

WMR 2006

First International Workshop on

Web Maintenance and Reengineering

24-March-2006, Bari, Italy

co-located with the 10th European Conference on

Software Maintenance and Reengineering (CSMR 2006)

Theme and goals

Traditionally, in the software engineering field, a lot of effort is dedicated to design/model, project, and

implement software. In fact the importance of designing a robust and well written software system is

known and recognized by the industry and the scientific community. However, the “activities” related

to general software maintenance (including re-engineering and reverse engineering), and evolution are

less addressed. Moreover, the techniques for re-engineering and software maintenance are mostly

focused on traditional software rather than Web software (i.e., Web sites, Web applications, or Web

services). This workshop/working session aims at evaluating, identifying, and discussing the following

example themes:

• Are traditional techniques fully applicable to Web software?

• What are the particular challenges posed by Web software in terms of maintenance, understanding

and evolution?

• Which technique is best for XY Web platform? (Where XY represents a Web

platform/language/etc of choice)

• Can software measurements be used to increase the quality of Web software maintenance? How it

is possible?

• What are the best metrics for Web applications? Do all metrics are meaningful for every Web

platform/language/etc?

• What techniques/methods may be useful in order to control Web software changes, versions or

migration?

• How reengineering methods can be used to increase the quality of new Web applications?

• Can Web reverse engineering be used to simplify or guide Web software maintenance (including

reengineering)?

• Can reverse engineered information (models, source code, etc.) be used to maintenance, evolve and

reengineer Web software?

Topics

The goal of the workshop is to identify the most practical and effective (i.e., covering widespread

implementation platforms and languages) techniques for web reengineering, evolution and maintenance.

We encourage original submissions in any field of Web maintenance and reengineering. Areas of

particular interest include (but are not limited to):

• Maintainability analysis and prediction

• Software architecture recovery and evolution

• Machine learning approaches for software maintenance

• Model-driven Web software engineering

• Software restructuring, refactoring and renovation

• Feature identification, extraction and analysis

• Slicing and change analysis

• Reverse engineering techniques

• Techniques, environment and technologies for reengineering

• Evolutionary algorithms or intelligent systems to support reengineering and manintenance

• Effort and cost estimation

• Metrics-based rules for detecting design flaws

• Monitoring the evolution of a system with metrics

• Testing techniques for maintenance and evolution

• Defect rate and reliability prediction

• Aspect-oriented programming on Web software maintenance

Organizers

Andrea Trentini, Alessandro Marchetto and Carlo Bellettini

{andrea.trentini, alessandro.marchetto, carlo.bellettini}@unimi.it

Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano,

via Comelico 39/41, I-20135 Milano,

Italy.

Program committee

· Gustavo Rossi, Universidad Nacional La Plata, Argentina

· Luciano Baresi, Politecnico di Milano, Italy

· Sotiris Christodoulou, University of Patras, Greece

· Mauro Pezzè, Università degli Studi di Milano Bicocca, Italy

· Filippo Ricca, ITC-irst, Centro per la Ricerca Scientifica e Tecnologica, Trento, Italy

· Zakaria Maamar, Zayed University, Dubai, U.A.E.

