial dependency graph from a nonground program is not a trivial
task, since higher-order atoms as well as the input list of an external atom have to
be considered. To this end, we defined a novel notion of atom dependency, which ex-
tends the traditional understanding of dependencies within a logic program. This leads
to novel types of stratification which help splitting a HEX-program and choosing the
suitable model generation strategies.

Further methods of increasing the efficiency of computation include a general clas-
sification of external atoms regarding their functional properties. For instance, their
evaluation functions may be monotonic or linear (in the sense of a linear function) with
respect to a given input. Formalizing such knowledge allows for an intelligent caching
algorithm and thus for a reduction of interactions with the external computation source.
Latest developments also include a directive to syntactically handle namespaces and
an algorithm for traversing the component graph for disjunctive programs, eventually
implementing the full HEX-program semantics.

To keep the development and usage of external atoms as flexible as possible, we
decided to embed them into plug-ins, i.e., libraries that define and provide one or more
external atoms. Such plug-ins are implemented as shared libraries, which link dynam-
ically to the main application at runtime. A lean, object-oriented interface reduces the
effort of developing custom plug-ins to a minimum.

Currently, dlvhex provides the following extension to pure HEX-reasoning: (i) pars-
ing both templates as well as frame syntax by using DLT [7] as a preparser; (ii) in ad-
dition to strict constraints, accepting weak constraints for optimization problems; and
(iii) returning the result in XML syntax according to the RuleML specification [1].
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The following external atoms are available in dlvhex:

The RDF plug-in. The RDF plug-in provides a single external atom, the &rdf -atom,
which enables the user to import RDF-triples from any RDF knowledge base. It
takes a single constant as input, which denotes the RDF-source (a file path or Web
address). The &rdf -atom interfaces the Raptor RDF library.

The description-logic plug-in. To query description-logic knowledge bases, we de-
veloped the description-logic plug-in, which includes four external atoms, allow-
ing for extending a description-logic knowledge base before submitting a query, by
means of the atoms’ input parameters:

– the &dlC atom, which queries a concept (specified by an input parameter of
the atom) and retrieves its individuals,

– the &dlR atom, which queries an object property and retrieves its individual
pairs,

– the &dlDR atom, which queries a datatype property and retrieves its pairs, and
– the &dlConsistent atom, which tests the (possibly extended) description-logic

knowledge base for consistency.
The description-logic plug-in can access OWL ontologies, i.e., description-logic
knowledge bases in the language SHOIN (D), utilizing the RACER reasoning
engine [6].

The string plug-in. For simple string manipulation routines, we provide the string
plug-in. It currently consists of five atoms:

– the &concat atom, which lets the user specify two constant strings in the input
list and returns their concatenation as a single output value,

– the &strstr atom, which tests two strings for substring inclusion,
– the &split atom, which splits a string along a given delimiter and retrieves a

specific part,
– the &cmp atom, which lexicographically compares two strings, and
– the &sha1sum atom, which calculates a SHA1 160-bit checksum for a given

string.
The policy plug-in. The policy plug-in was created to satisfy the needs of optimiza-

tion problems that cannot be tackled using conventional methods such as weak or
weight constraints in an intuitive way. In the area of policy specification, answer-set
programming is used to generate a search space of valid combinations of creden-
tials, which then need to be ranked based on the specific selection of credentials
in each solution. For instance, credentials might have various levels of sensitivity
regarding their publication in a business transaction, and the overall goal is to find
a set of credentials with minimum overall sensitivity. As soon as this overall value
is composed in a more complicated way than just the sum of all single sensitivity
values, the &policy-atom provided by the policy plug-in offers a natural solution.
It takes a single predicate as input and returns a numerical value, which is com-
puted according to the predicate’s extension and a custom function, implemented
by the program designer. Using this value in a single weight constraint facilitates
the compact formulation of such an optimization task.
The following code fragment illustrates this technique. We assume that the guess-
ing part of the program creates various combinations of ground facts for credential .
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Each credential has a sensitivity value, all of which are fed into the external atom by
the extension of selected for each guessed model. The weak constraint (3) causes
the optimization strategy of dlvhex to single out the model that has the least numer-
ical value for modelWeight :

selected(C, V )← credential(C), hasSens(C, V ),
modelWeight(X)← &policy [selected ](X),

⇐ modelWeight(X) [X : 1]. (3)

Eventually, it is up to the author of the external atom how to compute this value
within the evaluation function of the &policy-atom. We offer a template for this
plug-in, where only the actual function for the computation of the cost value needs
to be inserted.

On http://www.kr.tuwien.ac.at/research/dlvhex/, we provide a
Web-interface to evaluate HEX-programs online, along with a more detailed documen-
tation of all available external atoms. Currently, dlvhex and the presented plug-ins are
publicly available as source packages. Moreover, we also supply a tool kit for devel-
oping custom plug-ins, embedded in the GNU autotools environment, which takes care
for the low-level, system-specific build process and lets the plug-in author concentrate
his or her efforts on the implementation of the plug-in’s actual core functionality.
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Abstract. Recently, there has been a lot of interest in the integration of De-
scription Logics and rules on the Semantic Web. We define g-hybrid knowledge
bases as knowledge bases that consist of a Description Logic knowledge base
and a guarded logic program, similarly to the DL+log knowledge bases from
[25]. G-hybrid knowledge bases enable an integration of Description Logics and
Logic Programming where, unlike in other approaches, variables in the rules of
a guarded program do not need to appear in positive non-DL atoms of the body:
DL atoms can act as guards as well. Decidability of satisfiability checking of
g-hybrid knowledge bases is shown for the particular DL DLRO−{≤}, which
is close to, and in some respects more expressive than, OWL DL, by a reduc-
tion to guarded programs under an open answer set semantics. Moreover, we
show 2-EXPTIME-completeness for satisfiability checking of those DLRO−{≤}
g-hybrid knowledge bases. Finally, we discuss advantages and disadvantages of
our approach compared with DL+log knowledge bases.

1 Introduction

There has been a lot of attention recently in the integration of Description Logics with
rules for the Semantic Web [23, 25, 6, 22, 16]. R-hybrid knowledge bases [23], and the
extension DL+log [25], is an elegant formalism based on combined models for De-
scription Logic knowledge bases and nonmonotonic logic programs. We propose a
variant of r-hybrid knowledge bases, called g-hybrid knowledge bases, which do not
require standard names or a safeness restriction on rules. We show several computa-
tional properties by a reduction to guarded open answer set programming [13].

Open answer set programming (OASP) [14, 13] combines the logic programming
and first-order logic paradigms. From the logic programming paradigm it inherits a
rule-based presentation and a nonmonotonic semantics by means of negation as failure.
! The first four authors were partially supported by the European Commission under projects
Knowledge Web (IST-2004-507482) and DIP (FP6-507483) and by the FIT-IT under the
project RW2 (FIT-IT 809250). The last author was supported by the Flemish Fund for Sci-
entific Research (FWO-Vlaanderen).
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In contrast with usual logic programming semantics, see, e.g., the answer set semantics
[8], OASP allows for domains consisting of other objects than those present in the logic
program at hand. Such open domains are inspired by first-order logic based languages
such as Description Logics (DLs) [2] and make OASP a viable candidate for conceptual
reasoning. Due to its rule-based presentation and its support for nonmonotonic reason-
ing and open domains, OASP can be used to reason with both rule-based and conceptual
knowledge on the Semantic Web, as illustrated in [14].

The main challenge for OASP is to control undecidability of satisfiability checking,
a challenge it shares with DL-based languages. In [13], a decidable class of programs is
identified, so-called guarded programs, for which decidability of satisfiability checking
is obtained by a translation to guarded fixed point logic [10]. In [12], we show the
expressiveness of such guarded programs by simulating a DL with n-ary roles and
nominals. In particular, we extend the DLDLR [4] with both concept nominals {o} and
role nominals {(o1, . . . , on)}, resulting in DLRO. The DL DLRO with the number
restrictions left out yieldsDLRO−{≤} and we show in [13] a reduction of satisfiability
of concept expressions w.r.t. DLRO−{≤} knowledge bases to guarded programs.

G-hybrid knowledge bases consist of Description Logic knowledge base and a
guarded program. The DL+log knowledge bases from [25] are weakly safe, i.e., the
interaction between the program and the DL knowledge base is limited by imposing
that head variables should appear in atoms that cannot be DL atoms (i.e., concepts or
roles in the knowledge base). However, in g-hybrid knowledge bases such a restriction
does not hold; variables should appear in a guard of the rule but this guard can be a
DL atom as well. We show decidability of g-hybrid knowledge bases for DLRO−{≤}

DL knowledge bases by a reduction to guarded programs only, as well as provide a 2-
EXPTIME complexity characterization of such g-hybrid knowledge bases. DLRO−{≤}

includes a large fragment of SHOIN , the Description Logic underlying OWL DL
[15]. Comparedwith SHOIN ,DLRO−{≤} does not include transitive roles and num-
ber restrictions, but does include n-ary roles and complex role expressions.

The remainder of the paper starts with an introduction to open answer set program-
ming and Description Logics in Subsections 2.1 and 2.2. Section 3 defines g-hybrid
knowledge bases, translates them to guarded programs when the DLRO−{≤} DL is
considered, and provides a complexity characterization for satisfiability checking of
these particular g-hybrid knowledge bases. In Section 4, we discuss the relation of g-
hybrid knowledge bases with DL+log and point to other related work. We conclude
and give directions for further research in Section 5.

2 Preliminary Definitions: Open Answer Set Programming and
Description Logics

In this section, we introduce Open Answer Set Programming and the Description Logic
DLRO−{≤}.

2.1 Decidable Open Answer Set Programming
We introduce the open answer set semantics from [13], modified as in [12] such that it
does not take on a unique name assumption for constants by default. Constants, vari-
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ables, terms, and atoms are defined as usual. A literal is an atom p(t) or a naf-atom
not p(t).3 The positive part of a set of literals α is α+ = {p(t) | p(t) ∈ α} and the neg-
ative part of α is α− = {p(t) | not p(t) ∈ α}. We assume the existence of binary pred-
icates = and "=, where t = s is considered as an atom and t "= s as not t = s. E.g., for
α = {X "= Y, Y = Z}, we have α+ = {Y = Z} and α− = {X = Y }. A regular atom
is an atom that is not an equality atom. For a set A of atoms, not A = {not l | l ∈ A}.

A program is a countable set of rules α ← β, where α and β are finite sets of
literals, |α+| ≤ 1 (but α− may be of arbitrary size) , and ∀t, s · t = s "∈ α+, i.e., α
contains at most one positive atom and this atom cannot be an equality atom.4 The set
α is the head of the rule and represents a disjunction of literals, while β is called the
body and represents a conjunction of literals. If α = ∅, the rule is called a constraint.
Free rules are rules of the form q(t) ∨ not q(t) ← for a tuple t of terms; they enable
a choice for the inclusion of atoms. We call a predicate p free if there is a free rule
p(t) ∨ not p(t) ←. Atoms, literals, rules, and programs that do not contain variables
are ground.

For a literal, rule, or program o, let cts(o) be the constants in o, vars(o) its variables,
and preds(o) its predicates. A pre-interpretation U for a program P is a pair (D, σ)
where D is a non-empty domain and σ : cts(P ) → D is a function that maps all
constants to elements from D.5 We call PU the ground program obtained from P by
substituting every variable in P by every possible element fromD and every constant c
by σ(c). E.g., for a rule r : p(X) ← f(X, c) and U = ({x, y}, σ) where σ(c) = x, we
have that the grounding w.r.t. U is

p(x ) ← f (x , x )
p(y) ← f (y, x )

Let BP be the set of regular atoms that can be defined using the language of the ground
program P .

An interpretation I of a ground P is any subset of BP . For a ground regular atom
p(t), we write I |= p(t) if p(t) ∈ I; for an equality atom p(t) ≡ t = s, we have
I |= p(t) if s and t are equal terms. We have I |= not p(t) if I "|= p(t). For a set of
ground literals A, I |= A if I |= l for every l ∈ A. A ground rule r : α ← β is satisfied
w.r.t. I , denoted I |= r, if I |= l for some l ∈ α whenever I |= β. A ground constraint
← β is satisfied w.r.t. I if I "|= β.
For a ground program P without not, an interpretation I of P is a model of P if I

satisfies every rule in P ; it is an answer set of P if it is a subset minimal model of P .
For ground programs P containing not, the GL-reduct [8, 20] w.r.t. I is defined as P I ,
where P I containsα+ ← β+ for α ← β in P , I |= not β− and I |= α−. I is an answer
set of a groundP if I is an answer set of P I . Note that allowing for negation in the head
of rules leads to the loss of the anti-chain property which says that no answer set can
3 We do not allow “classical” negation ¬, however, programs with ¬ can be reduced to programs
without it, see e.g. [21].

4 The condition |α+| ≤ 1 makes the GL-reduct non-disjunctive, ensuring that the immediate
consequence operator is well-defined, see [13].

5 In [13], we only use the domain D which is there a non-empty superset of the constants in P .
This corresponds to a pre-interpretation (D, σ) where σ is the identity function onD.
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be a strict subset of another answer set. In the presence of negation in the head answer
sets can be subsets of other answer sets. E.g, a rule a ∨ not a ← has the answer sets
∅ and {a} . However, we need negation in the head to be able to simulate a first-order
behavior for certain predicates, e.g., when simulating Description Logic reasoning.

In the following, a program is assumed to be a finite set of rules; infinite pro-
grams only appear as byproducts of grounding a finite program with an infinite pre-
interpretation. An open interpretation of a program P is a pair (U, M) where U is a
pre-interpretation for P and M is an interpretation of PU . An open answer set of P is
an open interpretation (U, M) of P with M an answer set of PU . An n-ary predicate
p in P is satisfiable if there is an open answer set ((D, σ), M) of P and a x ∈ Dn

such that p(x) ∈ M . A program P is satisfiable iff it has an open answer set. Note that
satisfiability checking of programs can be easily reduced to satisfiability checking of
predicates: P is satisfiable iff p is satisfiable w.r.t. P ∪{p(X) ∨ not p(X) ← }, where
p is a new predicate not in P and X is a tuple of variables. In the following, when we
speak of satisfiability checking we are referring to satisfiability checking of predicates,
unless specified otherwise.

Satisfiability checking w.r.t. the open answer set semantics is undecidable in gen-
eral. In [13], we identify a syntactically restricted fragment of programs, so-called
guarded programs, for which satisfiability checking is decidable and obtained by a re-
duction to guarded fixed point logic [10]. The decidability of guarded programs relies
on the presence of an atom in each rule that contains all variables of the rule, the guard
of the rule. Formally, a rule r : α ← β is guarded if there is an atom γb ∈ β+ such
that vars(r) ⊆ vars(γb); we call γb a guard of r. A program P is a guarded program
(GP) if every non-free rule in P is guarded. E.g., a rule a(X, Y ) ← not f(X, Y ) is
not guarded, but a(X, Y ) ← g(X, Y ), not f(X, Y ) is guarded with guard g(X, Y ).
Satisfiability checking of predicates w.r.t. guarded programs under the open answer set
semantics is 2-EXPTIME-complete [13] – a result that stems from the corresponding
complexity in guarded fixed point logic.

We do not have a unique name assumption, i.e., it might be the case that for two
distinct c1 and c2, σ(c1) = σ(c2) for a pre-interpretation (D, σ).

2.2 The Description LogicDLRO−{≤}

The DL DLR [4, 2] is a DL that supports n-ary roles, instead of the usual binary ones.
We introduce the extension ofDLRwith nominals, calledDLRO, as in [12]. The basic
building blocks in DLR are concept names A and relation names P where P denotes
arbitrary n-ary relations for 2 ≤ n ≤ nmax and nmax is a given finite non-negative
integer. Role expressionsR and concept expressionsC can be formed according to the
following syntax rules:

R→ ,n | P | ($i/n : C) | ¬R | R1 -R2 | {(o1, . . . , on)}
C → ,1 | A | ¬C | C1 - C2 | ∃[$i]R | ≤k[$i]R | {o}

where we assume i is between 1 and n in ($i/n : C), and similarly in ∃[$i]R and
≤k[$i]R if R is an n-ary relation. Moreover, we assume that the above constructs are
well-typed, e.g.,R1 -R2 is defined only for relations of the same arity. The semantics

42



of DLRO is given by interpretations I = (∆I , ·I) where ∆I is a non-empty set, the
domain, and ·I is an interpretation function such that CI ⊆ ∆I , RI ⊆ (∆I)n for an
n-ary relation R, and the following conditions are satisfied (P,R,R1, and R2 have
arity n):

,I
n ⊆ (∆I)n

PI ⊆ ,I
n

(¬R)I = ,I
n\RI

(R1 -R2)I = RI
1 ∩RI

2

($i/n : C)I = {(d1, . . . , dn) ∈ ,I
n | di ∈ CI}

,I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I\CI

(C1 - C2)I = CI
1 ∩ CI

2

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI · di = d}
(≤k[$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ RI | di = d}| ≤ k}

{o}I = {oI} ⊆ ∆I

{(o1, . . . , on)}I = {(oI1 , . . . , oIn)}

Note that in DLRO the negation of role expressions is defined w.r.t. ,I
n instead of

(∆I)n. A DLRO knowledge base consists of terminological axioms and role axioms
defining subset relations between concept expressions and role expressions (of the same
arity) respectively. A terminological axiom C1 0 C2 is satisfied by I iff CI

1 ⊆ CI
2 . A

role axiom R1 0 R2 is satisfied by I iff RI
1 ⊆ RI

2 . An interpretation is a model of a
knowledge base if all axioms are satisfied by the interpretation, in which case we call
the knowledge base satisfiable. A concept expressionC is satisfiable w.r.t. a knowledge
base Σ if there is a model I of Σ such that CI "= ∅.

Note that for every interpretation I, one has

({(o1, . . . , on)})I = (($1/n : {o1}) - . . . - ($n/n : {on}))I ,

such that we will restrict ourselves in the remainder of the paper to nominals of the form
{o} only.

We denote the fragment of DLRO without the number restriction ≤ k[$i]R as
DLRO−{≤}.

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are a variant of r-hybrid knowledge bases [23], based on
guarded programs, without the standard names assumption. Given a particular De-
scription Logic DL, we define g-hybrid knowledge bases as pairs consisting of on the
one hand a DL knowledge base and on the other hand a guarded program (GP).
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Definition 1. Given Description LogicDL, a g-hybrid knowledge base is a pair (Σ, P )
where Σ is a DL knowledge base and P is a guarded program.

Note that in the above definition there are no conditions on the occurrence of predi-
cates, however, by definition, we call the atoms and literals in P that have underlying
predicates that correspond to concept names or role names in the DL knowledge base,
DL atoms and DL literals respectively. Variables in rules are not required to appear in
positive non-DL atoms as is the case in, e.g., the DL+log knowledge bases in [25], the
r-hybrid knowledge bases in [23], or the DL-safe rules in [22]. DL-atoms can appear in
the head of rules, thus allowing for a bi-directional flow of information between the DL
knowledge base and the program.

Example 1. Consider the DLRO−{≤} knowledge base Σ where socialDrinker is a
concept, drinks is a ternary role such that, intuitively, (x, y, z) is in the interpretation
of drinks if a person x drinks with person y some z:

socialDrinker 0 ∃[$1 ](drinks - ($3/3 : {wine})) .

The knowledge base indicates that social drinkers drink wine with someone. Consider
a GP P that indicates that someone has an increased risk of alcoholism if the person
is a social drinker and knows someone from the association of Alcoholics Anonymous
(AA). Furthermore, we state that john is a social drinker and knows michael from AA.