· Nanjangud C Narendra, IBM India Research Lab, India

· Mario Piattini, Universidad de Castilla-La Mancha, Spain

· Reiko Heckel, University of Leicester, United Kingdom

· Wamberto Vasconcelos, University of Aberdeen, United Kingdom

· Sven Casteleyn, Vrije Universiteit Brussel, Belgium

· Gerald C. Gannod, Arizona State University, USA

· Djamal Benslimane, Claude Bernard University, Lyon, France

· Andrea Tettamanzi, Università degli Studi di Milano, Italy

· Nadira Lammari, CNAM-Laboratoire CEDRIC, France

· Jacky Akoka, CNAM-Laboratoire CEDRIC, France

· Michail Vaitis, University of the Aegean, Greece

· Manolis Tzagarakis, University of Patras, Greece

· Fabio Casati, HP Lab, Palo Alto, CA, USA

· Pieter Van Gorp, University of Antwerp, Belgium

· Sara Comai, Politecnico di Milano, Italy

· Marco Brambilla, Politecnico di Milano, Italy

· Cornelia Boldyreff, University of Lincoln, United Kingdom

· Franca Garzotto, Politecnico di Milano, Italy

· Tarja Systä, Tampere University of Technology, Finland

· Santiago Meliá, Universidad de Alicante, Spain

· Kenneth M.Anderson, University of Colorado, USA

WMR 2006 Program

The Core NSP Type System

Dirk Draheim (Freie Universität Berlin, Germany)

Gerald Weber (University of Auckland, New Zealand)

Style-based Architectural Analysis for Migrating a Webbased Regional Trade Information System

Simon Giesecke (Carl von Ossietzky University, Germany)

Johannes Bornhold (Carl von Ossietzky University, Germany)

A framework for Web Applications Testing through Object-Oriented approach and XUnit tools

Alessandro Marchetto (Università di Milano, Italy)

Andrea Trentini (Università di Milano, Italy)

Supporting the Evolution of Service Oriented Web Applications using Design Patterns

Manolis Tzagarakis (University of Patras Campus, Greece)

Michail Vaitis (University of the Aegean, Greece)

Nikos Karousos (University of Patras, Greece)

Towards Empirical Validation of Design Notations for Web Applications: An Experimental Framework

Paolo Tonella (ITCirst, Trento, Italy)

Filippo Ricca (ITCirst, Trento, Italy)

Massimiliano Di Penta (University of Sannio, Benevento, Italy)

Marco Torchiano (Politecnico di Torino, Italy)

User-Centred reverse engineering: Genesis-D project

Luca Mainetti (Università di Lecce, Italy)

Roberto Paiano (Università di Lecce)

Andrea Pandurino (Università di Lecce, Italy)

The Core NSP Type System

Dirk Draheim
Institute of Computer Science

Freie Universität Berlin

draheim@acm.org

Gerald Weber
Department of Computer Science

University of Auckland

g.weber@cs.auckland.ac.nz

ABSTRACT
A good deal of software development and maintenance costs
for Web applications stem from the fact that the untyped,
flat message concept of the CGI interface has its footprint
in the commonly used Web programming models and Web
development technologies. Still it is necessary to reengi-
neer large legacy Web applications that have been developed
without the help of an improved Web technology. Current
web application frameworks offer support to deal with client
page type errors dynamically, however, no static type checks
are provided by these tools. Furthermore, they do not al-
low for detecting potential web page description errors at
compile time. In this paper, the static semantics of a new
typed server pages approach is defined as an algorithmic,
equi-recursive type system with respect to an amalgama-
tion with a minimal imperative programming language and
a collection of sufficiently complex programming language
types.

1. INTRODUCTION
In [6] a strongly typed server pages technology NSP (Next
Server Pages) has been proposed. The NSP type system has
also been exploited in the design and implementation of the
reverse engineering tool JSPick [5]. JSPick can recover the
design and type structure of a web presentation layer that
is based on server pages technology.

In this paper the type system of NSP is defined formally.
Server pages technologies are widely used in the implemen-
tation of ultra-thin client applications. Unfortunately the
low-level CGI programming model shines through in these
technologies, especially user data is gathered in a completely
untyped manner. The NSP contributions target stability
and reusability of server pages based systems. The findings
are programming language independent.

Important contributions of NSP has been the following:

Parameterized server pages. A server page possesses a spec-

ified signature that consists of formal parameters, which are
native typed with respect to a type system of a high-level
programming language. A server page signature is termed
web signature in the sequel.

Statically ensured client page type and description safety.

The type correct interplay of dynamically generated forms
and targeted server pages is checked at compile-time. It is
checked at compile-time if generated page descriptions are
always valid with respect to a defined client page description
language.

Support for complex types in writing forms. New structured
tags are offered for gathering arrays and objects of user de-
fined types.