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )
knowsFromAA(john,michael) ←

socialDrinker(john) ←

Together Σ and P form a g-hybrid knowledge base. The literals socialDrinker(X )
and socialDrinker(john) are DL atoms where the latter appears in the head of a rule
in P . The literal knowsFromAA(X,Y) appears only in the program P (and is thus not a
DL atom).

We define the semantics of g-hybrid knowledge bases (Σ, P ) using interpretations
(U, I, M). Given a DL interpretation (D, I) and a ground program P , define Π(P, I)
as the projection of P with respect to I obtained as follows: for every rule r in P ,

– if there exists a DL literal in the head of the form
• A(t) with t ∈ AI , or
• not A(t) with t "∈ AI ,
then delete r,

– if there exists a DL literal in the body of the form
• A(t) with t "∈ AI , or
• not A(t) with t ∈ AI , or
then delete r,

– otherwise, delete all DL literals from r.

Intuitively, the projection of a ground program transforms this grounded program by
removing rules and DL literals consistently with I; conceptually this is similar to the
GL-reduct which removes the rules and negative literals consistently with an interpre-
tation.
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Definition 2. Let (Σ, P ) be a g-hybrid knowledge base. Then (U, I, M) is an interpre-
tation of (Σ, P ) iff

– U = (D, σ) is a pre-interpretation for P ,
– (D, I) is an interpretation of Σ,
– M is an interpretation of Π(PU , I), and
– bI = σ(b) for every constant symbol b appearing both in Σ and in P ,

For (U = (D, σ), I, M) to be a model of a g-hybrid knowledge base, we require
that (D, I) should be a model of the Description Logic knowledge base and that M
should be an answer set of the projection of the grounding of the program with U .

Definition 3. An interpretation (U, I, M) with U = (D, σ) is then a model of (Σ, P )
iff

1. (D, I) is a model of Σ, and
2. M is an answer set of Π(PU , I).

For p a concept expression from Σ or a predicate from P , we have that p is satisfiable
w.r.t (Σ, P ) if there is a model (U, I, M) such that pI "= ∅ or p(x) ∈ M for some x
from D, respectively.

Example 2. Consider the g-hybrid knowledge base in Example 1. Take U = (D, σ)
with D = {john,michael ,wine, x } and σ the identity function on the constant sym-
bols in (Σ, P ). Furthermore, define ·I as follows:

– socialDrinkerI = {john},
– drinksI = {(john, x ,wine)},
– wineI = wine .

andM ≡ {knowsfromAA(john,michael), problematic(john)}. Then (U, I, M) is a
model of this g-hybrid knowledge base. Note that the projection of the program will no
longer contain the rule socialDrinker(john) ← .

We can translate the g-hybrid knowledge base from Example 1 to a GP such that the
knowledge base is satisfiable iff the logic program is satisfiable. The axiom

socialDrinker 0 ∃[$1 ](drinks - ($3/3 : {wine})) .

is translated to a constraint:

← socialDrinker(X ),not (∃[$1 ](drinks - ($3/3 : {wine})))(X )

Thus, the concept expressions on either side of the 0 symbol in an axiom are associ-
ated with a new unary predicate name. For convenience, we denote the predicates like
the corresponding concept expressions. The constraint simulates the behavior of the
DLRO−{≤} axiom. If the left-hand side of the axiom holds and the right-hand side
does not hold, we have a contradiction.

It remains to define those newly introduced predicates according to the DL seman-
tics. First, all the concept and role names occurring in the axiom above need to be

45



defined as free predicates, in order to simulate the first-order semantics of concept and
role names in DLs. Intuitively, in DLs a tuple is in the extension of a concept or role or
not; this behavior can be captured exactly by free predicates:

socialDrinker(X ) ∨ not socialDrinker(X ) ←
drinks(X ,Y ,Z ) ∨ not drinks(X ,Y ,Z ) ←

Note that concept names are translated to unary free predicates while n-ary role names
are translated to n-ary free predicates.

The definition of the truth symbols ,1 and ,3 that are implicitly present in our
DLRO−{≤} axiom (since the axiom contains a concept name and a ternary role) are
defined as free predicates as well. Note that we do not need a predicate for,2 since the
axiom does not contain binary predicates.

,1 (X ) ∨ not ,1 (X ) ←
,3 (X ,Y ,Z ) ∨ not ,3 (X ,Y ,Z ) ←

We ensure that for the ternary DLRO−{≤} role drinks , drinksI ⊆ ,I
3 holds by

adding the constraint:

← drinks(X ,Y ,Z ),not ,3 (X ,Y ,Z )

To ensure that ,I
1 = ∆I , we add the constraint:

← not ,1 (X )

For rules containing only one variable, we can always assume that X = X is in
the body and acts as the guard of the rule such that the latter rule is a guarded rule
when regarded as the equivalent rule ← not ,1 (X ),X = X . Note that we can allow
for such an equality guard without affecting decidability as decidability for guarded
programs was shown in [13] by a translation to guarded fixed point logic where one
allows for guardsX = X as well [9].

We define the nominal {wine} by the rule

{wine}(wine) ←

Intuitively, since this rule will be the only rule with the predicate {wine} in the head,
every open answer set of the translated program will only contain {wine}(x) with
σ(wine) = x if and only if the corresponding interpretation {wine}I = {x} for
wineI = x.

The DLRO−{≤} role expression ($3/3 : {wine}) indicates the ternary tuples for
which the third argument belongs to the extension of wine, which translates to the
following rule:

($3/3 : {wine})(X ,Y ,Z ) ← ,3 (X ,Y ,Z ), {wine}(Z )

Note that the above rule is guarded by the ,3 literal.
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Finally, the concept expression (drinks - ($3/3 : {wine})) can be represented by
the following rule:

(drinks - ($3/3 : {wine}))(X ,Y ,Z ) ← drinks(X ,Y ,Z ),
($3/3 : {wine})(X, Y, Z)

The translation thus translates the DL constructor - as conjunction in the body of a
rule.

The DLRO−{≤} role ∃[$1](drinks - ($3/3 : {wine})) can be represented by the
following rule:

(∃[$1 ](drinks - ($3/3 : {wine})))(X ) ← (drinks - ($3/3 : {wine}))(X ,Y ,Z )

Indeed, the elements that belong to the extension of ∃[$1](drinks - ($3/3 : {wine}))
are exactly those that are connected with the role ($3/3 : {wine}) as specified in the
rule.

This concludes the translation of the DL knowledge base part of the g-hybrid knowl-
edge base in Example 1. The program part can be considered as is, since, by definition
of g-hybrid knowledge bases, this is already a GP.

We define the formal translation from g-hybrid satisfiability checking to satisfiabil-
ity checking w.r.t. programs using the notion of closure. Define the closure clos(Σ) of a
DLRO−{≤} knowledge baseΣ as the smallest set satisfying the following conditions:
– ,1 ∈ clos(Σ),
– for each C 0 D an axiom in Σ (role or terminological), {C, D} ⊆ clos(Σ),
– for everyD in clos(Σ), clos(Σ) should contain every subformula that is a concept
expression or a role expression,

– if clos(Σ) contains n-ary relation names, it must contain ,n.

Formally, we define Φ(Σ) for a DLRO−{≤} knowledge base Σ to be the following
program:
– For each terminological axiom C 0 D ∈ Σ, add the constraint

← C(X), not D(X) (1)

– For each role axiomR 0 S ∈ Σ whereR and S are n-ary, add the constraint

← R(X1, . . . , Xn), not S(X1, . . . , Xn) (2)

– For each ,n ∈ clos(Σ), add the free rule

,n(X1, . . . , Xn) ∨ not ,n(X1, . . . , Xn) ← (3)

Furthermore, for each n-ary relation nameP ∈ clos(Σ), we add the constraint

← P(X1, . . . , Xn), not ,n(X1, . . . , Xn) (4)

Intuitively, the latter rule ensures that PI ⊆ ,I
n. We add a constraint

← not ,1(X) (5)

which enforces that for every element x in the pre-interpretation, ,1(x) is true in
the open answer set. The latter rule ensures that ,I

1 = D for the corresponding
interpretation. The rule is implicitly guarded withX = X .
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– Next, we distinguish between the types of concept and role expressions that appear
in clos(Σ). ForD ∈ clos(Σ):
• if D is a concept nominal {o}, add

D(o) ← (6)

This will ensure that {o}(x) holds in an open answer set iff x = σ(o) = oI for
an interpretation of (Σ, P ).

• if D is a concept name, add

D(X) ∨ not D(X) ← (7)

• ifD is an n-ary relation name, add

D(X1, . . . , Xn) ∨ not D(X1, . . . , Xn) ← (8)

• if D = ¬E for a concept expression E, add

D(X) ← not E(X) (9)

Note that we can again assume that such a rule is guarded byX = X .
• if D = ¬R for an n-ary role expressionR, add

D(X1, . . . , Xn) ← ,n(X1, . . . , Xn), not R(X1, . . . , Xn) (10)

Note that if negation was defined w.r.t. to Dn instead of ,I
n, we would not be

able to write the above as a guarded rule.
• if D = E - F for concept expressions E and F , add

D(X) ← E(X), F (X) (11)

• if D = E - F for n-ary role expressionsE and F, add

D(X1, . . . , Xn) ← E(X1, . . . , Xn),F(X1, . . . , Xn) (12)

• if D = ($i/n : C), add

D(X1, . . . , Xi, . . . , Xn) ← ,n(X1, . . . , Xi, . . . , Xn), C(Xi) (13)

• if D = ∃[$i]R, add

D(X) ← R(X1, . . . , Xi−1, X, Xi+1, . . . , Xn) (14)

We now show that this translation preserves satisfiability.

Theorem 1. Let (Σ, P ) be a g-hybrid knowledge base where Σ is a DLRO−{≤}

knowledge base. Then, a predicate or concept expression p is satisfiable w.r.t. (Σ, P )
iff p is satisfiable w.r.t. Φ(Σ) ∪ P .
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Proof. (⇒) Assume p is satisfiable w.r.t. (Σ, P ), i.e., there exists a model (U, I, M)
of (Σ, P ) where U is the pre-interpretation (D, σ) that gives p a non-empty extension.
Construct then the open interpretation (V, N) of (Σ, P ) such that V = (D, σ′) with
σ′ : cts(Φ(Σ) ∪ P ) → D defined such that σ′(x) = σ(x) for a constant symbol x
from P and σ′(x) = xI for a constant symbol from Σ. Note that σ′ is well-defined
since for constant symbols x that are in both Σ and P , we have that σ(x) = xI . The
set N is defined as follows:

N ≡ M ∪ {C(x) | x ∈ CI , C ∈ clos(Σ)}
∪ {R(x1, . . . , xn) | (x1, . . . , xn) ∈ RI , R ∈ clos(Σ)}

with C andR concept expressions and role expressions respectively.
It is easy to verify that (V, N) is an open answer set of Φ(Σ) ∪ P that satisfies p.
(⇐) Assume (V, N) is an open answer set of Φ(Σ)∪P with V = (D, σ′) such that

p is satisfied. Define a tuple (U, I, N), with

– U ≡ (D, σ) where σ : cts(P ) → D with σ(x) ≡ σ′(x) (note that this is possible
since cts(P ) ⊆ cts(Φ(Σ) ∪ P )). U is then a pre-interpretation for P .

– An interpretation function I defined such that AI ≡ {x | A(x) ∈ N} for concept
names A, RI ≡ {(x1, . . . , xn) | R(x1, . . . , xn) ∈ N} for n-ary role names R
and oI = σ′(o), for o a constant symbol in Σ (note that σ′ is indeed defined on o).
(D, I) is then an interpretation of Σ.

– M ≡ N \{p(x) | p ∈ clos(Σ)}, such thatM is an interpretation ofΠ(PU , I).

Moreover, for every constant symbol b appearing both in Σ and in P , bI = σ(b),
making (U, I, M) an interpretation of (Σ, P ).

It is easy to verify that (U, I, M) is a model of (Σ, P ) that satisfies p. -3

Theorem 2. Let (Σ, P ) be a g-hybrid knowledge base where Σ is a DLRO−{≤}

knowledge base. Then, Φ(Σ) ∪ P is a GP, with a size that is polynomial in the size
of (Σ, P ).

Proof. Observing the rules that originate from Σ, it is clear that they are guarded. Fur-
thermore, the program P itself is a GP such that Φ(Σ) ∪ P is as well.

The size of clos(Σ) is of the order n log n where n is the size of Σ. Indeed, in-
tuitively, given that the size of an expression is n, we have that the size of the set of
its subexpressions is at most the size of a tree with depth log n where the size of the
subexpressions at a certain level of the tree is at most n. The size of the GP Φ(Σ) is
polynomial in the size of clos(Σ). However, note that we assume here that the size of
Σ increases such that the n in an added n-ary role expression is polynomial in the size
of the maximal arity of role expressions in Σ. If we were to add a relation name R
with arity 2n, where n is the maximal arity of relation names in C and Σ, the size of
Σ would increase linearly, but the size of Φ(Σ) ∪ P would increase exponentially: one
needs to add, e.g., rules

,2n(X1, . . . , X2n) ∨ not ,2n(X1, . . . , X2n) ← ,

which introduce an exponential number of arguments while the size of the roleR does
not depend on its arity. -3
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Note that in g-hybrid knowledge bases, we consider the fragment DLRO−{≤} of
DLRO without the expressions ≤ k[$i]R since such expressions cannot be simulated
with guarded programs. E.g., consider the concept expression ≤ 1[$1]R where R is a
binary role. One can simulate the ≤ by negation as failure:

≤ 1[$1]R(X)← not q(X)

for some new q with q defined such that there are at least 2 differentR-successors:

q(X) ← R(X, Y1), R(X, Y2), Y1 "= Y2

However, the latter rule is not a guarded rule – there is no atom that containsX , Y1, and
Y2. So, in general, expressing number restrictions such as ≤ k[$i]R is out of reach for
GPs. From Theorems 1 and 2 follows:

Corollary 1. Satisfiability checking w.r.t. g-hybrid knowledge bases where the DL part
is aDLRO−{≤} knowledge base can be polynomially reduced to satisfiability checking
w.r.t. GPs.

Since satisfiability checking w.r.t. GPs is 2-EXPTIME-complete [13], we have the
same 2-EXPTIME characterization for g-hybrid knowledge bases. We first make explicit
a corollary of Theorem 1.

Corollary 2. Let P be a GP. Then, p is satisfiable w.r.t. P iff p is satisfiable w.r.t. (∅, P ).

Theorem 3. Satisfiability checking w.r.t. g-hybrid knowledge bases where the DL part
is a DLRO−{≤} knowledge base is 2-EXPTIME-complete.

Proof. Membership in 2-EXPTIME follows from Corollary 1. Hardness follows from 2-
EXPTIME-hardness of satisfiability checking w.r.t. GPs and the reduction to satisfiability
checking in Corollary 2. -3

4 Relation withDL+log and other Related Work

In [25], so-called DL+log knowledge bases combine a Description Logic knowledge
base with a weakly-safe disjunctive logic program. Formally, for a particular Descrip-
tion LogicDL, aDL+log knowledge base is a pair (Σ, P )whereΣ is aDL knowledge
base consisting of a TBox (a set of terminological axioms) and an ABox (a set of asser-
tional axioms), and P contains rules α ← β such that for every rule r : α ← β ∈ P :

– α− = ∅,
– β− does not contain DL atoms (call this DL-positiveness),
– each variable in r occurs in an atom from β+ (Datalog safeness), and
– each head variable in r occurs in a non-DL atom from β+ (weak safeness).

The semantics for DL+log is the same as it is for g-hybrid knowledge bases6, with
some exceptions:
6 Strictly speaking, we did not define answer sets of disjunctive programs, however, the defini-
tions of Subsection 2.1 can serve for disjunctive programs without modification. Also, we did
not consider ABoxes in our definition of DLs in Subsection 2.2. However, the extension of the
semantics of DL knowledge bases with ABoxes is straightforward.
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– We do not have a standard name assumption such as [25] has, which basically
assumes every interpretation is over the same infinitely countable number of con-
stants. Neither do we have the implied unique name assumption, making the se-
mantics for g-hybrid knowledge bases more in line with current Semantic Web
standards such as OWL [3] where neither the standard names assumption nor the
unique names assumption holds. Note that Rosati also presented a version of hy-
brid knowledge bases which does not adhere to the unique name assumption in
an earlier work [24]. However, the grounding of the program part is with the con-
stant symbols explictly appearing in the program or DL part only, which yields a
less tight integration of the program and the DL part than in [25] or in g-hybrid
knowledge bases.

– Furthermore, we defined an interpretation as a triple (U, I, M) instead of a pair
(U, I ′) where I ′ = I ∪M ; this is, however, equivalent to [25].

We balance the key differences of the two approaches:
– In [25] the head of a rule is of the form p1(X1) ∨ . . . ∨ pn(Xn) with n possibly

0, i.e., the requirement |α+| ≤ 1 does not hold as it does for our programs. On the
other hand, this implies that |α−| = 0 in [25], while there is no such restriction in
our case.

– Instead of Datalog safeness we have guardedness, i.e., while with Datalog safeness
every variable in the rule should appear in some positive atom of the body of the
rule, guardedness requires that there is a positive atom that contains every variable
in the rule. E.g., a(X ) ← b(X ), c(Y ) is Datalog safe sinceX appears in b(X) and
Y appears in c(Y ) but it is not guarded since there is no atom that contains both
X and Y in its arguments. Note that we could easily extend the approach taken in
this paper to loosely guarded programs which require that every two variables in
the rule should appear together in a positive atom, however, this would still be less
expressive than Datalog safeness.

– We do not have the requirement for weak safeness, i.e., head variables do not need
to appear positively in a non-DL atom. The guardedness may be provided by a DL
atom.
Example 3. Example 1 contains the rule

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )

This allows to deduce that X might be a problem case even if X knows some-
one from the AA but is not drinking with that person, indeed, as illustrated by the
example model in Example 1, john is drinking wine with some anonymous x and
knowsmichael from the AA. More correct would be the rule

problematic(X ,Z ) ← drinks(X ,Y ,Z ), knowsFromAA(X ,Y )

where we explicitly say that X and Y in the drink and knowsFromAA relation
should be the same and we extend the problematic predicate with the kind of drink
that X has a problem with. Then, the head variable Z is guarded by the DL atom
drinks and the rule is thus not weakly-safe but it is guarded nonetheless. Thus,
the resulting knowledge base is not a DL+log knowledge base but is a g-hybrid
knowledge base.
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– We do not have the requirement for DL-positiveness, i.e., DL atoms may appear
negated in the body of rules (and also in the heads of rules). However, one could
allow this in DL+log knowledge bases as well, since not A(X) in the body of
the rule has the same effect as A(X) in the head, where the latter is allowed in
[25]. Vice versa, we can also loosen our restriction on the occurrence of positive
atoms in the head (which allows at most one positive atom in the head), to allow
for an arbitrary number of positive DL atoms in the head (but still keep the number
of positive non-DL atoms limited to one). E.g., a rule p(X ) ∨ A(X ) ← β, where
A(X) is a DL atom, is not a valid rule in the programs we considered since the
head contains more than one positive atom. However, we can always rewrite such
a rule as the rule p(X ) ← β,not A(X ), which contains at most one positive atom
in the head.
Arguably, DL atoms should not be allowed to occur negatively, because DL predi-
cates are interpreted classically and thus the negation in front of the DL atom is not
nonmonotonic. However, Datalog predicates which depend on DL predicates are
also (partially) interpreted classically.