Functional decomposition of server pages In NSP a server-
side call to a server page is designed as a parameter-passing
procedure call, too. This helps decoupling architectural is-
sues and implementing design patterns.

Higher order server pages. Server pages may be actual form
parameters. This enables improved web-based application
architecture and design.

Exchange of objects across the web user agent. Server side
programmed objects may be actual form parameters and
therefore passed to client pages and back, either as messages
or virtually as objects.

The NSP concepts are reusable, programming language in-
dependent results. They must be amalgamated with a con-
crete programming language. The NSP concepts are de-
signed in a way that concrete amalgamations are conserva-
tive with respect to the programming language. That is the
semantics of the programming language and especially its
type system remain unchanged in the resulting technology.
In [6] the NSP concepts are explained through a concrete
amalgamation with the programming language Java. As a
result of conservative amalgamation the NSP approach does
not restrict the potentials of the considered programming
language in any way, for example in the case of Java the
Servlet session facility for state handling is available as a
matter of course.

The NSP coding rules [6] give an informal explanation of
NSP type correctness. They are easy to learn and will help
in everyday programming tasks, but may give rise to am-

biguity. This paper formally defines the type system of
Core NSP, which is the amalgamation of NSP concepts with
a minimal imperative programming language. This enables
precise reasoning about the NSP concepts.

2. CORE NSP GRAMMAR
In this section the abstract syntax of Core NSP programs is
specified1. A Core NSP program is a whole closed system of
several server pages. A page is a parameterized core docu-
ment and may be a complete web server page or an include
server page:

system ::= page | system system

page ::= <nsp name="id"> websig-core </nsp>

websig-core ::= param websig-core

param ::= <param name="id" type="param-type"/>

websig-core ::= webcall | include

webcall ::= <html> head body </html>

head ::= <head><title> strings </title></head>

strings ::= ε | string strings

body ::= <body> dynamic </body>

include ::= <include> dynamic </include>

param-type ::= t ∈ T ∪ P

supported-type ::= t ∈ Bsupported

There are some basic syntactic categories. The category id
is a set of labels. The category string consists of character
strings. The category parameter-type consists of the pos-
sible formal parameter types, i.e. programming language
types plus page types. The category supported-type con-
tains each type for which a direct manipulation input capa-
bility exists. The respective Core NSP types are specified in
section 4.

Parameterized server pages are based on a dynamic markup
language, which combines static client page description parts
with active code parts. The static parts encompass lists, ta-
bles, server side calls, and forms with direct input capabili-
ties, namely check boxes, select lists, and hidden parameters
together with the object element for record construction.

dynamic ::= dynamic dynamic | ε | string | ul

| li | table | tr | td | call | form | object

| hidden | submit | input | checkbox | select

| option | expression | code

Core NSP comprises list and table structures for document
layout. All the XML elements of the dynamic markup lan-
guage are direct subcategories of the category dynamic, which
means that the grammar does not constrain arbitrary nest-
ing of these elements. Instead of that the manner of use of
a document fragment is maintained by the type system. We
delve on this in section 3.

ul ::= dynamic

li ::= dynamic

table ::= <table> dynamic </table>

1Nonterminals are underlined. Terminals are not empha-
sized. Every nonterminal corresponds to a syntactic cate-
gory. In the grammar a syntactic category is depicted in
bold face.

tr ::= <tr> dynamic </tr>

td ::= <td> dynamic </td>

The rest of the static language parts address server side
page calls, client side page calls and user interaction. A call
may contain actual parameters only. The call element may
contain no element, denoted by εact.

call ::= <call callee="id"> actualparams </call>

actualparams ::= εact | actualparam actualparams

actualparam ::=

<actualparam param="id"> expr </actualparam>

form ::= <form callee="id"> dynamic </form>

object ::= <object param="id"> dynamic </object>

hidden ::= <hidden param="id"> expr </hidden>

submit ::= <submit/>

input ::=

<input type="supported-type" param="id"/>

checkbox ::= <checkbox param="id"/>

select ::= <select param="id"> dynamic </select>

option ::= <option> <value> expr </value>

<label> expr </label> </option>

Core NSP comprises expression tags for direct writing to
the output and code tags in order to express the integration
of active code parts with layout parts. The possibility to
integrate layout code into active parts is needed. It is given
by reversing the code tags. This way all Core NSP programs
can be easily related to a convenient concrete syntax.

expression ::= <expr> expr </expr>

code ::= <code> com </code>

com ::= </code> dynamic <code>

The imperative sublanguage of Core NSP comprises state-
ments, command sequences, an if-then-else construct and a
while loop.

com ::= stat | com ; com

| if expr then com else com | while expr do com

The only statement is assignment. Expressions are just vari-
able values or deconstructions of complex variable values, i.e.
arrays or user defined typed objects.

stat ::= id := expr

expr ::= id | expr.id | expr[expr]

Core NSP is not a working programming language. It pos-
seses only a set of most interesting features to model all
the complexity of NSP technologies. Core NSP, in contrast,
aims to specify the typed interplay of server pages, the inter-
play of static and active server page parts and the non-trivial
interplay of the several complex types, i.e. user defined types
and arrays, which arise during dynamically generating user
interface descriptions.

3. CORE NSP TYPE SYSTEM STRENGTH
The grammar given in section 2 does not prevent arbitrary
nestings of the several Core NSP dynamic tag elements. In-
stead necessary constraints on nesting are guaranteed by the
type system. Therefore the type of a server page fragment
comprises information about the manner of use of itself as
part of an encompassing document.

As a result some context free properties are dealt with in
static semantics. There are pragmatic reasons for this. Con-
sider an obvious example. In HTML forms must not contain
other forms. Furthermore some elements like the ones for
input capabilities may only occur inside a form. If one wants
to take such constraints into account in a context free gram-
mar, one must create a nonterminal for document fragments
inside forms and duplicate and appropriately modify all the
relevant production rules found so far. If there exist sev-
eral such constraints the resulting grammar would quickly
become unmaintainable. For that reason the Standard Gen-
eralized Markup Language (SGML) supports the notions of
exclusion and inclusion exception. Indeed the SGML ex-
ception notation does not add to the expressive power of
SGML [26], because an SGML expression that includes ex-
ceptions can be translated into an extended context free
grammar [10]. The transformation algorithm given in [10]

produces 22|N| nonterminals in the worst case. This shows: if
one does not have the exception notation at hand then one
needs another way to manage complexity. The Core NSP
way is to integrate necessary information into types.

Furthermore in NSP the syntax of the static parts is or-
thogonal to the syntax of the active parts, nevertheless both
syntactic structures must regard each other. Again exclud-
ing wrong documents already by abstract syntax amounts
to duplicate production rules for the static parts that may
be contained in dynamic parts.

4. CORE NSP TYPES
In this section the types of Core NSP and the subtype rela-
tion between types are introduced simultanously. There are
types for modeling programming language types, and spe-
cial types for server pages and server page fragments. The
Core NSP types are given by a family of recursively defined
type sets. Every type represents an infinite labeled regular
tree.

The subtype relation formalizes the relationship of actual
client page parameters and formal server page parameters
by adopting the Barbara Liskov principle [11]. A type A is
subtype of another type B if every actual parameter of type
A may be used in server page contexts requiring elements of
type B. The subtype relation is defined as the greatest fix
point of a generating function. The generating function is
presented by a set of convenient judgment rules for deriving
judgements of the form ⊢ S < T .

4.1 Programming Language Types
In order to model the complexity of current high-level pro-
gramming language type systems, the Core NSP types com-
prise basic types Bprimitive and Bsupported, array types A,
record types R, and recursive types Y. Bprimitive models
types, for which no null object is provided automatically on

submit. Bsupported models types, for which a direct manipu-
lation input capability exists. The set of all basic types B is
made of the union of Bprimitive and Bsupported. Record types
and recursive types play the role of user defined form mes-
sage types. The recursive types allow for modeling cyclic
user defined data types. The types introduced so far and
the type variables V together form the set of programming
language types T.