– We do not take into account ABoxes in the DL knowledge base like [25] does.
However, the DL we consider includes nominals such that one can simulate the
ABox using terminological axioms. Moreover, even if the DL does not include
nominals the ABox can be written as ground facts in a program and ground facts
are always guarded.

– Decidability for satisfiability checking7 of DL+log knowledge bases in [25] is
guaranteed if decidability of the conjunctive query containment problem is guaran-
teed for the DL at hand. However, we relied for showing decidability on a trans-
lation of DLs to guarded programs, and, as explained in the previous section, e.g.,
DLs with number restrictions cannot be translated to them.

[18] and [26] simulate reasoning in DLs with a LP formalism by using an interme-
diate translation to first-order clauses. In [18], SHIQ knowledge bases are reduced to
first-order formulas, on which basic superposition calculus is then applied.

[26] translates ALCQI concept expressions to first-order formulas, grounds them
with a finite number of constants, and transforms the result to a logic program. One can
use a finite number of constants by the finite model property ofALCQI; in the presence
of terminological axioms this is no longer possible since the finite model property is
lost.

In [19], the DL ALCNR (R stands for role intersection) is extended with Horn
clauses q(Y ) ← p1 (X1 ), . . . , pn(Xn) where the variables in Y must appear inX1∪
. . . ∪Xn; p1, . . . , pn are either concept names, role names, or ordinary predicates not
appearing in the DL part, and q is an ordinary predicate. There is no safeness in the sense
that every variable must appear in a non-DL atom (i.e., with an ordinary predicate), as
it is in, e.g., [22]. The semantics is as in [22]: extended interpretations that satisfy both
the DL and clauses part (as FOL formulas). Query answering is undecidable if recursive
Horn clauses are allowed, but decidability can be regained by restricting the DL part or
7 [25] considers satisfiability checking of knowledge bases instead of predicate satisfiability
checking as we do, however, the former can easily be reduced to the latter.
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by enforcing that the clauses are role safe (each variable in a role atom R(X, Y ) for
a role R must appear in a non-DL atom). Note that the latter restriction is less strict
than the DL-safeness of [22], where also variables in concept atoms A(X) need to
appear in non-DL atoms. On the other hand, [22] allows for the more expressive DL
SHOIN (D), and the head predicates may be DL atoms as well. In relation with our
work: we needed the guardedness and not just role safeness as in [19].

An AL-log [5] system consists of two subsystems: an ALC knowledge base and
a set of Horn clauses of the above form, where variables in the head must appear in
the body, only concept names besides ordinary predicates are allowed in the body (thus
no role names), and there is a safeness condition as in [22] saying that every variable
appears in a non-DL atom.

In [6, 7] Description Logic programs are introduced; atoms in the program compo-
nent may be dl-atoms such that one can query the knowledge in the DL part and each
query can also provide the DL with information that the rule part deduced, yielding a
bi-directional flow of information.

Finally, SWRL [17] is a Semantic Web Rule Language and extends the syntax and
semantics of OWL DL (i.e., SHOIN (D)) with unary/binaryDatalog RuleML [1], i.e.,
Horn-like rules. This extension is undecidable [16].

5 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Description Logic (DL) knowl-
edge bases with guarded programs. In particular, we combined knowledge bases of the
DL DLRO−{≤}, which is close to OWL DL, with guarded programs and showed de-
cidability of this framework by a reduction to guarded programs under the open answer
set semantics [13]. We discussed the relation with DL+log knowledge bases: g-hybrid
knowledge bases overcome some of the limitations of DL+log , such as the unique
name assumption, the requirement for DL-positiveness, Datalog safeness, and weak
DL-safeness, but introduces the requirement of guardedness. At present, a significant
disadvantage of our approach is the lack of support for DLs with number restrictions
which is inherent to the use of guarded programs as our decidability vehicle. A solu-
tion for this would be to consider other types of programs, such as conceptual logic
programs [11]. This would allow for the definition of an hybrid knowledge base (Σ, P )
whereΣ is a SHIQ knowledge base and P is a conceptual logic program since SHIQ
knowledge bases can be translated to conceptual logic programs.

At present, there is no implemented system for open answer set programming avail-
able; this is part of future research.
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Abstract. The paper proposes to factor three leading edge technologies, namely
Web Services, Intelligent Agents, and Computational Logic, for implementing
logic-based agents that reason about interaction protocols specified using stan-
dard languages for Web Services.
A working multiagent system prototype, where agents implemented in Prolog
reason about protocols expressed in WS-BPEL, has been developed.
Keywords. Intelligent Agent, Web Service, Agent-Interaction Protocol, Prolog

1 Introduction

“Agent-based systems are one of the most vibrant and important areas of re-
search and development to have emerged in information technology in the
1990s. Put at its simplest, an agent is a computer system that is capable of
flexible autonomous action in dynamic, unpredictable, typically multiagent do-
mains. [...] Agents provide software designers and developers with a way of
structuring an application around autonomous, communicative components,
and lead to the construction of software tools and infrastructure to support the
design metaphor. In this sense, they offer a new and often more appropriate
route to the development of complex computational systems, especially in open
and dynamic environments. ”

The above quotation, taken from [23], provides the basic definition of an agent and
suggests the potential impact of adopting the agent technology for correctly engineering
distributed applications working in heterogeneous, dynamic, unpredictable and open
environments. A well-suited example of such an environment is the World Wide Web.

The agent technology shares many common features with another technology, that
of Web Services (WSs, [21]), strongly related to the Web. WSs are software applica-
tions written in various programming languages and running on various platforms, that
can both expose themselves as WSs, and use other WSs. Thus, WSs are heterogeneous,
distributed, and operate in an open and dynamic environment as the Web is. Actually,

! Partially supported by the Italian project MIUR PRIN 2005 “Specification and verification of
agent interaction protocols”.
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the recent literature in the agents’ field devotes much space to exploring the relation-
ships between agents and WSs. The most well settled opinions are that either WSs
provide the infrastructure, and agents provide the coordination framework [29,10,9], or
that WS and agent technologies are related by the common goal of providing tools, lan-
guages, and methods necessary for engineering systems that behave in a correct way,
for example w.r.t. a given interaction protocol [6].

When we consider the second part of the quotation that opens our paper - view-
ing agents as a design metaphor, the relationship between agents and another well-
established technology, Computational Logic (CL), suggests itself. As pointed out in
[12], in the Agent-Oriented Software Engineering (AOSE) field, formal methods are
used in the specification of systems, for directly programming systems, and in the ver-
ification of systems. CL can be very effective for fitting all three roles above. In fact,
if an agent is specified by means of a logic-based program, a working prototype of
the given specification is immediately available and can be used for early testing and
debugging the specification. The distinction between specifying and directly program-
ming an agent is thus blurred. Moreover, the model checking approach to verification
can be adopted to show that the agent implementation is correct with respect to its origi-
nal specification. The fervid activity in this area is demonstrated by the success of many
workshops, such as CLIMA1 and DALT2. Various surveys and monographic collections
on this topic are also available, such as [28,15,24].

Finally, CL has been used for reasoning about interaction protocols for a long time
[7,8,4,2]. Since WSs define interaction protocols, it is a very natural step to adopt CL
to represent [26], compose [27,25], and select [5] them.

In this paper, we factor the three technologies of WSs, agents, and CL, for imple-
menting logic-based intelligent agents that reason about interaction protocols specified
using standard languages for WSs. In particular, our agents are implemented in Prolog,
are executed within the JADE agent platform, and reason about protocols expressed in
WS-BPEL. The paper is organised as follows: Section 2 describes how agent interaction
protocols can be expressed in WS-BPEL. Section 3 overviews our WS-aware agents,
whereas Sections 4, 5, 6, and 7 provide details for the four phases of the WS-aware
agent’s life, namely the translation from WS-BPEL to a Prolog representation, the gen-
eration of a Prolog program that complies with the WS-BPEL interaction protocol, the
activity of reasoning about the protocol, and the actual participation to the protocol,
respectively. Section 8 concludes.

2 Representing Agent Interaction Protocols in WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL, [1]) is a notation,
layered on top of WSDL [17], for specifying business process behaviours (business pro-
tocols) based on WSs. Using WS-BPEL it is possible to specify both executable pro-
cesses, that describe the actual behaviour of a participant in a business interaction and
can be executed by an engine, and business protocols, that describe the mutually visi-

1 http://centria.di.fct.unl.pt/˜clima/
2 http://staff.science.uva.nl/˜ulle/DALT-2006/home.html
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ble message exchange of each of the parties involved in the protocol, without revealing
their internal behaviour. For the purpose of this work, only business protocols are used.

Besides providing language types for defining the conversational relationship be-
tween two services (partnerLinkType), and activities for implementing message ex-
change (invoke and receive), WS-BPEL also offers activities for structuring the
protocol execution flow, such as sequence, switch, if, and while.

The suitability of WS-BPEL for representing agent interaction protocols (AIPs) is
demonstrated by the close relationships between the constructs offered by WS-BPEL,
and those offered by one of the most popular notations for AIPs, AUML [18], sum-
marised in Table 1. To make an example, the AUML protocol depicted in Figure 1

AUML WS-BPEL

Roles ag-name/ ag-role: ag-class box
on lifelines

myRole and partnerRole tags in
Partner Links

Message Labelled arrows between lifelines invoke and receive
Content Speech-act based Unspecified
Sequence Weak Sequencing Sequence
Condition Alternative Switch
Option Option If
Cycle Loop While

Table 1. Correspondence between AUML and WS-BPEL concepts

corresponds to the WSDL and WS-BPEL documents partly shown below.

WS-BPEL specification

1: <process xmlns="http://schemas.xmlsoap.org/..." ....>
2: <partnerLinks>
3: <partnerLink name="publisherPL" partnerLinkType="lns:SellerBuyer"

myRole="seller" partnerRole="buyer"/>
4: <partnerLink name="readerPL" partnerLinkType="lns:BuyerSeller"

myRole="buyer" partnerRole="seller"/>
5: </partnerLinks>
6: <variables>
7: <variable name="continue 1" element="lns:continue 1 type"/>
8: <variable name="choose 2" element="lns:choose 2 type"/>
....
13: </variables>
14: <copy><from opaque="yes"/><to>$continue 1.value</to></copy>
15: <while condition="$continue 1.value=true">
16: <sequence>
17: <receive partnerLink="publisherPL" portType="lns:publisherPT"

operation="RCV Mess 1" createIstance="yes"/>
18: <copy><from opaque="yes"/><to>$choose2.value</to></copy>
19: <switch>
20: <case condition="$choose2.value=1">
....
n-10: <if condition="$condition 6.value=true"/><then>
n-9: <invoke partnerLink="publisherPL" portType="lns:publisherPT"

operation="SND Mess 15"/>
n-8: <receive partnerLink="readerPL" portType="lns:readerPT"

operation="RCV Mess 15"/>
n-7: </then> </if>
n-6: </sequence>
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Fig. 1. Fruit marketplace protocol in AUML
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n-5: </case>
n-4: </switch>
n-3: </sequence>
n-2: <copy><from opaque="yes"/><to>$continue 1.value</to></copy>
n-1: </while>
n: </process>

WSDL specification

j: <xs:element name="content of Mess 15" type="xs:string"
fixed="i may sell(fruit(F1))"/>

....
k: <message name="Mess 15">
k+1: <part name="performative" element="inform ca"/>
k+2: <part name="Participant" type="tns:Participant MsgFromPublisher"/>
k+3: <part name="Content" element="tns:content of Mess 15"/>
k+4: <part name="Content Language" element="tns:content language name"/>
k+5: <part name="Ontology" element="tns:ontology name"/>
k+6: <part name="Protocol" element="tns:protocol name"/>
k+7: </message>

For each condition to check in the AIP, a variable is defined in the WS-BPEL docu-
ment (lines 6-13), to which opaque values are associated (line 15, where the condition
of the while activity, corresponding to the AUML Loop, is given a value; line 20, con-
dition of the switch activity corresponding to the AUML Alternative; line n-10,
condition of the if activity corresponding to the AUML Option). Since WS-BPEL (as
AUML) does not allow to express which partner in a communication is responsible for
making a condition true or false (namely, for assigning a value to a opaque variable), and
since, in a very heterogeneous environment as a multiagent system is, it is not usually
possible to know in advance which kind of conditions can be expressed and understood
by the participants in a communication, the WS-BPEL document provides no details
about conditions. The document just declares that at some point, someone will need to
check a condition, and that this condition will need to be satisfied in order to allow the
execution to proceed on that protocol branch (condition = "$continue 1.value
= true, for example).

Apart from the first message of the protocol, that, according to the WS-BPEL spec-
ification [1], must be received by the service provider (the agent that publishes the
document), both the point of view of the publisher and of the reader are taken into
account when describing communicative actions. For example, lines n-9 and n-8 de-
scribe the delivery of the message identified by the number 15 from the publisher to
the reader, both from the publisher’s viewpoint, and from the reader’s one. The WSDL
document describes the details of each exchanged message: message 15 has an inform
performative (line k+1) and i may sell(fruit(F1)) content (line j).

A software tool for performing the automatic translation from AUML AIPs to WS-
BPEL has been described in [11], and can be downloaded from http://www.disi.
unige.it/person/MascardiV/Software/AUML2WS-BPEL.html.

3 Web Service-Aware Agents: a Gentle Introduction

A “WS-aware agent”, whose main activities are depicted in Figure 2, is an agent able
to find services, retrieve WS-BPEL documents specifying AIPs for accessing services,
reason about them, and start an interaction with the document’s publisher, provided that
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the protocol satisfies the agent’s desiderata. The core activities of the WS-aware agent

Fig. 2. The Web Service-Aware Agent

are implemented in tuProlog3 [13] integrated into the JADE agent platform4 [22] by
means of the libraries offered by DCaseLP5 [20]. The behaviour of the WS-aware agent
(that sometimes we also name “reader agent”, since it reads the document written and
published by the service provider) is defined by the following activities:

1 The WS-aware agent exploits the facilities offered by JADE’s “Directory Facilitator”
in order to find the service it is interested in, and retrieves the WS-BPEL document
specifying the protocol that must be followed in order to obtain the service.

2 By exploiting the JDOM technology6, the agent translates the WS-BPEL specifica-
tion of the protocol into an internal format, corresponding to a Prolog term.

3 Starting from the Prolog term, a Prolog program corresponding to a finite state ma-
chine where states are placeholders, and transitions are either communicative acts
(send and receive) or conditions to check, is generated. This program generation
stage is implemented in Prolog.

4 In order to verify if its desiderata (either existential or universal properties such as
“There is one path where I will receive message1”, or “Whatever the path, I will
send message2”) are met by the protocol, the agent exploits meta-programming
facilities offered by Prolog. It makes a depth-first exploration of the SLD-tree for
P ∪{G} via R, where P is the program generated in the previous step, G is the goal
that starts the execution of the protocol, and R is the leftmost selection rule. This ex-
ploration is aimed at either finding one path where the desired message is received
(for demonstrating that an existential property holds), or finding a path where the
final state is reached, and the expected message is not received (for demonstrating
that a universal property does not hold).

5 If the desiderata of the WS-aware agent are met, the agent engages in a dialog with
the publisher of the WS-BPEL document. In case the condition to satisfy was a

3 http://tuprolog.alice.unibo.it/
4 http://jade.tilab.com/
5 http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.
html

6 http://www.jdom.org/
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universal property, the protocol may evolve in whatever way: the property will be
satisfied by any path. Otherwise, in case of an existential property, the WS-aware
agent may only try to force (as long as the decision is up to it) the execution of the
path that satisfies the property, but it must take into account that at any time, the
publisher might make a decision that causes another protocol branch to be followed.
In this case, the WS-aware agent accepts to follow the protocol although it will not
lead to the reception of the expected message. The actual execution of the protocol
takes place within the JADE platform extended with the DCaseLP libraries for
integrating the tuProlog interpreter.

4 From WS-BPEL to a Prolog Representation

As already anticipated, a WS-BPEL document is composed by a WSDL file and a WS-
BPEL file. The WSDL file contains all the data type used to define the business process
in the WS-BPEL file.

The first activity that we perform to obtain a Prolog representation of the WS-BPEL
process, is to build the JDOM tree of the WSDL file. JDOM allows the programmer to
represent an XML document as a tree, and to explore and modify it. In this phase, all
the information about the agents and about the messages exchanged in the protocol
(message sender, receiver, content, performative act) are extracted from the WSDL file.
Then, a JDOM tree of the WS-BPEL file is built, and is visited following a pre-order
strategy. When a WS-BPEL activity (invoke, receive, seq, switch, loop, etc.) is
found, an appropriate Prolog representation of this activity is created. The final output
is the main fragment(WS-BPELStructuredActivity) term representing the pro-
tocol activities. By integrating this representation of the AIP activities with the general
information about the agents and the protocol extracted from the WSDL file (proto-
col name, protocol parameters, etc.), the process(Parameters, ProtocolName,
PublisherData, ReaderData, MainFragment) term is obtained. The Prolog term
representing the fruit market AIP that we use as running example, is shown below.

process(
%%% Ontology and message content language %%%
parameters(ontology(’FruitMarketOntology’),content language(’first order logic’)),
%%% Definition of the protocol name %%%
protocol name(’sd FruitMarket’),
%%% Definition of the agent publisher %%%
agent publisher(short name(’seller@giocas:1099/JADE’),long name(’fs/fruitSeller:

fruitSellerClass’)),
%%% Definition of the agent reader %%%
agent reader(short name(’buyer@giocas:1099/JADE’),long name(’fb/fruitBuyer:

fruitBuyerClass’)),
%%% Definition of the AIP activities %%%
main fragment(
%%% Translation of a while activity %%%
while(no guard,
%%% Translation of a sequence activity %%%
seq([
%%% Translation of a send activity %%%
send(msg(’REQUEST’,’availability and price(fruit(F))’)),
%%% Translation of an alternative activity %%%
switch([
case(no guard,
seq([
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%%% Translation of a receive activity %%%
receive(msg(’INFORM’,’available(fruit(F))’)),
receive(msg(’PROPOSE’,’buy(fruit(F),price(EuroForKg))’)),
switch([
case(no guard,
seq([
send(msg(’REQUEST’,’delivery modes’)),
receive(msg(’INFORM’,’delivery mode(ListOfModes)’)),
send(msg(’REQUEST’,’accepted payment methods’)),
receive(msg(’INFORM’,’accepted payment methods(ListOfMethods)’)),
switch([
case(no guard,
send(msg(’ACCEPT-PROPOSAL’,’sell(fruit(F),amount(A),payment method(M),

delivery mode(D))’))),
case(no guard,
send(msg(’REJECT-PROPOSAL’,’no thanks’)))])])),
case(no guard,
seq([
send(msg(’CFP’,’make a discount(fruit(F),amount(Kg))’)),
receive(msg(’PROPOSE’,’buy(fruit(F),amount(Kg),discounted price(EuroForKg),

payment method(M),delivery mode(D))’)),
switch([
case(no guard,
send(msg(’ACCEPT-PROPOSAL’,’sell(fruit(F),amount(A),payment method(M),

delivery mode(D))’))),
case(no guard,
send(msg(’REJECT-PROPOSAL’,’no thanks’)))])]))])])),

case(no guard,
seq([
receive(msg(’INFORM’,’sorry not available(fruit(F))’)),
%%% Translation of an option activity %%%
if then(no guard,
receive(msg(’INFORM’,’i may sell(fruit(F1))’)))]))])]))))

5 Generating the WS-BPEL-compliant Prolog Program

The philosophy behind the generation of a Prolog program starting from the Prolog
representation of the AIP, is that a finite state machine is simulated by the generated
clauses. States are meaningless terms only used to enforce the correct transitions, and
transitions correspond either to communicative actions (sending or receiving messages),
or to check of conditions. In some cases, empty transitions that just move from one state
to another, are used. Thus, the transitions can be of four kinds: send transition, receive
transition, check transition and null transition. They are exemplified below, where the
initial and final fragments of the Prolog code corresponding to the fruit marketplace
protocol depicted in Figure 1 are shown (the clause numbers written in italic are not
part of the code). Note that we did not take care of efficiency in the development of
this prototype: states can become very long terms, and no optimisations are made in
implementing the transitions.

clause 1: exec(s(’sd FruitMarket’,0)) :-
check guard(s(’sd FruitMarket’,0), no guard), exec(s(s(’sd FruitMarket’,0),0)).

clause 2: exec(s(’sd FruitMarket’,0)) :- exec(s(’sd FruitMarket’,final)).

clause 3: exec(s(’sd FruitMarket’,1)) :- exec(s(’sd FruitMarket’,0)).

clause 4: exec(s(s(’sd FruitMarket’,0),0)) :-
exec(s(s(s(’sd FruitMarket’,0),0),0)).
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clause 5: exec(s(s(s(’sd FruitMarket’,0),0),0)) :-
send(’REQUEST’,’availability and price(fruit(F))’,’seller@giocas:1099/JADE’),
exec(s(s(s(’sd FruitMarket’,0),0),1)).

clause 6: exec(s(s(s(’sd FruitMarket’,0),0),1)) :-
check guard(s(s(s(s(’sd FruitMarket’,0),0),1),0), no guard),
exec(s(s(s(s(’sd FruitMarket’,0),0),1),0)).

clause 7: exec(s(s(s(s(’sd FruitMarket’,0),0),1),0)) :-
exec(s(s(s(s(s(’sd FruitMarket’,0),0),1),0),0)).

clause 8: exec(s(s(s(s(s(’sd FruitMarket’,0),0),1),0),0)) :-
receive(’INFORM’,’available(fruit(F))’,’seller@giocas:1099/JADE’),
exec(s(s(s(s(s(’sd FruitMarket’,0),0),1),0),1)).

clause 9: exec(s(s(s(s(s(’sd FruitMarket’,0),0),1),0),1)) :-
receive(’PROPOSE’,’buy(fruit(F),price(Euro))’,’seller@giocas:1099/JADE’),
exec(s(s(s(s(s(’sd FruitMarket’,0),0),1),0),2)).