T = B ∪ V ∪ A ∪ R ∪ Y

B = Bprimitive ∪ Bsupported

Bprimitive = {int, float, boolean}

Bsupported = {int, Integer, String}

V = {X, Y, Z, . . .} ∪ {Person, Customer, Article, . . .}

For every programming language type, there is an array
type. According to subtyping rule 1 every type is subtype of
its immediate array type. In commonly typed programming
languages it is not possible to use a value as an array of the
value’s type. But the Core NSP subtype relation formal-
izes the relationship between actual client page and formal
server page parameters. It is used in the NSP typing rules
very targeted to constrain data submission. A single value
may be used as an array if it is submitted to a server page.
Judgment rule 2 is the preserving subtyping2 rule for array
types.

A = { array of T | T ∈ T \ A}

⊢ T < array of T
(1)

⊢ S < T

⊢ array of S < array of T
(2)

The usage of some Z Notation [20] for record types will ease
writing type operator definitions and typing rules later on:
a record type is a finite partial function from a set of labels
to the set of programming language types.

R = Label ||−→ T

Tj /∈ Bprimitive j ∈ 1 . . . n

⊢ {li 7→ Ti}i∈1...j−1,j+1...n < {li 7→ Ti}i∈1...n
(3)

⊢ S1 < T1 . . . ⊢ Sn < Tn

⊢ {li 7→ Si}i∈1...n < {li 7→ Ti}i∈1...n
(4)

Rule 4 is just the necessary preserving subtyping rule for
records. The establishing subtyping rule 3 states that a
shorter record type is subtype of a longer record type, pro-
vided the types are equal with respect to labeled type vari-
ables. At a first site this contradicts the well-known rules for
subtyping records [3] or objects [1]. But there is no contra-
diction, because these rules describe hierarchies of feature
support and we just specify another phenomenon: rule 3

2We informally distinguish between establishing subtyping
rules and preserving subtyping rules. The establishing sub-
typing rules introduce initial NSP specific subtypings. The
preserving subtyping rules are just the common judgements
that deal with defining the effects of the various type con-
structors on the subtype relation.

models that an actual record parameter is automatically
filled with null objects for the fields of non-primitive types
that are not provided by the actual parameter, but expected
by the formal parameter.

The Core NSP type system encompasses recursive types for
modeling the complexity of cyclic user defined data types.
Type variables may be bound by the recursive type construc-
tor µ. Overall free type variables, that is type variables free
in an entire Core NSP system resp. complete Core NSP
program, represent opaque object reference types.

Y = { µ X . R | X ∈ V , R ∈ R }

⊢ S[µX.S/X] < T

⊢ µX.S < T

⊢ S < T [µX.T/X]

⊢ S < µX.T
(5)

We have chosen to handle recursive types in an equi-recursive
way [7]. Core NSP types represent finite trees or possibly in-
finite regular trees [4]. Type equivalence is not explicitly de-
fined, it is given implicitly by the subtype relation. The sub-
type relation is defined as the greatest fixpoint of a monotone
generating function on the universe of type trees [7]. The
Core NSP subtyping rules provide an intuitive description
of this generating function. Thereby the subtyping rules for
left folding and right folding (5) provide the desired recur-
sive subtyping. Beyond this only one further subtyping rule
is needed, namely the rule 6 for introducing reflexivity.

⊢ T < T
(6)

4.2 Server Page Types
In order to formalize the NSP coding rules the type system of
Core NSP comprises server page types P, web signatures W,
a single complete web page type 2∈C, document fragment
types D, layout types L, tag element types E, form occurence
types F and system types S. A server page type is a func-
tional type, that has a web signature as argument type. An
include server page has a dynamic document fragment type
as result type, and a web server page the unique complete
web page type.