...................

clause n-3: exec(s(s(s(s(s(’sd FruitMarket’,0),0),1),1),1)) :-
check guard(s(s(s(s(s(’sd FruitMarket’,0),0),1),1),1),no guard),
exec(s(s(s(s(s(s(’sd FruitMarket’,0),0),1),1),1),0)).

clause n-2: exec(s(s(s(s(s(’sd FruitMarket’,0),0),1),1),1)) :-
exec(s(’sd FruitMarket’,1)).

clause n-1: exec(s(s(s(s(s(s(’sd FruitMarket’,0),0),1),1),1),0)) :-
receive(’INFORM’,’i may sell(fruit(F1))’,’seller@giocas:1099/JADE’),
exec(s(’sd FruitMarket’,1)).

clause n: exec(s(’sd FruitMarket’,final)) :- true.

The predicate check guard(State,Guard) (clauses 1, 6 and n-3) characterises a
check transition, and succeeds if call(Guard) succeeds. Since no guards are specified
by the WS-BPEL AIP, their translation is always no guard, and call(no guard)
succeeds. The check guard(State,Guard) atom may be manually edited by the
developer for inserting the application-dependent conditions that the agent might want
to check.

The predicate send in clause 5 (resp., receive, in clauses 8, 9 and n-1) charac-
terises a send transition (resp., a receive transition). It is implemented by the
DCaseLP libraries, and provides an interface between tuProlog and the communication
facilities offered by JADE. It takes the message’s FIPA performative [19], the content,
and the JADE address of the receiver (resp., sender), as its arguments.

The predicate that performs the generation of the code, takes the initial and final
states of the transition, the identifier of the agent, and the term representing the struc-
tured activity to translate, and returns a list of clauses that implement the transition.
The state that represents the end of the protocol is identified by the constant final.
The demonstration of exec(s(ProtocolId,final)) always succeeds (clause n).

– Translating cycles. A while(Guard,WhileActivities) action performed in
the state s(S,I) for reaching the state SFinal, is translated into

clause a: exec(s(S,I)) :- check guard(s(S,I),Guard), exec(s(s(S,I),0)).
clause b: exec(s(S,I)) :- exec(SFinal).
clause c: exec(s(S,I1)) :- exec(s(S,I)).

Clauses that translate the WhileActivities from s(s(S,I),0) to s(S,I1)

Our fruit market AIP starts with a while activity performed in the state s(’sd Fru-
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itMarket’,0) for reaching the state s(’sd FruitMarket’,final). Clause 0 of
our code fragment corresponds to the first clause of the translation of the while activity
(clause a); clause 2 corresponds to clause b; and clause 3 to clause c. All the remaining
activities of the protocol correspond to the WhileActivities, and they will need to
end with reach state s(’sd FruitMarket’,1) (corresponding to s(S,I1) in clause
c). When discussing the translation of options, we will see that this truly happens.

– Translating communication actions. A communication action (where communi-
cation may be either send or receive) performed in the state s(S,I) for reaching
the state SFinal, is translated into the clause

clause a: exec(s(S, I)) :- communication(Perform,Cont,Addr), exec(SFinal).

Examples of this translation are clauses 5, 8, 9, and n-1.

– Translating sequences. A seq([Activity0, ..., ActivityN]) action per-
formed in the state s(S,I) for reaching the state SFinal, is translated into

clause a: exec(s(S,I)) :- exec(s(s(S,I),0)).
Clause that translates Activity0 from s(s(S, I),0) to s(s(S,I),1)
Clause that translates Activity1 from s(s(S, I),1) to s(s(S,I),2)
....
Clause that translates ActivityN from s(s(S,I),N) to SFinal

An example of this translation are clauses 4 and 5. The state s(S, I) from which the
translation starts is s(s(’sd FruitMarket’,0),0) (S = s(’sd FruitMarket’,0);
I = 0) and the state to reach is s(’sd FruitMarket’,1). Clause 4 corresponds to
clause a, while clause 5 corresponds to the translation of the first activity within the se-
quence, send(’REQUEST’, ’availability and price(fruit(F))’,’seller-
@giocas:1099/JADE’), from s(s(S,I),0) to s(s(S,I),1). Clause n-1 corre-
sponds to the very last activity in the sequence. Also clauses 8 and 9 translate two
items of a sequence, started in clause 7.

– Translating alternatives. A switch([case(Guard0,Activity0), ..., ca-
se(GuardN,ActivityN)]) action performed in the state s(S,I) for reaching the
state SFinal, is translated into

clause a: exec(s(S,I)) :- check guard(s(s(S,I),0),Guard0), exec(s(s(S,I),0)).
Clauses that translates Activity0 from s(s(S,I),0) to SFinal

....
clause z: exec(s(S,I)) :- check guard(s(s(S,I),N),GuardN), exec(s(s(S,I),N)).

Clauses that translates ActivityN from s(s(S,I),N) to SFinal

Clause 6 is an example of translation of a switch activity, and corresponds to clause a.
Clauses 7, 8, 9 and successive ones correspond to the alternative branch where the fruit
is available; another clause with the same head exec(s(s(s(’sd FruitMarket’,0),
0),1)) as clause 6, not shown in the program fragment, corresponds to clause z,
namely to the alternative branch where the fruit is not available.

– Translating options. An if then(Guard,Then activities) action performed
in the state s(S,I) for reaching the state SFinal, is translated into

clause a: exec(s(S,I)) :- check guard(s(S,I),Guard), exec(s(s(S,I),0)).
clause b: exec(s(S,I)) :- exec(SFinal).

Clauses that translate ThenActivities from s(s(S,I),0) to SFinal

Clauses m-3 and m-2 correspond to clauses a and b respectively, where s(S,I) corre-
sponds to s(s(s(s(s(’sd FruitMarket’,0),0),1),1),1) and SFinal to s(’sd
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FruitMarket’,1). ThenActivities correspond to the reception of the message
’i may sell(fruit(F1))’, after which the agent moves to s(’sd FruitMarket’,1)
(clause m-1), as anticipated when we introduced the translation of cycles.

6 Is This Protocol the Right One for Me?

In order to complete the protocol execution with a success, the Prolog program of
the WS-aware agent (the fruit buyer in our running example) must contain the fact
condition to check(Condition), where Conditionmust be instantiated with ex-
ists(Action), forall(Action), or no cond. The default for this fact is condi-
tion to check(no cond), meaning that no checks on the protocol are made, but it
may be manually edited by the MAS developer if he/she wants to verify some condi-
tions. Action may correspond to one of the transition types, send, receive, check: the
WS-aware agent may thus check that there is one possible path where (resp. in any
possible path) a send(Performative,Content,Receiver), or a receive(Per-
formative,Content,Sender), or a check guard(State,Guard), is executed.

Since, as already explained, for the moment we do not instantiate guards, and since
the WS-aware agent should have control over its own communicative actions, the most
interesting type of condition to check involves the reception of a message from the WS
publisher (the fruit seller of our example).

To go on with our fruit market example, let as consider a “restrictive” fruit buyer
agent that accepts to interact with the fruit seller agent only if it provides a bunch of
payment methods among which the buyer can choose. Assuming the existence of an on-
tology shared between the fruit buyer and the fruit seller, that allows them to exchange
messages whose content has been previously agreed upon, the fruit buyer agent’s code
should contain the fact: condition to check(forall(receive(’INFORM’,’ac-
cepted payment methods(ListOfMethods)’,Sender))). This condition is not
verified by the protocol depicted in Figure 1 and discussed throughout the paper, as
it can be easily seen. Thus, the “restrictive” fruit buyer agent does not even start the
protocol execution.

However, a “flexible” fruit buyer might just want to check if, in the best case, the
fruit seller would allow it to choose among more than one payment method. The buyer
might force the execution of the protocol branch where this possibility takes place, as
long as the choice is up to it, but it might also be ready to accept that the seller, at some
point in the protocol execution, acts in such a way that the execution of the desired ac-
tion can no longer take place. The condition to check for the “flexible” agent would be
exists(receive(’INFORM’,’accepted payment methods(ListOfMethods)’,
Sender)). The protocol does verify this condition, and the agent would start the pro-
tocol execution.

Now, three situations may take place

1. The actual protocol branch executed is the one expected by the fruit buyer: w.r.t.
our protocol, this means that the fruit seller had enough fruit of the required type to
sell, and sends an inform(available(fruit(F))) message to the buyer. The
buyer then requests the delivery and payment modes, and the seller provides the
expected answer. From now on, the protocol can follow whatever branch.
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2. The branch executed does not allow to verify the condition: the seller has not
enough fruit to sell, and thus the branch where the buyer could perform a receive
(’INFORM’,’accepted payment methods(ListOfMethods)’,Sender) ac-
tion can no longer be taken. The fruit buyer gives up with its hope of receiving this
message, and goes on following the protocol branch determined by the seller.

3. The fruit seller sends some message that was not foreseen at all by the protocol.
The buyer stops to interact with the seller, and the protocol execution fails.

While executing, the WS-aware explains its actions by printing them on a log. A
fragment of this explanation in the case that everything goes as expected, is:

I will try to enforce the following path, as long as the choice is up to me

check guard(s(’sd FruitMarket’,0),no guard)
send(’REQUEST’,’availability and price(fruit(F))’,’seller@giocas:1099/JADE’)
check guard(s(s(s(s(’sd FruitMarket’,0),0),1),0),no guard)
receive(’INFORM’,’available(fruit(F))’,’seller@giocas:1099/JADE’)
receive(’PROPOSE’,’buy(fruit(F),price(EuroForKg))’,’seller@giocas:1099/JADE’)
check guard(s(s(s(s(s(s(’sd FruitMarket’,0),0),1),0),2),0),no guard)
send(’REQUEST’,delivery modes,’seller@giocas:1099/JADE’)
receive(’INFORM’,’delivery mode(ListOfModes)’,’seller@giocas:1099/JADE’)
send(’REQUEST’,accepted payment methods,’seller@giocas:1099/JADE’)
receive(’INFORM’,’accepted payment methods(ListOfMethods)’,’seller@giocas:1099/JADE’)

****************************** ACTUAL EXECUTION *******************************

I executed the statement check guard(s(’sd FruitMarket’,0),no guard)
I am still following the desired path!

.........

Nondeterministic action: I hoped to receive
(’INFORM’,’delivery mode(ListOfModes)’,’seller@giocas:1099/JADE’)
The message that I received is the one I was waiting for!

I executed the statement
send(’REQUEST’,accepted payment methods,’seller@giocas:1099/JADE’)
I am still following the desired path!

Nondeterministic action: I hoped to receive
(’INFORM’,’accepted payment methods(ListOfMethods)’,’seller@giocas:1099/JADE’)
The message that I received is the one I was waiting for!

Finally, I have reached my goal!

7 Let’s Run!

For supporting the interaction between the Service Provider Agent and the WS-Aware
Agent, we have designed and implemented the system depicted in Figure 3. In this
section, we will name “Agent Services” (ASs) both the general management services
offered by JADE’s Directory Facilitator and by the Protocol Manager Agent that we
implemented, and the application specific services such as the fruit-selling ser-
vice offered by the fruit seller and advertised by publishing the WS-BPEL document
discussed in Section 2.

The Directory Facilitator agent (DF) is provided by JADE, and offers “yellow pages”
allowing agents to publish ASs, so that other agents can find and exploit them. An agent
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Fig. 3. Our multiagent system implemented in JADE

wishing to publish an AS must send information about itself and about the AS it pro-
vides, to the DF.

We have developed a Protocol Manager Agent (PMA) that allows agents to publish
and retrieve WS-BPEL specifications representing AIPs. In other words, the PMA of-
fers an AS that consists in the advertisement and retrieval of WSs’ specifications. The
PMA stores the WS-BPEL specifications received on a MySql DBMS7.

When the JADE platform is started, the PMA registers the protocol-publishing
and the protocol-reading ASs to the DF (arrows 1 and 2 in the figure 3).

When a Web Service Provider Agent (WSPA) wants to advertise an AS specified by
means of WS-BPEL, it

1. looks in the DF to find the protocol-publishing AS (arrows 3, 4);
2. sends a message to the PMA with the WS-BPEL document, and waits to receive

the protocol identifier (PID) assigned by the PMA to it (arrows 5, 6);
3. registers the AS specified by the WS-BPEL document to the JADE DF (arrows 7,

8), adding the PID obtained by the PMA and the PMA address to the AS properties.

When a WS-Aware Agents (WSAA) looks for an AS, it

1. queries the DF to find the required AS (arrows 9, 10). If a WSPA had previously
registered the AS, then the WSAA obtains the name and address of the service
provider, the address of the PMA, and the PID that the WSPA assigned to the AS;

2. sends a message to the PMA to obtain the WS-BPEL document representing the
AIP that it must follow to obtain the AS (arrows 11, 12);

3. from the WS-BPEL specification, generates a corresponding Prolog term as dis-
cussed in Section 4;

4. generates the Prolog program from the Prolog term, as discussed in Section 5;
5. reasons about the Prolog program corresponding to the WS-BPEL AIP as discussed

in Section 6; and
6. according to the reasoning outcome, eventually starts the protocol-compliant com-

munication in order to obtain the AS (direct communication between the WSPA
and the WSAA, represented by dashed arrows in Figure 3).

Figure 4 refers to an execution run of the multiagent system composed by one
PMA, one WSAA, one WSPA and the DF. In this figure, the WSPA plays the role

7 http://www.mysql.com/
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of fruitSeller while the WSAA plays the role of fruitBuyer. The first twelve
messages correspond to the communication represented by the twelve solid arrows in
Figure 3, while the other messages are exchanged during the execution of the fruitMar-
ket AIP, aimed at allowing the fruitBuyer to obtain the fruit-selling AS from
the fruitSeller. The execution run shown here corresponds to the situation where
the conditions on the protocol execution put by the buyer are all met, and the seller’s
proposal is accepted.

Fig. 4. Execution run in JADE

8 Conclusions

WSs are defined as heterogeneous, distributed, loosely coupled software applications.
These characteristics make WSs a very flexible and scalable technology; standard lan-
guages for describing (WSDL), coordinating (WSCI, [3]), and defining business pro-
cesses based on WSs (WS-BPEL) exist, and are known by most designers and develop-
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ers of distributed web applications. This is one of the main reasons of the WSs’ success.
Despite to these advantages, WSs still remain something “static”. In fact, a WS can be
considered as a set of operations with predefined input and output types, unable to show
any reasoning, learning, or other sophisticated capability that might allow it to dynam-
ically adapt to the changing environment where it is situated.

On the other hand, agents are defined as autonomous, interactive, context-aware,
distributed entities, working in heterogeneous, dynamic, unpredictable and open envi-
ronments. Though agents are definitely more “dynamic” then WSs, their characterising
features remain at a very high level, and no final agreement on standard languages for
their specification and implementation has still been reached.

Many researchers today view agents either as a coordination framework for WSs
or as software entities that can use WSs. In our opinion, instead, there are many appli-
cations where agents should not just use WSs, but should extend and substitute them
at all. In fact, as pointed out by Dickinson and Wooldridge in [14], the key concep-
tual difference between agents and WSs is that only agents can be described in terms of
human-like mental attitudes, such as Beliefs, Desires and Intentions. In those web appli-
cations where mimicking the human way of thinking may make a difference, intelligent
agents built on top of the WS technology might be used instead of WSs.

This paper proposes our first step towards the usage of well established WS-related
technologies to make agent-related technologies and models more concrete and effec-
tive.

The exploitation of CL makes the implementation of an “intelligent” and “human-
like” behaviour easier than with other programming approaches. Although the reason-
ing capabilities of our WS-aware agents are currently pretty limited, the usage of CL
offers to us a great potential of improvement in the near future. In fact, we are actively
collaborating with other researchers involved in the Italian project MIUR PRIN 2005
“Specification and verification of agent interaction protocols” [16], aimed at proving the
applicability of declarative approaches for 1) defining suitable formalisms for specify-
ing and verifying interaction protocols, 2) developing techniques for automatic property
verification and reasoning about web services, and 3) translating modelling languages
into the formal languages developed in the project. We are exploring how our WS-aware
agents could be implemented in dynamic linear time and/or abductive logic program-
ming, in order to take advantage of the results already obtained by other partners in the
project, in the areas of on- and off-line verification of the compliance of an agent to a
protocol.
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Abstract. Service-oriented computing is gaining wider acceptance. For
Web services to become practical, an infrastructure needs to be sup-
ported that allows users and applications to discover, deploy, compose
and synthesize services automatically. This automation can take place
effectively only if formal semantic descriptions of Web services are avail-
able. In this paper we present an approach for automatic service discovery
and composition with both syntactic and semantic description of Web
services. In syntactic case, we use a repository of services described using
WSDL (Web Service Description Language). In the semantic case, the
services are described using USDL (Universal Service-Semantics Descrip-
tion Language), a language we have developed for formally describing the
semantics of Web services. In this paper we show how the challenging
task of building service discovery and composition engines can be easily
implemented and efficiently solved via (Constraint) Logic programming
techniques. We evaluate the algorithms on repositories of different sizes
and show the results.

1 Introduction

A Web service is a program accessible over the web that may effect some action
or change in the world (i.e., causes a side-effect). Examples of such side-effects
include a web-base being updated because of a plane reservation made over the
Internet, a device being controlled, etc. The next milestone in the Web’s evo-
lution is making services ubiquitously available. As automation increases, these
Web services will be accessed directly by the applications rather than by humans
[8]. In this context, a Web service can be regarded as a “programmatic interface”
that makes application to application communication possible. An infrastructure
that allows users to discover, deploy, synthesize and compose services automat-
ically is needed in order to make Web services more practical.

To make services ubiquitously available we need a semantics-based approach
such that applications can reason about a service’s capability to a level of detail
that permits their discovery, deployment, composition and synthesis [3]. Several
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efforts are underway to build such an infrastructure. These efforts include ap-
proaches based on the semantic web (such as USDL [1], OWL-S [4], WSML [5],
WSDL-S [6]) as well as those based on XML, such as Web Services Descrip-
tion Language (WSDL [7]). Approaches such as WSDL are purely syntactic in
nature, that is, it only addresses the syntactical aspects of a Web service [17].

Given a formal description of the context in which a service is needed, the
service(s) that will precisely fulfill that need can be automatically determined.
This task is called discovery. If the service is not found, the directory can be
searched for two or more services that can be composed to synthesize the required
service. This task is called composition. In this paper we present an approach
for discovery and composition of Web services. We show how these tasks can be
performed using both syntactic and semantic descriptions of Web services.

The rest of the paper is organized as follows. We present different approaches
to the description of Web services in section 2 with brief description of WSDL and
USDL. Section 3 describes the two major Web services tasks namely discovery
and composition with their formal definitions. In section 4, we present our multi-
step narrowing based solution for automatic service discovery and composition.
Then we show the high-level design of our system with brief descriptions of the
different components in section 5. Various efficiency and scalability issues are
discussed in section 6. Then we show performance results of our discovery and
composition algorithm in section 7. Finally we present our conclusions.

2 Description of Web Services

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface that is described in
a machine-processible format so that other systems can interact with the Web
service through its interface using messages. Currently WSDL (Web Services
Description Language) [7] is used to describe Web services, but it is only syn-
tactic in nature. The automation of Web service tasks (discovery, composition,
etc.) can take place effectively only if formal semantic descriptions of Web ser-
vices are available. For formally describing the semantics of Web services we
have developed a language called USDL (Universal Service-Semantics Descrip-
tion Language). The motivation and details of USDL can be found in [1]. This
section presents an overview of both the syntactic approach (WSDL) and the
semantic approach (USDL) for description of Web services.

2.1 WSDL: Web Services Description Language

WSDL is an XML-based language used for describing the interface of a Web ser-
vice. It describes services as a set of operations (grouped into ports) operating
on messages containing either document-oriented or procedure-oriented infor-
mation. WSDL descriptions are purely syntactic in nature, that is, they merely
specify the format of messages to be exchanged by invocable operations.
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Below is an example WSDL description of a FlightReservation service, similar
to a service in the SAP ABAP Workbench Interface Repository for flight reser-
vations [9], that takes in a CustomerName, FlightNumber, and DepartureDate
as inputs and produces a FlightReservation as the output.

<definitions ...>
<portType name="ReserveFlight_Service">
<operation name="ReserveFlight">
<input message="ReserveFlight_Request"/>
<output message="ReserveFlight_Response"/>

</operation>
</portType>
<message name="#ReserveFlight_Request">
<part name="#CustomerName" type="xsd:string">
<part name="#FlightNumber" type="xsd:string">
<part name="#DepartureDate" type="xsd:date">

</message>
<message name="ReserveFlight_Response">
<part name="FlightReservation" type="xsd:string"/>

</message>
</definitions>

In order to allow interoperability and machine-readability of web documents,
a common conceptual ground must be agreed upon. The first step towards this
common ground are standard languages such as WSDL and OWL [15]. However,
these do not go far enough, as for any given type of service there are numerous
distinct representations in WSDL and for high-level concepts (e.g., a ternary
predicate), there are numerous disparate representations in terms of OWL, rep-
resentations that are distinct in terms of OWL’s formal semantics, yet equal in
the actual concepts they model. This is known as the semantic aliasing prob-
lem: distinct syntactic representations with distinct formal semantics yet equal
conceptual semantics. For the semantics to equate things that are conceptually
equal, we need to standardize a sufficiently comprehensive set of basic concepts,
i.e., a universal ontology, along with a restricted set of connectives.

Industry specific ontologies along with OWL can also be used to formally de-
scribe Web services. This is the approach taken by the OWL-S language [4]. The
problem with this approach is that it requires standardization and undue fore-
sight. Standardization is a slow, bitter process, and industry specific ontologies
would require this process to be iterated for each specific industry. Furthermore,
reaching a industry specific standard ontology that is comprehensive and free
of semantic aliasing is even more difficult. Undue foresight is required because
many useful Web services will address innovative applications and industries that
don’t currently exist. Standardizing an ontology for travel and finances is easy,
as these industries are well established, but new innovative services in new up-
coming industries also need to be ascribed formal meaning. A universal ontology
will have no difficulty in describing such new services.
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2.2 USDL: Universal Service-Semantics Description Language

USDL is a language that service developers can use to specify formal semantics
of Web services [1]. We need an ontology that is somewhat coarse-grained yet
universal, and at a similar conceptual level to common real world concepts.
WordNet [10] is a sufficiently comprehensive ontology that meets these criteria.
USDL uses OWL WordNet ontology [11] thus providing a universal, complete,
and tractable framework, which lacks the semantic aliasing problem, to which
Web service messages and operations are mapped. As long as this mapping is
precise and sufficiently expressive, reasoning can be done within the realm of
OWL by using automated inference systems (such as, one based on description
logic), and thus automatically reaping the wealth of semantic information in the
OWL WordNet ontology that describes relations between ontological concepts,
like subsumption (hyponym-hypernym) and equivalence (synonym) relations.

USDL can be regarded as providing semantics to WSDL statements. Thus, if
WSDL can be regarded as a language for formally specifying the syntax of Web
services, USDL can be regarded as a language for formally specifying their se-
mantics. USDL allows sophisticated conceptual modeling and searching of avail-
able Web services, automated composition, and other forms of automated service
integration. For example, the WSDL syntax and USDL semantics of Web services
can be published in a directory which applications can access to automatically
discover services. USDL is perhaps the first attempt to capture the semantics of
Web services in a universal, yet decidable manner. Instead of documenting the
function of a service as comments in English, one can write USDL statements
that describe the function of that service. USDL relies on a universal ontology
(OWL WordNet Ontology) to specify the semantics of atomic services.

USDL describes a service in terms of portType and messages, similar to
WSDL. The formal class definitions and properties of USDL in OWL are avail-
able at [12]. The semantics of a service is given using the OWL WordNet on-
tology: portType (operations provided by the service) and messages (operation
parameters) are mapped to disjunctions of conjunctions of (possibly negated)
concepts in the OWL WordNet ontology. The semantics is given in terms of
how a service affects the external world. USDL assumes that each side-effect is
one of following four operations: create, update, delete, or find. A generic affects
side-effect is used when none of the four apply. An application that wishes to use
a service automatically should be able to reason with WordNet atoms using the
OWL WordNet ontology. The syntactic terms describing portType and messages
are mapped to disjunctions of conjunctions of (possibly negated) OWL WordNet
ontological terms. A service is then formally defined as a function, labeled by
the side-effect. Using USDL, conditions/constraints on the service can also be
described. Below is the USDL description of the FlightReservation service.

<definitions>
<portType rdf:about="#Flight_Reservation">
<hasOperation rdf:resource="#ReserveFlight">

</portType>
<operation rdf:about="#ReserveFlight">
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<hasInput rdf:resource="#ReserveFlight_Request"/>
<hasOutput rdf:resource="#ReserveFlight_Response"/>
<creates rdf:resource="#FlightReservation" />

</operation>
<Message rdf:about="#ReserveFlight_Request">
<hasPart rdf:resource="#CustomerName"/>
<hasPart rdf:resource="#FlightNumber"/>
<hasPart rdf:resource="#DepartureDate"/>

</Message>
<QualifiedConcept rdf:about="#CustomerName">
<isA rdf:resource="#Name"/>
<ofKind rdf:resource="#Customer"/>

</QualifiedConcept>
<BasicConcept rdf:about="#Name">
<isA rdf:resource="&wn;name"/>

</BasicConcept>
<BasicConcept rdf:about="#Customer">
<isA rdf:resource="&wn;customer"/>

</BasicConcept>
<!-- Similarly FlightNumber, DepartureDate are defined -->

</definitions>

3 Automated Web service Discovery and Composition

Discovery and Composition are two of the major tasks related to Web services.
In this section we formally describe these tasks as The Discovery Problem and
The Composition Problem. Both these problems have a syntactic and a semantic
version which are also described below.

3.1 The Discovery Problem

Given a repository of Web services, and a query (i.e., the requirements of the
requested service; we refer to it as the query service in the rest of the text),
automatically finding a service from the repository that matches these require-
ments is the Web service Discovery problem. This problem comes in two flavors:
syntactic and semantic, depending on the type of service descriptions provided
in the repository. All those services that produce at least the requested output
parameters and use only from the provided input parameters can be valid so-
lutions. Some of the solutions may be a little over-qualified, but they are still
considered as long as they fulfill the input and output parameter requirements.

Definition: Let R be the set of services in a Web services repository. For sim-
plicity, a service is represented as a pair of its input and output sets. Then let
Q = (I ′,O′) be a query service. The Discovery problem can be defined as auto-
matically finding a set S of services such that S = {s | s = (I,O), s ∈ R, I " I ′,
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O # O′}. The meaning of the " relation depends on whether it is syntactic or
semantic discovery. For syntactic discovery the " relation is the subset relation
and for semantic discovery it is the subsumption (subsumes) relation. Figure 1
explains the discovery problem pictorially.

Fig. 1. Substitutable Service

Syntactic Discovery: WSDL provides syntactic description of Web services
which can be provided in a repository. Given a query with requirements of the
requested service, the discovery problem involves finding a specific service that
can fulfill the given input and output criteria in the query based on a syntactical
equivalence of the input and output names.

Semantic Discovery: We assume that a directory of services has already been
compiled, and that this directory includes a USDL description document for each
service. Inclusion of the USDL description, makes service directly “semantically”
searchable. However, we still need a query language to search this directory, i.e.,
we need a language to frame the requirements on the service that an application
developer is seeking. USDL itself can be used as such a query language. A USDL
description of the desired service can be written, a query processor can then
search the service directory for a “matching” service.

3.2 The Composition Problem

Given a repository of service descriptions, and a query with the requirements of
the requested service, in case a matching service is not found, the composition
problem involves automatically finding a chain of services that can be put to-
gether in correct order of execution to obtain the desired service. This problem
also can be either syntactic or semantic depending on the kind of service descrip-
tions provided in the repository. Web service discovery problem can be treated
as a special case of the Web service composition problem where the length of
the chain of services is one.

Definition: Let R be the set of services in a Web services repository. For sim-
plicity, a service is represented as a pair of its input and output sets. Then let
Q = (I ′,O′) be a query service. The Composition problem can be defined as
automatically finding a sequence S of services such that S = ( S1, S2, ..., Sn

) where for all i, Si ∈ R, Si = (Ii, Oi) and I ′ # I1, O1 # I2, ..., On # O′.
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The meaning of the " relation depends on whether it is syntactic or semantic
composition. For syntactic composition the " relation is the subset relation and
for semantic composition it is the subsumption (subsumes) relation. Figure 2
explains the composition problem pictorially.

Fig. 2. Composite Service

Syntactic Composition: WSDL descriptions are provided in the repository.
The Composition problem involves deriving a possible sequence of services where
only the provided input parameters are used for the services and at least the
required output parameter is provided as an output by the chained services. The
goal is to derive a single solution, where the aim is to keep the list of involved
services minimal. In the sequence of services, the outputs of a service are fed in
as inputs of the next subsequent service.

Semantic Composition: USDL descriptions are provided in the repository.
For service composition, the first step is finding the set of composable services.
USDL itself can be used to specify the requirements of the composed service
that an application developer is seeking. Using the discovery engine, individual
services that make up the composed service can be selected. Part substitution
technique [2] can be used to find the different parts of a whole task and the
selected services can be composed into one by applying the correct sequence of
their execution. The correct sequence of execution can be determined by the pre-
conditions and post-conditions of the individual services. That is, if a subservice
S1 is composed with subservice S2, then the post-conditions of S1 must imply
the pre-conditions of S2.

4 A Multi-step Narrowing based Solution

With the formal definition of the Discovery and Composition problem, presented
in the previous section, one can see that there can be many approaches to solving
the problem. Our approach is based on a multi-step narrowing of the list of
candidate services using various constraints at each step. In this section we
discuss our Discovery and Composition algorithms in detail.
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4.1 Discovery Algorithm:

The Discovery routine takes in the query parameters and produces a list of
matching services. Our algorithm first uses the query output parameters to nar-
row down the list of services in the repository. It gets all those services that
produce at least the query outputs. In case of the semantic approach, the out-
put parameters provided by a service must be equivalent to or be subsumed
by the required output in the query. From the list of services obtained, we find
the set of all inputs parameters of all services in the list, say I. Then a set of
wrong/bad inputs, say WI is obtained by computing the set difference of I and
the query inputs QI. Then the list of services is further narrowed down by re-
moving any service that has even one of the inputs from the set WI. After all
such services are removed, the remaining list is our final list of services called
Result. Figure 3 shows a pictorial representation of our discovery engine.

Fig. 3. Discovery Engine

Algorithm: Discovery
Input: QI - QueryInputs, QO - QueryOutputs
Output: Result - ListOfServices
1. L ← NarrowServiceList(QO);
2. I ← GetAllInputParameters(L);
3. WI ← GetWrongInputs(I, QI); i.e., WI = I - QI
4. Result ← FilterServicesWithWrongInputs(WI, L);
5. Return Result;

4.2 Composition Algorithm:

The composition routine also starts with the query output parameters. It first
finds a list of all those services which produce outputs such that they are equiv-
alent to or are subsumed by the required output in the query. From the list
obtained, for each service the algorithm fetches their input parameters, say I ′

and tries to find all those services from the repository that produce I ′ as out-
puts. The goal is to derive a single solution, which is a list of services that can
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be composed together to produce the requested service in the query. The aim
is also to keep the list of involved services minimal. Figure 4 shows a pictorial
representation of our composition engine.

Fig. 4. Composition Engine

Algorithm: Composition
Input: QI - QueryInputs, QO - QueryOutputs
Output: Result - ListOfServices
1. L ← NarrowServiceList(QO);
2. For each service S in L
3. Add S to the Result List;
4. I ← GetAllInputParameters(S);
5. L′ ← NarrowServiceList(I); i.e. find services which produce I as output
6. Repeat the loop lines 2-5 on the new List L′;
7. End For
8. Return Result;

5 Implementation

Our discovery and composition engine is implemented using Prolog [14] with
Constraint Logic Programming over finite domain [13], referred to as CLP(FD)
hereafter. The high-level design of the Discovery and Composition engines is
shown in Figure 5. The software system is made up of the following components.

5.1 Triple Generator

The triple generator module converts each service description into a triple. In
syntactic approach WSDL descriptions are converted to triples like:
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(null, affects(null, I, O), null).
WSDL being syntactic in nature, does not provide any information about Pre/Post-
Conditions and side-effects. So we use the generic affects for all services. In the
semantic approach the USDL descriptions are converted to triples like:

(Pre-Conditions, affect-type(affected-object, I, O), Post-Conditions).
The function symbol affect-type is the side-effect of the service and affected ob-
ject is the object that changed due to the side-effect. I is the list of inputs and
O is the list of outputs. Pre-Conditions are the conditions on the input parame-
ters and Post-Conditions are the conditions on the output parameters. Services
are converted to triples so that they can be treated as terms in first-order logic
and specialized unification algorithms can be applied to obtain exact, generic,
specific, part and whole substitutions [2]. In case conditions on a service are
not provided, the Pre-Conditions and Post-Conditions in the triple will be null.
Similarly if the affect-type is not available, this module assigns a generic affect
to the service.

Fig. 5. High-level Design

5.2 Query Reader

This module reads the query file and passes it on to the Triple Generator. The
query file can be any pre-decided format. For example, the following XML snip-
pet shows an example of a query file we use for testing our system.
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<DiscoveryRoutine name="discovery1">
<Provided>
StreetAddress,CityAddress,StateAddress,ZipAddress

</Provided>
<Resultant>
hotelName,hotelID

</Resultant>
</DiscoveryRoutine>

In the above snippet the Provided tag holds the list of input requirements
and the Resultant tag holds the list of output requirements.

5.3 Semantic Relations Generator

For the semantic approach, matching is done based on the semantic relations
between the parameters, conditions/constraints if provided and side-effects if
provided. We obtain the semantic relations from the OWL WordNet ontology.
OWL WordNet ontology provides a number of useful semantic relations like syn-
onyms, antonyms, hyponyms, hypernyms, meronyms, holonyms and many more.
USDL descriptions point to OWL WordNet for the meanings of concepts. A the-
ory of service substitution is described in detail in [2] which uses the semantic
relations between basic concepts of WordNet, to derive the semantic relations
between services. This module extracts all the semantic relations and creates a
list of Prolog facts.

5.4 Discovery Query Processor

This module compares the discovery query with all the services in the repository.
The processor works as follows:
1. On the output parts of a service, the processor first looks for an exact substi-

tutable. If it does not find one, then it looks for a parameter with hyponym
relation [2], i.e., a specific substitutable.

2. On the input parts of a service, the processor first looks for an exact substi-
tutable. If it does not find one, then it looks for a parameter with hypernym
relation [2], i.e., a generic substitutable.

The discovery engine, written using Prolog with CLP(FD) library, uses a repos-
itory of facts, which contains a list of all the services, their input and output
parameters and the semantic relations between the parameters. The following is
the code snippet of our discovery engine:

discovery(sol(Qname,A)) :-
dQuery(Qname,I,O), encodeParam(O,OL),
/* Narrow candidate services(S) using output list(OL)*/
narrowO(OL,S), fd_set(S,FDs), fdset_to_list(FDs,SL),
/* Expand InputList(I) using semantic relations */
getExtInpList(I, ExtInpList), encodeParam(ExtInpList,IL),
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/* Narrow candidate services(SL) using input list (IL)*/
narrowI(IL,SL,SA), decodeS(SA,A).

The query is converted into a Prolog query that looks as follows:
discovery(sol(queryService, ListOfSolutionServices).

The engine will try to find a list of SolutionServices that match the queryService.

5.5 Composition Query Processor

For service composition, the first step is finding the set of composable services.
If a subservice S1 is composed with subservice S2, then the output parts of S1

must be the input parts of S2. Thus the processor has to find a set of services
such that the outputs of the first service are inputs to the next service and so
on. These services are then stitched together to produce the desired service.