P = { w → r | w ∈ W , r ∈ C ∪ D }

W = Label ||−→ (T ∪ P) C = {2}

A web signature is a record. This time a labeled component
of a record type is either a programming language type or
a server page type, that is the type system supports higher
order server pages. Noteworthy a clean separation between
the programming language types and the additional NSP
specific types is kept. Server page types may be formal
parameter types, but these formal parameters can be used
only by specific NSP tags. Server pages deliberately be-
come no first class citizens, because this way the Core NSP
models conservative amalgamation of NSP concepts with a
high-level programming language. The preserving subtyp-
ing rule 4 for records equally applies to web signatures. The
establishing subtyping rule 3 must be slightly modified re-
sulting in rule 7, because formal parameters of server page
type must always be provided, too.

Subtyping rule 8 is standard and states, that server page
types are contravariant in the argument type and covariant
in the result type.

Tj /∈ Bprimitive ∪ P j ∈ 1 . . . n

⊢ {li 7→ Ti}i∈1...j−1,j+1...n < {li 7→ Ti}i∈1...n
(7)

⊢ w′ < w ⊢ R < R′

⊢ w → R < w′ → R′
(8)

A part of a core document has a document fragment type.
Such a type consists of a layout type and a web signature.
The web signature is the type of the data, which is eventually
provided by the document fragment as part of an actual form
parameter. If a web signature plays part of a document
fragment type it is also called form type. The layout type
constrains the usability of the document fragment as part of
an encompassing document. It consists of an element type
and a form occurence type.

D = L × W L = E × F

⊢ S1 < T1 ⊢ S2 < T2

⊢ (S1, S2) < (T1, T2)
(9)

Subtyping rule 9 is standard for products and applies both
to layout and tag element types. An element type partly de-
scribes where a document fragment may be used. Document
fragment that are sure to produce no output have the neu-
tral document type ◦. Examples for such neutral document
parts are hidden parameters and pure Java code. Document
fragments that may produce visible data like string data or
controls have the output type •. Document fragments that
may produce list elements, table data, table rows or select
list options have type LI,TD, TR and OP. They may be
used in contexts where the respective element is demanded.
Neutral code can be used everywhere. This is expressed by
rule 10.

E = { ◦, •,TR,TD,LI,OP}

T ∈ E

⊢ ◦ < T
(10)

The form occurrence types further constrain the usability of
document fragments. Fragments that must be used inside
a form, because they generate client page parts containing
controls, have the inside form type ⇓. Fragments that must
be used outside a form, because they generate client page
fragments that already contain forms, have the outside form
type ⇑. Fragments that may be used inside or outside forms
have the neutral form type m. Rule 11 specifies, that such
fragments can play the role of both fragments of outside
form and fragments of inside form type.

F = { ⇓,⇑,m } S = { 3,
√ }

T ∈ F

⊢ m < T
(11)

An NSP system is a collection of NSP server pages. NSP
systems that are type correct receive the well type 3. The
complete type

√
is used for complete systems. A complete

system is a well typed system where all used server page
names are defined, i.e. are assigned to a server page of the
system, and no server page names are used as variables.

5. TYPE OPERATORS
In the NSP typing rules in section 7 a central type operation,
termed form type composition ⊙ in the sequel, is used that
describes the composition of form content fragments with
respect to the provided actual superparameter type. First
an auxiliary operator ∗ is defined. If applied to an array
the operater lets the type unchanged, otherwise it yields the
respective array type.

T∗ ≡DEF

array of T , T /∈ A

T , else

The form type composition ⊙ is the corner stone of the NSP
type system. Form content provides direct input capabili-
ties, data selection capabilities and hidden parameters. On
submit an actual superparameter is transmitted. The type
of this superparameter can be determined statically in NSP,
it is called the form type (section 4.2) of the form content.
Equally document fragments, which dynamically may gener-
ate form content, have a form type. Form type composition
is applied to form parameter types and describes the ef-
fect of sequencing document parts. Consequently form type
composition is used to specify typing with respect to pro-
gramming language sequencing, loops and document com-
position.