Similar to the discovery engine, composition engine is also written using
Prolog with CLP(FD) library. It uses a repository of facts, which contains list of
services, their input and output parameters and the semantic relations between
the parameters. The following is the code snippet of our composition engine:

composition(Qname, A) :-
dQuery(Qname,QI,QO), encodeParam(QO,OL),
narrowO(OL,SL), fd_set(SL,Sset), fdset_member(S_Index,Sset),
getExtInpList(QI,InpList), encodeParam(InpList,IL),
list_to_fdset(IL,QIset), serv(S_Index,SI,_),
list_to_fdset(SI,SIset), fdset_subtract(SIset,QIset,Iset),
comp(QIset,Iset,[S_Index],SA), decodeS(SA,A).

comp(_, Iset, A, A) :- empty_fdset(Iset),!.
comp(QIset, Iset, A, SA) :-

fdset_to_list(Iset,OL), narrowO(OL,SL), fd_set(SL,Sset),
fdset_member(SO_Index,Sset), serv(SO_Index,SI,_),
list_to_fdset(SI,SIset), fdset_subtract(SIset,QIset,DIset),
comp(QIset,DIset,[SO_Index|A],SA).

The query is converted into a Prolog query that looks as follows:
composition(queryService, ListOfServices).

The engine will try to find a ListOfServices that can be composed into the
requested queryService. Our composition engine uses the built-in, higher order
predicate ’bagof’ to return all possible ListOfServices that can be composed to
get the requested queryService.

5.6 Output Generator

After the Discovery/Composition Query processor finds a matching service, or
the list of atomic services for a composed service, the results are sent to the
output generator in the form of triples. This module generates the output files
in any desired XML format.
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6 Efficiency and Scalability Issues

In this section we discuss the salient features of our system with respect to
the efficiency and scalability issues related to the Web service discovery and
composition problem. It is because of these features, we decided on the Multi-
step narrowing based approach to solving these problems and implemented it
using Constraint Logic Programming.
Pre-processing: Our system initially pre-processes the repository and converts
all service descriptions into Prolog terms. In case of semantic approach, the se-
mantic relations are also processed and loaded as Prolog terms in memory. Once
the pre-processing is done, then discovery or composition queries are run against
all these Prolog terms and hence we obtain results quickly and efficiently. The
built-in indexing scheme and constraints in CLP(FD) facilitate the fast execu-
tion of queries. During the pre-processing phase, we use the term representations
of services to set up constraints on services and the individual input and output
parameters. This further helped us in getting optimized results.
Execution Efficiency: The use of CLP(FD) helped significantly in rapidly
obtaining answers to the discovery and composition queries. We tabulated pro-
cessing times for different size repositories and the results are shown in Section
7. As one can see, after pre-processing the repository, our system is quite efficient
in processing the query. The query execution time is insignificant.
Programming Efficiency: The use of Constraint Logic Programming helped
us in coming up with a simple and elegant code. We used a number of built-in
features such as indexing, set operations, and constraints and hence did not have
to spend time coding these ourselves. This made our approach efficient in terms
of programming time as well. Not only the whole system is about 200 lines of
code, but we also managed to develop it in less than 2 weeks.
Scalability: Our system allows for incremental updates on the repository, i.e.,
once the pre-processing of a repository is done, adding a new service or updat-
ing an existing one will not need re-execution of the entire pre-processing phase.
Instead we can easily update the existing list of CLP(FD) terms loaded in the
memory and run discovery and composition queries. Our estimate is that this
update time will be negligible, perhaps a few milliseconds. With real-world ser-
vices, it is likely that new services will get added often or updates might be
made on existing services. In such a case, avoiding repeated pre-processing of
the entire repository will definitely be needed and incremental update will be
of great practical use. The efficiency of the incremental update operation makes
our system highly scalable.
Use of external Database: In case the repository grow extremely large in
size, then saving off results from the pre-processing phase into some external
database might be useful. This is part of our future work. With extremely large
repositories, holding all the results of pre-processing in the main memory may
not be feasible. In such a case we can query a database where all the information
is stored. Applying incremental updates to the database will be easily possible
thus avoiding recomputation of the pre-processed data.
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Searching for Optimal Solution: If there are any properties with respect
to which the solutions can be ranked, then setting up global constraints to get
the optimal solution is relatively easy with the constraint based approach. For
example, if each service has an associated cost, then the discovery and the com-
position problem can be redefined to find the solutions with the minimal cost.
Our system can be easily extended to take these global constraints into account.

7 Performance

We evaluated our approach on different size repositories and tabulated the Pre-
processing time and the Query Execution time. We noticed that there was a
significant difference in the pre-processing time between the first and the sub-
sequent runs (after deleting all the previous pre-processed data) on the same
repository. What we found is that the repository was cached after the first run
and that explained the difference in the pre-processing time for the subsequent
runs. We used repositories from the WS-Challenge web site [16].

Table 1 shows performance results for our Discovery Algorithm and table
2 shows results for Composition. The times shown in the tables are the wall
clock times. The actual CPU time to pre-process the repository and execute
the query should be less than or equal to the wall clock time. The results are
plotted in figure 6 and 7 respectively. The graphs exhibit behavior consistent with
our expectations: for a fixed repository size, the preprocessing time increases
with the increase in number of input/output parameters. Similarly, for fixed
input/output sizes, the preprocessing time is directly proportional to the size
of the service repository. However, what is surprising is the efficiency of service
query processing, which is negligible (just 1 to 3 milliseconds) even for complex
queries with large service repositories.

Repository Number Non-Cached Cached Query
Size (number of I/O Pre-processing Pre-processing Execution
of services) parameters Time (in secs) Time (in secs) Time (in msecs)

2000 4-8 36.5 7.3 1
2000 16-20 45.8 13.4 1
2000 32-36 57.8 23.3 2
2500 4-8 47.7 8.7 1
2500 16-20 58.7 16.6 1
2500 32-36 71.6 29.2 2
3000 4-8 56.8 12.1 1
3000 16-20 77.1 19.4 1
3000 32-36 88.2 33.7 3

Table 1. Performance of our Discovery Algorithm
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Fig. 6. Performance of Discovery Algorithm

Repository Number Non-Cached Cached Query
Size (number of I/O Pre-processing Pre-processing Execution
of services) parameters Time (in secs) Time (in secs) Time (in msecs)

2000 4-8 36.1 7.2 1
2000 16-20 47.1 15.1 1
2000 32-36 60.2 24.7 1
3000 4-8 58.4 11.0 1
3000 16-20 60.1 17.8 1
3000 32-36 102.0 42.1 1
4000 4-8 71.2 13.4 1
4000 16-20 87.9 25.3 1
4000 32-36 129.2 43.1 1

Table 2. Performance of our Composition Algorithm

Fig. 7. Performance of Composition Algorithm
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8 Conclusion

To catalogue, search and compose Web services in a semi-automatic to fully-
automatic manner we need infrastructure to publish Web services, document
them and query repositories for matching services. Our syntactic approach uses
WSDL descriptions and applies the discovery and composition routines on first-
order logic terms obtained from these descriptions. Our semantic approach uses
USDL to formally document the semantics of Web services and our discovery and
composition engines find substitutable and composite services that best match
the desired service.

Our solution produces accurate and quick results with both syntactic and
semantic description of Web services. We are able to apply many optimization
techniques to our system so that it works efficiently even on large repositories.
Use of Constraint Logic Programming helped greatly in obtaining an efficient
implementation of this system.
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Abstract. We present a vision of smart, goal-oriented web services that
reason about other services’ policies and evaluate the possibility of fu-
ture interactions. To achieve our vision, we propose a proof theoretic
approach. We assume web services whose interface behaviour is speci-
fied in terms of reactive rules. Such rules can be made public, in order
for other web services to answer the following question: “is it possible
to inter-operate with a given web service and achieve a given goal?” In
this article we focus on the underlying reasoning process, and we pro-
pose a declarative and operational abductive logic programming-based
framework, called WAVe.

1 Introduction

Service Oriented Computing (SOC) is rapidly emerging as a new programming
paradigm, propelled by the wide availability of network infrastructures, such as
the Internet, and by the success of its predecessor, Object Oriented programming
paradigm. Web service-based technologies are an implementation of SOC, aimed
at overcoming the intrinsic difficulties of integrating different platforms, oper-
ating systems, languages, etc., into new applications. It is then in the spirit of
SOC to take off-the-shelf solutions, like web services, and compose them into new
applications. Service composition is very attractive for its support to rapid pro-
totyping and possibility to create complex applications from simple elements.
It is the philosophy followed, e.g., by BPEL [1]: composing new applications
through existing web services.

On the upside, the recent popularity of these new technologies developed into
a growing presence of web services, made available through the Internet, and we
can foresee a steady increase of such services also for the near future. On the
downside, the lifetime of software developed with the classical methodologies of
composition of existing services at design-time gets shorter and shorter. It quickly
! We thank the anonymous referees for their valuable feedback and pointers. This

work has been partially supported by the MIUR PRIN 2005 project Specification
and verification of agent interaction protocols.
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becomes a suboptimal choice, blind to the exploitation of new opportunities. In
highly competitive markets, this can be a severe drawback.

If we adopt the SOC programming paradigm, how to exploit the potential of
a growing base of web services becomes one of our strategic issue. In a domain
in which being more competitive means knowing more and using all available
information at best, how shall we cope with the proliferation of new services?
How shall we decide to use a web service rather than another one? when new
ones becomes available, shall we go for them? are there new opportunities that
were not there before? It is a necessary, never-ending, heavy and thus potentially
very costly decision process, but it could also be very rewarding, if we had the
proper tools.

A partial answer to these questions is given by service discovery. As new
services become available, they are published, for instance by registration on
some yellow-pages server; existing services can then become aware of the new
ones and exploit them. This solves part of the problem: as through discovery
we only know that there are some some services, which possibly follow some
standards, but understanding whether interacting with them will be profitable
or detrimental, is far from being a trivial question. For one, it is not possible
to think to try and invoke all newly discovered services and analyze the results.
Beside being highly error-prone, such a method would require expensive rollbacks
that are often unaffordable at run-time. Thus, alternative approaches have to be
developed. This is what we intend to address in this article.

The focus of this article is the following problem: how to dynamically under-
stand if two web services can inter-operate, without them having a-priori knowl-
edge of each other’s capabilities, but by reasoning about policies exchanged at
run-time.

We present a vision of smart, goal-oriented web services that reason about
other services’ specifications, with the aim to separate out those that can lead
to a fruitful interaction, without resorting to trial and error. We envisage a two-
phase discovery activity on the side of web services. First, web services collect
information about other web services, and try and understand by reasoning
which ones can lead to a fruitful interaction. This activity is carried out off-line,
beforehand. Then they use the available information to interact with each other.
It is the same philosophy of search engines: before, collect information through
web spiders, then use it when requested by the user.

In this article we focus on the reasoning involved in the off-line phase, as-
suming that a new web service has been found, and we must decide about the
possibility to interact with it. We assume that each web service publishes, along-
side with its WSDL, its interface behaviour specifications. By reasoning on the
information available about other web services’ interface behaviour, each web
service can verify which goals can be reached by interaction.

To achieve our vision, we propose a proof theoretic approach, based on com-
putational logic – in fact, on abductive logic programming. In particular, we for-
malise policies for web services in a declarative language which is a modification
of the SCIFF language originally defined in the context of the UE IST-2001-
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32530 project, to specify and verify social-level agent interaction. In this new
language, policies can be defined by way of social integrity constraints (ICs): a
sort of reactive rules used to generate and reason about expectations about pos-
sible evolutions of a given interaction setting. Based on the SCIFF framework
we propose a new declarative semantics and a new proof-procedure that com-
bines forward, reactive reasoning with backward, goal-oriented reasoning, and is
tailored to the discovery activity’s off-line phase’s verification problem. We have
called this new framework WAVe(Web-service Abductive Verification).

We start by showing the abstract architecture of WAVe. In Sec. 3 we intro-
duce a running on-line shopping scenario. In Sect. 4, we briefly introduce the
language used in the framework, and in Sect. 5 we show how the scenario can
be modeled in WAVe in terms of ICs. Sect. 6 presents the declarative and op-
erational semantics of WAVe, and Sect. 7 proposes the application of WAVe to
the verification problem in the reference scenario. A brief discussion follows.

2 The Architecture of WAVe

Fig. 1 depicts our general reference architecture. Arrows indicate the flow of poli-
cies between web services. The layered architecture of a web service, e.g. ws, has
WAVe at the top of the stack, performing reasoning based on its own knowledge
and on the policies obtained from other web services, e.g. ws′. The functionali-
ties of the various elements of the knowledge will be explained in Sect. 4. For the
moment, we say that policies are identified with the ICws component. The archi-
tecture is symmetric. We represented with thick borders the modules involved
in the operations carried out by ws, and its output. In order for ws′ to pass
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ICws′ on to ws (and vice versa), a Rule Interchange Format (RIF) is adopted.
One possibility for such a RIF could be RuleML [2]. Finally, as a result of the
reasoning activity, ws produces an answer C to the question: “is it possible to
inter-operate with ws′ and achieve goal Gws?”

Fig. 1 does not show control elements, but only information flows. We assume
that suitable interaction protocols are defined to control the flow of information
(e.g. policies) between the web services. In particular, in a more comprehensive
setting, ws and ws′ could negotiate the exchange of policies in an incremental
way, or could use the result C of this reasoning activity to perform the second,
on-line phase of service interaction we mentioned in the introduction. All this is
outside of this picture, and of this article’s scope.

3 The alice & eShop Scenario

This scenario is inspired to the one described by the Working Group on Rule
Interchange Format [3]. A similar scenario is also in [4]. We consider two entities,
which we call alice and eShop.3 eShop is a web service which sells devices. alice
is another web service which instead needs to obtain a device, and which is
considering buying it from eShop. alice and eShop describe their behaviour
concerning sales/payment/... of items through policies, specified as rules, which
they publish using some RIF.

Before alice buys any item from eShop, alice checks whether her policies
and eShop’s policies are compatible, i.e., if they allow a successful transaction
regarding the sales. During this process, it turns out that eShop accepts credit
card payments, besides other payment methods, and that alice can only pay
by credit card; in this case, in order to proceed with the payment, she requires
evidence of the shop’s membership to some trusted “Better Business Bureau”
(BBB) association. We assume that the shop is able and ready to provide such
a piece of evidence. We can thus define eShop’s and alice’s policies as follows:

(shop1) if a customer wishes to buy an item, then (s)he should pay it either by
credit card, or by cash, or by cheque;

(shop2) if a customer wishes to buy an item, and (s)he has paid it either by
credit card, or by cash, or by cheque, then eShop will deliver the item;

(shop3) if a customer wishes to receive a certificate about eShop’s membership
to the BBB, then the shop will send it;

(alice1) if a shop requires that alice pays by credit card, alice expects that the
shop provides evidence of its membership to the BBB;

(alice2) if a shop requires that alice pays by credit card, and the shop has
provided evidence of its membership to the BBB, then alice will pay by
credit card;

In this example, we can identify two kinds of policy rules. shop1 and alice1
express requirements, i.e., what is needed in order to proceed with accomplishing
3 In this simplified scenario, we identify alice and eShop with their representative

software counterparts which will carry out transactions on their behalf.
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some request. shop2, shop3 and alice2 represent the effect of requests, i.e., they
tell what has to be expected if some conditions hold and some request is received.

Using this scenario, we want to demonstrate the possibility of reaching an
agreement through rules exchange. Besides, we want to show how policies sup-
port backward and forward reasoning, in the following way. Backward, pro-active
reasoning starts from goals to produce (expectations about) actions or events
that should be generated in order to achieve the goals. Forward, reactive reason-
ing starts from events and is used to generate (expectations about) actions that
represent reactions to such events.

In this scenario, the goal of alice interacting with eShop is to obtain an
item from eShop. Actions are all the messages exchanged between the two web
services.

The steps that we envisage are as follows:

1. alice wants to obtain a device. She knows that she can have it if eShop
delivers it to her. Thus, she sends eShop a request, by which she wants to
know eShop’s policies regarding the delivery of that device;

2. eShop considers alice’s request, and composes a set of rules related to alice’s
request (its policies), possibly deriving/filtering them from a larger set. In
this example, the set contains shop1, shop2, and shop3. Once such a set is
put together, eShop communicates it to alice;

3. alice reasons on (1) her goal, (2) her own policies (alice1 and alice2), and (3)
eShop’s policies. Two are the possible outcomes:
– either alice infers that she and eShop can have a successful transaction

that satisfies each other’s policies and that achieves her goal,
– or alice infers that there is no such a possibility.

4. possibly, at a later point, alice and eShop may engage in a transaction which
(hopefully) makes alice achieve her goal.

Points (1) through (3) represent the off-line phase of service discovery/inter-
action, whereas point (4) represent the actual transaction occurring between
alice and eShop. The reasoning involved in (3) is the subject of this article.

4 The WAVe Framework

In WAVe, the observable behaviour of the web services is represented by events.
Since we focus on (explicit) interaction between web services, events always
represent exchanged messages.

WAVe considers two types of events: those that one can control and those
that one cannot. Typically, from the standpoint of a web service ws, an event
such as a message generated by ws himself will fall into the first category, a
message that ws is expecting from another fellow web service ws′ will fall instead
into the second one. We use two different functors to keep these two categories
of messages distinct from each other. Atoms denoted by functor H will stand
for events that a web service expects to be producing itself; atoms denoted by
functor E will stand for events that a web service is expecting, and over which
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it does not have any control. Since WAVe is about reasoning on possible future
courses of events, both kinds of events represent hypotheses that a web service
can make on possibly happening events. The notation is: H(ws,ws′,M, T ), for
messages (M) that a web service ws is expecting to send to ws′ at time T , and
E(ws′, ws,M, T ) for messages (M) expected by ws from ws′ for time T .

Web service specifications in WAVe are relations among expected events, ex-
pressed by an Abductive Logic Program (ALP). In general, an ALP [5] is a triplet
〈P,A, IC〉, where P is a logic program, A is a set of predicates named abducibles,
and IC is a set of integrity constraints. Roughly speaking, the role of P is to
define predicates, the role of A is to fill-in the parts of P which are unknown,
and the role of IC is to constrain the ways elements of A are hypothesised, or
“abduced”. Reasoning in abductive logic programming is usually goal-directed
(being G a goal), and it accounts to finding a set of abduced hypotheses ∆ built
from predicates in A such that P ∪ ∆ |= G and P ∪ ∆ |= IC. In the past, a
number of proof-procedures have been proposed to compute ∆ (see Kakas and
Mancarella [6], Fung and Kowalski [7], Denecker and De Schreye [8], etc.).

Definition 1 (Web service interface behaviour specification). Given a
web service ws, its web service interface behaviour specification Pws is an ALP,
represented by the triplet

Pws ≡ 〈KBws, Ews, ICws〉

where:
– KBws is ws’s Knowledge Base,
– Ews is ws’s set of abducible predicates, and
– ICws is ws’s set of Integrity Constraints.

KBws is a set of clauses which declaratively specifies pieces of knowledge of
the web service. Note that the body of KBws’s clauses may contain E expecta-
tions about the behaviour of the web services, as defined above. KBws’s syntax
is summarised in Eq. (1).

KBws ::= [ Clause ]!
Clause ::= Atom ← Cond

Cond ::= ExtLiteral [ ∧ ExtLiteral ]!
ExtLiteral ::= Atom | true | Expect | Constr

Expect ::= E(Atom,Atom,Atom, Atom)

(1)

Ews includes E expectations, H events, and predicates not defined in KBws.

ICws ::= [ IC ]!
IC ::= Body → Head

Body ::= (Event | Expect) [∧BodyLit]!
BodyLit ::= Event | Expect | Atom | Constr

Head ::= Disjunct [ ∨Disjunct ]! | false
Disjunct ::= (Expect | Event | Constr)[ ∧ (Expect | Event | Constr)]!