w1 ⊙ w2 ≡DEF

⊥ , if ∃(l1 7→T1)∈w1 • ∃(l2 7→T2)∈w2•

l1 = l2 ∧ P1∈P ∧ P2∈P

⊥ , if ∃(l1 7→T1)∈w1 • ∃(l2 7→T2)∈w2•

l1 = l2 ∧ T1⊔ T2 undefined

(dom w2)−�w1 ∪ (dom w1)−�w2

∪ l 7→ (T1 ⊔ T2)∗ |

(l 7→T1)∈w1 ∧ (l 7→T2)∈w2

, else

If a document fragment targets a formal parameter of a cer-
tain type and another document fragment does not target
this formal parameter, then and only then the document
resulting from sequencing the document parts targets the
given formal parameter with unchanged type. That is, with
respect to non-overlapping parts of form types, form type
composition is just union. With antidomain restriction no-
tation [20] this is specified succinctly in the ⊙ operator de-
finition.

Two document fragments that target the same formal pa-
rameters may be sequenced, if the targeted formal parame-
ter types are compatible for each formal parameter. NSP
types are compatible if they have a supertype in common.

The NSP subtype relation formalizes when an actual para-
meter may be submitted to a server page: if its type is a
subtype of the targeted formal parameter. So if two doc-
uments have targeted parameters with compatible types in
common only, the joined document may target every server
page that fulfills the following: formal parameters that are
targeted by both document parts have an array type, be-
cause of sequencing a single data transmission cannot be
ensured in neither case, thereby the array items’ type must
be a common supertype of the targeting actual parameters.
This is formalized in the ⊙ operator definition: for every
shared formal parameter a formal array parameter of the
least common supertype belongs to the result form type.
The least common supertype of two types is given as least
upper bound of the two types, which is unique up to the
equality induced by recursive subtyping itself.

The error cases in the ⊙ operator definition are equally im-
portant. The ⊙ operator is a partial function. If two docu-
ment fragments target a same formal parameter with non-
compatible types, they simply cannot be sequenced. The ⊙
operator is undefined for the respective form types. More
interestingly, two document fragments that should be com-
posed must not target a formal server page parameter. This
would result in an actual server page parameter array which
would contradict the overall principle of conservative lan-
guage amalgamation.

Form type composition can be characterized algebraically.
The web signatures form a monoid (W , ⊙ , ∅) with the ⊙
operator as monoid operation and the empty web signature
as neutral element. The operation (λv.v⊙w)w is idempotent
for every arbitrary fixed web signature w, which explains
why the typing rule 23 for loop-structures is adequate.

6. ENVIRONMENTS AND JUDGEMENTS
In the NSP type system two environments are used. The
first environment Γ is the usual type environment. The
second environment ∆ is used for binding names to server
pages, i.e. as a definition environment. It follows from their
declaration that environments are web signatures. All defi-
nitions coined for web signatures immediately apply to the
environments. This is exploited for example in the system
parts typing rule 45.

Γ : Label ||−→ (T ∪ P) = W

∆ : Label ||−→ P ⊂ W

The Core NSP identifiers are used for basic programming
language expressions, namely variables and constants, and
for page identifiers, namely formal page parameters and
server pages names belonging to the complete system. In
some contexts, e.g. in hidden parameters or in select menu
option values, both page identifiers and arbitrary program-
ming language expressions are allowed. Therefore initially
page identifiers are treated syntactically as programming
language expressions. However a clean cut between page
identifiers and the programming language is maintained, be-
cause the modeling of conservative amalgamation is an ob-
jective. The cut is provided by the premises of typing rules
concerning such elements where only a certain kind of en-

tity is allowed; e.g. in the statement typing rule 15 it is
prevented that page identifiers may become program parts.
The Core NSP type system relies on several typing judge-
ments:

Γ ⊢ e : T ∪ P e ∈ expr
Γ ⊢ n : D n ∈ com ∪ dynamic
Γ ⊢ c : P c ∈ websig-core
Γ ⊢ a : W a ∈ actualparams
Γ, ∆ ⊢ s : S s ∈ system