Expect ::= E(Atom,Atom,Atom, Atom)
Event ::= H(Atom,Atom,Atom, Atom)

(2)
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Integrity Constraints (ICs) are forward rules, of the form Body → Head (Eq.
(2)). The Body of ICs is a conjunction of literals and expected events; the Head
instead is a disjunction of conjunctions of expectations, events and literals, or
false. The syntax of ICws is a modification of that defined in [9]. In particular,
unlike SCIFF, WAVe treats H events as abducible predicates, and as such it
allows them to occur in the Head of integrity constraints; however, this initial
version of WAVe does not yet accommodate negative expectations nor negation
(¬). We intend to consider these two features in future extensions of WAVe.

Intuitively, the operational behaviour of integrity constraints is similar to
forward rules: whenever the body becomes true, the head is also made true.

5 Modeling in WAVe

In this section, we demonstrate web service policy modelling in WAVe by showing
the specification of alice and eShop. The first three rules represent eShop’s
policies.

E(eShop, alice, deliver(Item), Ts)

→E(alice, eShop, pay(Item, cc), Tcc) ∧ Tcc < Ts

∨E(alice, eShop, pay(Item, cash), Tca) ∧ Tca < Ts

∨E(alice, eShop, pay(Item, cheque), Tch) ∧ Tch < Ts

(shop1)

IC shop1 says that, if alice expects eShop to deliver an Item, then eShop
expects alice to pay by credit card, cash, or cheque, and that payment must be
made before delivery.4 In that case, the abducibles in the head are expectations,
because they represent actions that should be performed by alice: from eShop’s
viewpoint, they can only be expected.

E(eShop, alice, deliver(Item), Ts)

∧H(alice, eShop, pay(Item, How), Tp) ∧ Tp < Ts

∧How::[cc, cash, cheque])

→H(eShop, alice, deliver(Item), Ts).

(shop2)

IC shop2 says that, if alice expects eShop to deliver the Item, and alice has paid
for it, then eShop will actually deliver it to alice. In that case, the abducible
in the head is an event, because it represents an action that eShop should per-
form, and therefore it assumes that it will indeed happen (since it is its own
responsibility).

E(eShop, alice, give guarantee, Tg)

→H(eShop, alice, give guarantee, Tg).
(shop3)

IC shop3 says that if alice expects to receive a guarantee, then eShop will send
it. The following two rules represent alice’s policies.

E(alice, eShop, pay(Item, cc), Tp)

→E(eShop, alice, give guarantee, Tg) ∧ Tg < Tp.
(alice1)

4 The alternative in the head could alternatively be expressed via a variable with do-
main: E(alice, eShop, pay(Item, How), T )∧How::[cc, cash, cheque]∧T < Ts, where
“::” represents a domain constraint.
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IC alice1 says that, if eShop expects alice to pay for an Item by credit card,
then alice expects that eShop will have provided a guarantee by the time she
pays.

E(alice, eShop, pay(Item, cc), Tp)

∧H(eShop, alice, give guarantee, Tg) ∧ Tg < Tp

→H(alice, eShop, pay(Item, cc), Tp).

(alice2)

IC alice2 says that, if eShop expects alice to pay for an Item by credit card,
and eShop has provided alice with a guarantee, then alice will pay the Item by
credit card. Finally, the following clause is part of KBalice

have(alice, Item, T )←
E(eShop, alice, deliver(Item), Td) ∧ Td ≤ T.

(alice3)

Clause alice3 says that, in order for alice to have an Item at time T , then alice
expects eShop to deliver the Item by time T .

6 Declarative and Operational Semantics

We have assumed that all web services have their own interface behaviour speci-
fied in the language of ICs. This behaviour could be thought of as an extension of
WSDL, that could be used by other fellow web services to reason about the spec-
ifications, or to check if inter-operability is possible. We are currently studying
an XML-like extension of RuleML [2] to represent ICs.

Another approach would be to obtain web services’ interface behaviour through
an appropriate request protocol, in which ICs are (interactively) exchanged so
that each web service may disclose ad hoc, customised information on demand.

In this work, we make the simplifying assumption that all information re-
garding the interface behaviour is provided at once. The web service will then
try and prove that a fruitful interaction is possible based on what it receives.

The web service initiating the interaction has a goal G, which is a given
state of affairs. A typical goal could be to access a resource, to retrieve some
information, or to obtain a service from another web service. G will often be an
expectation (of obtaining a service, accessing a resource, or gathering informa-
tion), but in general it can be any conjunction of expectations, CLP constraints,
and any other literals, in the syntax of ICws Head Disjuncts (Eq. 2).

The verification of a web service ws about the possibility to achieve a goal
G by interacting with another fellow web service ws′ makes use of KBws, ICws,
G, and of the information obtained about ws′’s policies, ICws′ (see Fig. 1). The
idea is to obtain, through abductive reasoning, a set of expectations about a
possible course of events that together with KBws entails ICws ∪ ICws′ and G.

Note that we do not assume that ws knows KBws′ , as the KB is not part
of the interface. However, in general integrity constraints can involve predicates
defined in the knowledge base. For example, they can contain predicates defining
parameters, deadlines, coefficients, etc., or other knowledge only available to ws′.
If the interface behaviour provided by ws′ involves predicates defined in KBws′ ,
unknown to ws, we have two alternatives:
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– either ws′ provides ws with the necessary information, e.g. with (part of)
its KBws′ ;

– or ws will have to make assumptions about such unknown predicates.

We take the second option, and consider unknowns that are neither H events
nor E expectations as literals that can be abduced, and we keep them in a set
∆. We then have the following two equations that define the set of abductive
answers representing possible interaction between ws and ws′ achieving G:

KBws ∪HAP ∪EXP ∪∆ |= G (3)
KBws ∪HAP ∪EXP ∪∆ |= ICws ∪ ICws′ . (4)

where HAP is a conjunction of H atoms, EXP is a conjunction of E atoms,
and ∆ a conjunction of abducible atoms.

We ground the notion of entailment on a model theoretic semantics defined
for Abductive Disjunctive Logic Programs [10]. Different semantics have been
proposed for logic programs with disjunctions. Among them, answer set seman-
tics [11] adopts an exclusive interpretation of disjunction, whereas possible model
semantics [10] adopts an inclusive one (and recovers the former by additional con-
straints imposing mutual exclusion among the literals in the disjunctive head of
a clause).

In the possible model semantics, the disjunctive program generates several
(non-disjunctive) split programs, obtained by separating the disjuncts in the
head of rules. Given a disjunctive logic program P , a split program is defined as
a (ground) logic program obtained from P by replacing every (ground) rule

r : L1 ∨ · · · ∨ Ll ← Γ

from P with the rules in a non-empty subset of Splitr, where

Splitr = {Li ← Γ | i = 1, . . . , l}.

By definition, P has multiple split programs in general.

Example 1. The following program can be split into three split programs

E(p) ∨ H(p) ← E(p).
goal ← E(p).

where the first clause is respectively substituted by {E(p) ← E(p)}, {H(p) ←
E(p)} and {E(p) ← E(p),H(p) ← E(p)}.

A possible model for a disjunctive logic program P is then defined as an
answer set of a split program of P .

The inclusive interpretation of disjunctions adopted by the possible model
semantics fits better with our case, since more than one disjunct in the head of an
integrity constraint can be true at the same time, as in the following example.5

5 For the sake of simplicity, in this example and in the following one, we specify a
single argument for expectations and events.
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Example 2. Let us consider the program:

E(p) ∨ H(p) ← true.
H(p) ← E(p).
goal ← E(p).

We would like to have an explanation for goal, where E(p) is assumed, and H(p)
is also true because of clause H(p) ← E(p). This is, instead, avoided by following
an answer set approach, which adopts an exclusive interpretation of disjunctions.

Furthermore, in [10] possible model semantics was also applied to provide a
model theoretic semantics for Abductive Extended Disjunctive Logic Programs
(AEDP), which is our case. Semantics is given to AEDP in terms of possible
belief sets. Given an AEDP Π = 〈P,A〉 (where P is a disjunctive logic program
and A is the set of abducible literals), a possible belief set S of Π is a possible
model of the disjunctive program P ∪ E, where P is extended with a set E of
abducible literals (E ⊆ A).

Definition 2 (Answer to a goal G). An answer E to a (ground) goal G is a
set E of abducible literals constituting the abductive portion of a possible belief
set S (i.e., E = S ∩A) that entails G.

We rely upon possible belief set semantics, but we adopt a new notion for
minimality with respect to abducible literals. In [10], a possible belief set S is
A-minimal if there is no possible belief set T such that T ∩A ⊂ S ∩A.

Example 3. Consider, again, the program of Example 1. The possible belief sets
are the belief sets of each of the split programs: the first gives {goal,E(p)},
and the others give {goal,E(p),H(p)}. Only the first explanation is A-minimal
under set inclusion, according to [10], but we cannot rely upon such definition
for minimality since we would discard explanations which are, instead, correct.

We restate, then, the notion of A-minimality as follows.

Definition 3 (A-minimal possible belief set). A possible belief set S is A-
minimal iff there is no possible belief set T for the same split program such that
T ∩A ⊂ S ∩A.

More intuitively, the notion of minimality with respect to hypotheses that
we introduce is checked by considering the same split program, and by checking
whether with a smaller set of abducibles the same consequences can be made
true, but in the same split program. For the case depicted in Example 3, then,
both the two possible belief sets are A-minimal, according to Definition 3.

Finally, we provide a model-theoretic notion of explanation to an observation,
in terms of answer to a goal, as follows.

Definition 4 (A-minimal answer to a goal). E is an A-minimal answer to
a goal G iff E = S ∩A for some possible A-minimal belief set S that entails G.
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We can now proceed with defining what kind of interaction is possible/fruitful,
given two web services and a goal.

Definition 5 (Possible interaction about G). A possible interaction about a
goal G between two web services ws and ws′ is an A-minimal set HAP∪EXP∪∆
such that Eq. 3 and 4 hold.

Among all possible interactions about G, some of them are fruitful, and some
are not. An interaction only based on expectations which will not be matched
by corresponding events is not a fruitful one: for example, the goal of ws might
not have a corresponding event, thus the goal is not actually reached, but only
expected. Or, one of the web services could be waiting for a message from the
other fellow, which will never arrive, thus undermining the inter-operability.

We select, among the possible interactions, those whose history satisfies all
the expectations of both the web services. After the abductive phase, we have a
verification phase in which there are no abducibles, and in which the previously
abduced predicates H and E are now considered as defined by atoms in HAP
and EXP, and they have to match. If among the possible interactions there
exists one satisfying

HAP ∪EXP |= E(X, Y,Action, T ) ↔ H(X, Y,Action, T ) (5)

then ws has found a sequence of actions that obtains the goal G.

Definition 6 (Possible interaction achieving G). Given two web services,
ws and ws′, and a goal G, a possible interaction achieving G is a possible inter-
action about G satisfying Eq. 5.

Intuitively, the “→” implication in Eq. 5 is there to avoid situations in which
a web service waits forever for an event that the other web service will never
produce. The “←” implication is there to avoid that one web service sends
unexpected messages, which in the best case may not be understood (and in
the worst scenarios it may lead to faulty, unpredictable behaviour of the parties
involved).

6.1 Operational Semantics

The operational semantics is a modification of the SCIFF proof-procedure [12].
SCIFF is a transition system, whose state is given by the following tuple:

T ≡ 〈R,CS, PSIC,∆A,PEND,HAP,FULF,VIOL〉

The set of expectations EXP is partitioned into the fulfilled (FULF), violating
(VIOL), and pending (PEND) expectations. The other elements are: the re-
solvent (R), the abduced literals that are not expectations (∆A), the constraint
store (CS), a set of implications, inherited from the IFF [7], called partially solved
integrity constraints (PSIC), and the history of happened events (HAP).
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A classical application of SCIFF is on-line checking of compliance of agent
interaction to protocols. in fact, SCIFF was initially developed to specify and
verify agent interaction protocols on-the-fly, under the assumption of open agent
environments adopted by other noteworthy agent research work [13]. SCIFF
processes events drawing from HAP and generates (abduces) expectations; then
it checks that all expectation are fulfilled by at least one happened event. The
declarative semantics of SCIFF contains in fact a requirement E(X) → H(X)
– differently from WAVe, which has a double implication (Eq. 5). In SCIFF, as
soon as new H events are processed, a transition fulfilment labels the relevant
matching expectations as fulfilled and moves them to the set FULF. At the end
of the derivation, if some expectation remains in the set PEND, a failure node
is generated, and other alternative branches will be explored in backtracking, if
there exist any.

WAVe extends SCIFF and abduces H events as well as expectations. The
events history is not taken as input, but all possible interactions are hypothesised.
Moreover, in WAVe events not matched by an expectation (which are perfectly
acceptable in the multi-agent scenario addressed by SCIFF) cannot be part of
a possible interaction achieving the goal.

The two phases in the declarative semantics (generation of possible interac-
tions and their test for conformance) are condensed into one single derivation
process, thanks to a new transition adopted in WAVe. The expected transition,
symmetrical to fulfilment, labels each H events with an expected flag as soon as
an expectation matching it is abduced. At the end of the derivation, H with
expected status = false will cause failure.

Otherwise, if the WAVe derivation in a program P for a goal G succeeds with
set of expectation EXP ∪HAP ∪∆, we write P -EXP∪HAP∪∆ G.

6.2 Soundness and completeness results

WAVe is a conservative modification of the SCIFF proof-procedure, which is
sound and complete under reasonable assumptions [14]. In the following, we
give the soundness and completeness statements, and briefly explain why the
soundness and completeness results proven for SCIFF also hold with the new
declarative and operational semantics of WAVe.

Theorem 1 (Soundness). If P -EXP∪HAP∪∆ G then EXP ∪HAP ∪∆ is a
possible interaction achieving G.

Theorem 2 (Completeness). If there exists a possible interaction EXP ∪
HAP ∪∆ achieving a goal G, then ∃EXP′ ∪HAP′ ∪∆′ ⊆ EXP ∪HAP ∪∆
such that P -EXP∪HAP∪∆ G.

Note that WAVe introduces two main additions to SCIFF. The first one is the
“→” implication of Eq. 5, which makes the declarative relation between events
and expectations symmetric. The operational semantics introduces a new tran-
sition, completely symmetric to that devoted to check fulfilment; the extension
of the proofs for this are therefore straightforward.
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The second ‘important’ addition is the notion of A-minimality introduced in
the declarative semantics. By choosing A-minimal answers, therefore restricting
the set of models considered, we do not affect completeness, which still holds by
virtue of the completeness of SCIFF. Concerning soundness, instead, we have
to prove that, given a goal G, for each abductive WAVe computation:

KBws ∪ ICws ∪ ICws′ -HAP∪EXP∪∆ G (6)

the computed set HAP∪EXP∪∆ corresponds to a possible interaction achiev-
ing G. Again, the proof can exploit the soundness result of SCIFF [15], apart from
the A-minimality requirement introduced here. This further condition requires
to prove that the computed set E = HAP ∪ EXP ∪∆ for goal G corresponds
to an (A-minimal) possible interaction for G. First, it can easily be proven that
a WAVe computation corresponds to a (WAVe) computation into a single split
program obtained from the original one. Furthermore, it can be proven that
a WAVe computation corresponds to a (WAVe) computation into a renamed
split program obtained from the former by considering only the applied clauses
and the fired social integrity constraints, and by duplicating and properly re-
naming them as many times as each of them is applied or fires. Let us denote
P split = KBsplit

ws ∪ ICsplit
ws ∪ ICsplit

ws′ such a renamed split program.

Example 4. Let us consider the following program:

E(X) ∨ H(X) ← E(X).
goal ← E(p).
goal ← E(q).

This program has two different successful derivations for goal, originated,
respectively, by the following two renamed split programs:6

P split
1 P split

2

H(p) ← E(p).
goal ← E(p).

H(q) ← E(q).
goal ← E(q).

Thanks to the soundness of SCIFF we have that E is a possible interaction
for G, given the considered renamed split program. We still have to prove that
this set is A-minimal. This part can be proven by reductio ad absurdum. Suppose
there exists a smaller set E′ ⊂ E and that E′ is a possible interaction for G in
the renamed split program. Due to SCIFF completeness, then there also exists
a (WAVe) computation which computes a set E′′ ⊆ E′ for G. But this is not
possible, by the way the renamed split program has been built. Contradiction!

We will next demonstrate the operational functioning of verification in WAVe

in the alice & eShop scenario.

6 For the sake of keeping a lightweight notation, we do not show renamed variables.
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7 Verification in WAVe

In the following, the sets EXPN
a and HAPN

a represent the evolution of alice’s
expectations and events as WAVe’s derivation progresses; N is an incremental
index. Let g be the following goal of alice’s:

g ← have(alice, device, 50). (goal)

Then, by unfolding of clause alice3,
EXP0

a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50 } (by (alice3))
To this expectation, eShop will react by expecting a payment:

EXP1
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ (E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∨E(alice, eShop, pay(device, cash), Tca) ∧ Tca < Ts

∨E(alice, eShop, pay(device, cheque), Tch) ∧ Tch < Ts) } (by (shop1))
Since the expectation containing the payment by cc is the only one which

generates an expectation matching a rule of alice ((alice1)), the first expectation
among the three payment alternatives is selected (the other branches eventually
fail by Eq. 5, because no matching H is abduced). This choice triggers (alice1):

EXP2
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc } (by (alice1))
Then (shop3) fires, and abduces the happening of give guarantee event. We

then have:
EXP3

a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50
∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc } (by (alice1))
HAP3

a = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc } (by (shop3))
Given the guarantee, alice will pay by credit card (rule (alice2) fires):

EXP4
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc }
HAP4

a = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc

∧ H(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts } (by (alice2))
Having received the payment, eShop’s policy would be to deliver the device:

EXP5
a = { E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧ E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc }
HAP5

a = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc

∧ H(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧ H(eShop, alice, deliver(device), Ts) ∧ Ts < 50 } (by (shop2))
Summarising, alice devised the following set of events, which should let her

achieve her goal (have the desired device) while respecting both of alice’s and
eShop’s policies.

Ca = { H(eShop, alice, give guarantee, Tg) ∧ Tg < Tp

∧ H(alice, eShop, pay(device, cc), Tp) ∧ Tp < Ts

∧ H(eShop, alice, deliver(device), Ts) ∧ Ts < 50) }
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8 Discussion

WAVe is a framework intended for describing declaratively the behavioural in-
terface of web services, and for testing operationally the possibility of fruitful
interaction between them. WAVe answers the question “does there exist a viable
interaction, between two given web services, which achieves a given goal G?”
In case of success, WAVe produces a set of expectations about events. WAVe is
particularly suitable for highly dynamic environments, in which inter-operability
is an unknown that has to be checked.

WAVe uses and extends a technology initially developed for on-line compli-
ance verification of agent interaction to protocols [9]. SCIFF and the protocol
specification language based on social integrity constraints were motivated and
inspired by conspicuous work done in the context of agent interaction in open
societies, notably work by Singh [13] and colleagues. The extension of such a
work to the context of web services, centering around the concept of policies, as
proposed in this work, seems to be very promising. The idea of policies for web
services and policy-based reasoning is one that many other authors also adopt.
We will cite work by Finin and colleagues [16], and by Bradshaw and colleagues
[17], the first one with an emphasis on representation of actions, the latter on
the deontic semantic aspects of web service interaction. We acknowledge the im-
portance of action modelling and we point that the idea of expected behaviour
of web services can have a deontic reading. In fact, previous work on SCIFF has
been devoted to investigating and clarifying the interesting links between deontic
operators and expectation-based reasoning [18]. The distinguishing features of
WAVe, compare to most work of literature, are its logical underpinning and its
sound and complete operational characterisation. It is in our agenda to carry out
an extensive empiric evaluation of WAVe based on interesting cases and scenar-
ios such as those proposed in related work, and on the existing implementation
of the SCIFF framework.7

Another direction of current work relates to the actual use of the answers of
WAVe by web services after they manage a successful derivation. In principle,
the sequence of events produced by WAVe could be instantiated into a concrete
sequence of messages, which will guarantee the achievement of G, under ideal
external conditions. But this is true only if the policies disclosed by both web
services are a faithful representation of their actual behaviour. This may not
be the case, as for example policies may depend on sensible data, and web
services may be not allowed to disclose full information to the outside. In that
case nothing warrants that the course of action produced by WAVe will be
satisfactory for either web service. We might then have to resort to further steps.
For example both web services could “formally” agree that a certain course
of events in an acceptable option, possibly after another mutual verification
phase. This is subject of ongoing work. Finally, we are currently investigating
the exchange of policies between web services, for which a suitable interaction

7 See http://lia.deis.unibo.it/research/sciff.
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protocol needs to be devised. We are thinking of specifying such a protocol for
exchanging the policies in the same language WAVe uses to specify policies.
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In this paper, the use of a logic programming framework, the event calculus [3], is 

discussed in the automated composition of web services. The web service discovery 
problem is beyond of the scope of the paper. Our goal is to show that the event calcu-
lus can be used for both definitions of web services composition. That is, it can be 
used to generate a composite process as the output of planning. It can also be used to 
define a generic composition and produce a user specific composition (plan) accord-
ing to the user constraints. Abductive planning of event calculus is used to show that 
when atomic services are available, composition of services that would yield the de-
sired effect is possible. An abductive planner implementation of the event calculus [4] 
is extended to be used for plan generation. 

Event Calculus and Abductive Event Calculus 

Event calculus [3] is a logical formalism which is used with domains where events af-
fect and change the world. The formulation of the event calculus is defined in first or-
der predicate calculus. There are actions and effected fluents. Fluents are changing 
their valuations according to effect axioms defined in the theory of the problem do-
main. Each event calculus theory is composed of axioms. The axioms that define 
whether a fluent holds starting from the initial state are as follows. 

HoldsAt(F, T) !Initially(F) " #Clipped(T0, F, T)  
HoldsAt(#F, T) ! Initially(#F) " #Declipped(T0, F, T)  

Axioms below are used to deduce whether a fluent holds or not at a specific time. 
HoldsAt(F, T) !Happens(E, T1), Initiates(E, F, T1), T1 < T , #Clipped(T1, F, T)  
HoldsAt(#F, T) !Happens(E, T1), Terminates(E, F, T1), T1 < T, #Declipped(T1, F, T)  

The predicate Clipped defines a time frame for a fluent that is overlapping with the 
time of an event which terminates or releases this fluent. Similarly Declipped defines 
a time frame for a fluent which overlaps with the time of an event that initiates or re-
leases this fluent. 

Abduction is logically the inverse of deduction. It is used over the event calculus 
axioms to obtain partially ordered sets of events. Abduction is handled by a second 
order logical prover which is defined as an abductive theorem prover (ATP) in [4]. 
ATP tries to solve the goal list by proving the elements one by one. During the resolu-
tion, abducible predicates, < (temporal ordering) and Happens, are stored in a residue 
to keep the record of the narrative. The narrative is a sequence of time-stamped 
events, and the residue keeping a record of the narrative is the plan. 
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Web Services Composition with Abductive Planning  

The event calculus can be used for planning as it is theoretically explained in [4]. The 
planning problem in the event calculus is formulated in simple terms as follows: 
Given the domain knowledge (i.e. a conjunction of initiates, terminates), the Event 
Calculus axioms (i.e. HoldsAt ) and a goal state (e.g. HoldsAt(f,t)), the abductive theo-
rem prover generates the plan which is a conjunction of Happens and temporal order-
ing predicates. ATP returns a valid sequence of time stamped events that leads to the 
resulting goal. Multiple solutions are thought to be as different braches of a more gen-
eral plan and they are obtained with the help of backtracking. 

In the event calculus framework, the web services are modeled as events with input 
and output parameters. For instance, a web service, which returns the availability of a 
flight between two locations, can be described as:  

Happens(getFlights(Orgn, Dest, FlDate, FNL), T1, T1) !  
Ex_getFlights(Orgn, Dest, FlDate, FNL).  

The predicate Ex_getFlights is used as a precondition for the event and it is invoked 
anytime it is added to the plan to populate the input parameters.  

It is also possible to create generic compositions in the event calculus. ATP can 
then be used to generate a plan which corresponds to the user specific execution of the 
composite service. Composite services correspond to compound events in the Event 
Calculus [2]. An OWL-S to event calculus translation scheme is presented to show 
that OWL-S composition constructs can be expressed as event calculus axioms [1]. 

Conclusions 

The Event Calculus framework can be used for the solution of web service compo-
sition problem. When a goal situation is given, the event calculus can find proper 
plans as web service compositions with the use of abduction technique. It is possible 
that the solutions that are generated by the event calculus can be compiled into a 
graph like composition for the satisfaction of the goal situation [1]. The Event Calcu-
lus can also be used to create generic compositions and ATP can be used to generate a 
plan which corresponds to the user specific execution of the composite service.  

As a future work, the results expressed in this paper will be implemented in a real 
web environment. Common structures of compositions will be expressed as meta 
event calculus constructs. Another improvement might be on queries which are 
known a priori for the compositions. Queries can be entered in a natural language and 
then translated into the event calculus goals. 
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This paper describes the research activities carried out in the context of the Italian
MIUR Project PRIN 2005 “Specification and verification of agent interaction proto-
cols”, concerning the area of modeling, verification and reasoning about web services.

Web services are an emergent paradigm for implementing business collaborations
over the web. Each service has an interface that is accessible through standard proto-
cols and that describes the interaction capabilities of the service. It is possible to develop
new applications by combining and integrating existing web services. In this scenario,
various languages have been developed for modeling processes and their interaction
protocols. In particular, the language WS-BPEL has emerged as the standard for speci-
fying the business processes of single services, while the global view of the interaction
is captured by the concept of choreography, expressed by using specific languages like
WS-CDL. Nowadays, in many application domains it is getting more and more com-
mon describing and realizing the offered services by means of a set of communicating
agents. Techniques for the specification and verification of the interactive behavior of
open agent systems find an immediate application in web services.

The goal of our project is to prove the usefulness and the applicability of techniques
based on declarative approaches for tackling issues typical of the web service applica-
tion area. Our claim is that web service interactions should be represented according to
some formalism which relies on well-founded models with a clear semantics. Further-
more, automated tools for reasoning about such a description and performing tasks of
interest must be developed.

The goal of the project is pursued through three main steps:

– Definition of suitable formalisms for the specification and verification of interaction
protocols/choreographies;

– Development of techniques for automatic property verification and reasoning about
web services;

– Translation of modeling languages into the formal languages developed in the
project.

! Additional authors: M. Baldoni, C. Baroglio, V. Patti, C. Schifanella (Dipartimento di Infor-
matica, Università di Torino), M. Alberti, M. Gavanelli, E. Lamma, F. Riguzzi, S. Storari
(ENDIF, Università di Ferrara), F. Chesani, A. Ciampolini, P. Mello, M. Montali, P. Torroni
(DEIS, Università di Bologna), A. Bottrighi, L. Giordano, V. Gliozzi, D. Theseider Dupré,
P. Terenziani (Dipartimento di Informatica, Università del Piemonte Orientale), G. Casella,
V. Mascardi (DISI, Università di Genova)
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In particular, we are considering the following issues:
Specification and verification of interaction protocols. We are defining and com-

paring different formalisms. The first approach is based on abductive logic program-
ming, and exploits the SCIFF framework, developed in the European project SOCS.
Within the SCIFF framework, a language suitable for specifying global protocols has
been provided, and an abductive proof procedure has been developed [2].

A different approach makes use of a formalism for reasoning about actions. Web
services can be described by specifying their interaction protocols in an action theory
based on a temporal logic. The proposed framework provides a simple formalization of
the communicative actions in terms of their effects and preconditions, and the specifi-
cation of an interaction protocol by means of temporal constraints [5].

Conformance verification. We are studying the issue of verifying whether the busi-
ness process of some peers will produce interactions which are conformant to the agreed
protocol (legality issue). Such issue is tackled by the so called conformance test, con-
sidered as a means for certifying the capability of interacting of the involved parts [4].

Reasoning about web service behavior. Formalisms for reasoning about actions
are suitable for dealing with web service composition and selection. In particular, we
have applied planning techniques to the problem of composing web services, and to the
problem of personalizing web service selection and composition w.r.t. user preferences
[3].

We have also tackled the problem of dynamically understanding if two web ser-
vices can inter-operate, without having a-priori knowledge of each one capabilities, but
reasoning on policies exchanged at run-time [1].

Implementation of Prolog-based agents. Another direction of research is aimed at
factoring the three technologies of web services, intelligent agents, and Prolog, for im-
plementing Prolog-based agents that reason about interaction protocols specified using
WS-BPEL and WSDL [6].
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1 Introduction

The need for sharing knowledge on the Web—and in particular rules in a standardized
format—is an important issue. RuleML [1] has been the most prominent effort in this
direction so far. Nonetheless, it turns out that none of the variants available is suitable for
expressing nonmonotonic logic programs as used in the answer-set programming (ASP)
paradigm, in which the former are assigned with a declarative semantics, known as
answer-set semantics or stable-model semantics [3]. ASP in general is an important
declarative problem-solving paradigm, gaining increasing attention in the recent years
(see, e.g., [4]).

In this work, we present a new language variant in addition to the current RuleML
proposal for expressing an ASP core language. Then we provide an extension to this
core to accommodate different ASP dialects, substantially based on the notion of an
oracle atom. Oracle atoms are rooted in the notion of an external atom [2]. A working
translator from RuleML to ASP and vice versa is available. This way, RuleML specifi-
cations are made executable under the ASP semantics.

The framework we present here is supposed to be a starting point that should en-
courage both the Semantic Web and the ASP community to discuss and achieve a com-
prehensive RuleML interchange format for the ASP semantics. It is work in progress
which, as we believe, will attract other participants after initial dissemination.

2 Description of the Work

Our approach towards extending RuleML to answer-set programs consists of several
layers. First, we define a RuleML schema called aspbase, which encapsulates the syntax
of traditional ASP. We then present an extension (asporacle) to this schema, facilitating
the expression of a number of advanced constructs which are provided by current ASP
solvers, such as aggregates, built-ins or external atoms, by a general syntactical element.

Figure 1 shows how an ASP specification written in RuleML can be processed.
Translators rewrite an answer-set program in the general RuleML syntax into a tex-
tual representation suitable for a given reasoner. Each translator might accept a set of
specific syntactic features. It enforces a specific meaning to each particular feature by
rewriting it into the construct expected by the corresponding reasoner.
! This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-

N04, and by the European Commission through the IST Networks of Excellence REWERSE
(IST-2003-506779).
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ASP program

in RuleML

translation stage
to legacy syntax ASP specific solver

!! DLV-translator

!! SMODELS-translator

!! HEX-translator

!! . . . -translator

!! !" #$%& '(DLV

!! !" #$%& '(SMODELS

!! !" #$%& '(dlvhex

!! !" #$%& '(. . .

Fig. 1. ASP RuleML architecture

3 An Example

A complex construct like a cardinality constraint, featured by SMODELS, such as 1 {a, b,not c} 2.
can be modeled in our setting in the following way:

<Oracle>
<Rel>cardCons</Rel>
<Input>
<Data xsi:type="xs:integer">1</Data>
<Atom>
<Rel>a</Rel>

</Atom>
<Atom>
<Rel>b</Rel>

</Atom>
<Naf>
<Atom>
<Rel>c</Rel>

</Atom>
</Naf>
<Data xsi:type="xs:integer">2</Data>

</Input>
</Oracle>

For further examples of this language variant and the use of oracle atoms, we refer
the reader to http://www.kr.tuwien.ac.at/research/ruleml.
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Introduction. The goal of this poster is to present some Prolog-based [3] al-
ternatives for Description Logic ABox-reasoning. We believe that Prolog can be
used well for extending DL formalisms with rules. The top-down executional
mechanism of Prolog suits the ABox-reasoning task by ignoring irrelevant data,
and it is also worth to mention that the Prolog community has been developping
Prolog for more than 30 years, providing a highly optimized logic programming
environment. In our approaches, both the ABox-reasoning code and the attached
rules can be executed in a Prolog framework. Queries are answered using the
PTTP (Prolog Technology Theorem Proving) [4] approach. The aim of these rea-
soning algorithms is to efficiently answer instance-check and instance-retrieval
queries when sizeable amounts of data are stored in the ABox. We describe two
approaches of transforming a DL knowledge-base to Prolog clauses.

Soundness and completeness of both approaches are based on resolution and
the PTTP technique. In the implementation of the ideas, procedural elements of
Prolog such as the cut for filtering multiple solutions out are used for optimizing
the code.

The Restricted Approach. [2] This approach provides ABox-reasoning ser-
vices over an empty TBox. Let an extensionally reduced ABox A be given with
the property that A is satisfiable1. The goal is to determine all the instances of
an ALC query-concept C, or as a special case, determine if an individual o is an
instance of the query-concept C. Reasoning is split into two parts: first a Prolog
execution plan is produced, then the plan is executed on the ABox.

More specifically, we first transform the ALC query-concept into a union of
tree-concepts. A tree-concept is an ALC concept formed using the intersection,
existential restriction and atomic negation constructors only. Each tree-concept
is transformed into a piece of Prolog-code individually. Prolog clauses belonging
to each tree-concept have to be executed in a common namespace. We refer the
reader to [2] on the details of the transformation.

The Intermediate Approach. [1] This approach provides ABox reasoning
services over an extensionally reduced ALC knowledge-base containing an ABox
and a restricted TBox. We exclude subsumption axioms C ! D from the TBox
1 We do not deal with ABoxes containing contradictions. When reading the assertions,

we do not allow both A(i) and ¬A(i) to be simultaneously asserted for any A or i.
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where ∀R.E is a subconcept of the negation normal form of C or ∃R.E is a
subconcept of the negation normal form of D. This restriction is due to the
fact that the current reasoning algorithm cannot handle Horn-clauses containing
Skolem-functions. Let a TBox T conforming to the restrictions above and an
extensionally reduced ABox A be given. The content of T is transformed to
Prolog rules and the content of A is transformed to Prolog facts.

Comparison of the approaches. We have designed and experimented with
a case-study on fault-tolerant behavior of systems. Using this case study, we
compared the performance of the two approaches.

We summarize the basic differences between the two approaches in Table 1.
The Restricted approach presented in [2] focuses on ABox-reasoning over an

empty TBox. Here, it is also possible to add non-DL Horn-clauses to the trans-
formed set of clauses. These Horn-clauses make it possible for the knowledge-
engineer to describe terminological knowledge regarding the instances of the
knowledge-base. The main advantage of this approach is its performance and
scalability.

On the other hand, the Intermediate approach [1] is able to provide ABox-
inference services over a non-empty terminology box. The main advantage of this
technique is that it provides reasoning services over a knowledge-base containing
(a) a slightly restricted ALC TBox, (b) terminology level knowledge represented
using Horn-clauses and (c) ABox-instances and relations. The content of the
knowledge-base is transformed into Horn-clauses which are executed in Prolog
using the PTTP technique. Execution is currently done by using our own PTTP
Horn-clause interpreter. Preprocessing optimizations do not appear in this work,
the solution is derived from the PTTP inference engine only. Although this
approach is capable of solving ABox-inference problems over a non-empty TBox,
we still refer to it as the Intermediate Approach, since we plan getting rid of the
restrictions involving the TBox and the interpreted execution.

Table 1. Comparison of the two reasoning approaches.

Approach Restricted Intermediate
Expressive power ALC ABox, no TBox ALC ABox and restricted TBox
Preprocessing all ABox-independent steps none
Execution plan runnable Prolog program interpreted PTTP clauses

Summary, future work. We believe that Prolog-based ABox-reasoning can
be well combined with Prolog rules and we found or initial results encouraging.
In the future, we would like to combine the advantages of the two approaches
and form an approach capable of efficiently handling ABox-reasoning over an
arbitrary TBox and ABox.
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We are developing SWORIER (Semantic Web Ontologies and Rules for 
Interoperability with Efficient Reasoning), which is a system that uses Logic 
Programming to reason about ontologies and rules in order to answer queries. The 
system expects a human developer to create ontologies in the formalisms of OWL-DL 
(Web Ontology Language for Description Logic) along with rules in SWRL (the 
Semantic Web Rule Language) or RuleML (the Rule Markup Language). Then, at 
compile time, this information is translated into Prolog code using XSLTs (Extensible 
Stylesheet Language Transformations). In addition, a Prolog program called ‘General 
Rules’, which is meant to capture the semantics of OWL's primitives, is appended to 
the XSLT output to form a complete Prolog program. We then use knowledge 
compilation techniques to create an efficient version of the program. At run time, the 
system can answer queries and assimilate dynamic changes by reasoning over the 
given information.  

For our prototype, we have developed ontologies and rules in a military command 
and control domain in which a supply convoy moves through an unsecured area. New 
information can become available at any time, such as an approaching sandstorm or 
the discovery of a new hostile theater object. Rules trigger alerts and 
recommendations to assist the commander in making decisions. For example, if an 
enemy unit is within the convoy’s region of interest, the system reports that and 
recommends a new route. 

Recent research has addressed issues similar to ours concerning combining logic 
programming with Semantic Web ontologies and rule technologies. Related work 
includes Description Logic Programming [2, 4, 6], answer set programming [1, 5, 7], 
and courteous logic programs [3]. In particular, we are building on the 
groundbreaking work of [8], addressing a number of problems that the paper 
suggested were unsolvable.  

For example, Prolog typically has negation as (finite) failure, while OWL uses 
logical negation. So we created a new Prolog predicate called logicNot. Also, to 

                                                        
*  The authors’ affiliation with The MITRE Corporation is provided for identification purposes 
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address the fact that Prolog does not allow disjunction in the head, we will create 
another Prolog predicate, or. The logicNot predicate enables SWORIER to 
represent OWL's open world assumption and to reason about complementary and 
disjoint classes. And with the or predicate, SWORIER can handle enumerated 
classes (the owl:oneOf primitive). 

We created a Prolog predicate for each OWL primitive, unlike [8], who made the 
ontology's (object-level) classes and properties into Prolog predicates. Our syntax 
makes it easier to enforce substitutivity of equivalent classes and to handle 
inconsistent cardinality restrictions. 

Most inconsistencies can be addressed in multiple ways, such as by sending an 
error message to the developer or by creating a new unnamed individual to satisfy a 
constraint. In this way, we address constraints such as those imposed by cardinality  
and existential quantification. 

At run time, SWORIER can reason about queries, switch from one rule set to 
another, and assimilate assertions and deletions of individuals. 

We ran experiments with the convoy use case described above. SWORIER was too 
slow for practical use until we implemented three techniques: extensionalization, 
avoiding reanalysis, and code minimization. Now SWORIER's knowledge 
compilation phase takes less than seven hours, and at runtime, SWORIER can answer 
a query in less than a second and assimilate a dynamic change in a few milliseconds. 

In the future, we intend to test our ideas that address issues involving disjunction, 
inconsistencies, enumerated classes, cardinality, etc. We will also implement more 
OWL primitives and enable SWORIER to handle more kinds of dynamic changes.  
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