Eventually the judgment that a system has complete type
is targeted. In order to achieve this, different kinds of types
must be derived for entities of different syntactic categories.
Expressions have programming language types or page types.
Both programming language code and user interface descrip-
tions have document fragment types, because they can be
interlaced arbitrarily and therefore belong conceptually to
the same kind of document. Parameterized core documents
have page types. The actual parameters of a call element
together provide an actual superparameter, the type of this
is a web signature and is termed a call type. All the kinds of
judgements so far work with respect to a given type environ-
ment. If documents are considered as parts of a system they
must mutually respect defined server page names. Therefore
subsystem judgements have to be given additionally with re-
spect to the defintion environment.

7. TYPING RULES
The notion of Core NSP type correctness is specified as an
algorithmic type system. Compared to a declarative version
extra premises are needed in some of the typing rules, in
some premises slightly bit more complex type patterns have
to be used. However in the Core NSP type system these ex-
tra complexity fosters understandability. The typing rule 12
allows for extraction of an identifier typing assumption from
the typing environment. Rules 13 and 14 give the types of
selected record fields respectively indexed array elements.

(v 7→ T) ∈ Γ

Γ ⊢ v : T
(12)

Γ ⊢ e : {li 7→ Ti}i∈1...n j ∈ 1 . . . n

Γ ⊢ e.lj : Tj

(13)

Γ ⊢ e : array of T Γ ⊢ i : int

Γ ⊢ e[i] : T
(14)

Typing rule 15 introduces programming language statements,
namely assignments. Only programming language variables
and expression may be used, i.e. expressions must not con-
tain page identifiers. The resulting statement is sure not
to produce any output. It is possible to write an assign-
ment inside forms and outside forms. If it is used inside a
form it will not contribute to the submitted superparameter.
Therefore a statement has a document fragment type which
is composed out of the neutral document type, the neutral
form type and the empty web signature. The empty string,
which is explicitly allowed as content in NSP, obtains the
same type by rule 16.

Γ ⊢ x : T Γ ⊢ e : T T ∈ T

Γ ⊢ x := e : ((◦,m), ∅) (15)

Γ ⊢ ε : ((◦,m), ∅) (16)

Actually in Core NSP programming language and user in-
terface description language are interlaced tightly by the
abstract syntax. The code tags are just a means to relate
the syntax to common concrete server pages syntax. The
code tags are used to switch explicitly between program-
ming language and user interface description and back. For
the latter the tags may be read in reverse order. However
this switching does not affect the document fragment type
and therefore the rules 17 and 18 do not, too.

Γ ⊢ c : D

Γ ⊢ < code > c < /code > : D
(17)

Γ ⊢ d : D

Γ ⊢ < /code > d < code > : D
(18)

Rule 19 introduces character strings as well typed user in-
terface descriptions. A string’s type consists of the output
type, the neutral form type and the empty web signature.
Another way to produce output is by means of expression
elements, which support all basic types and get by rule 20
the same type as character strings.

d ∈ string

Γ ⊢ d : ((•,m), ∅) (19)

Γ ⊢ e : T T ∈ B

Γ ⊢ < expr > e < /expr > : ((•,m), ∅) (20)

Composing user descriptions parts and sequencing program-
ming language parts must follow essentially the same typing
rule. In both rule 21 and rule 22 premises ensure that the
document fragment types of both document parts are com-
patible. If the parts have a common layout supertype, they
may be used together in server pages contexts of that type.
If in addition to that the composition of the parts’ form
types is defined, the composition becomes the resulting form
type. Form composition has been explained in section 5.

d1, d2 ∈ dynamic
Γ ⊢ d1 : (L1, w1) Γ ⊢ d2 : (L2, w2)

L1 ⊔ L2 ↓ w1⊙w2 ↓
Γ ⊢ d1 d2 : (L1 ⊔ L2, w1 ⊙ w2)

(21)

Γ ⊢ c1 : (L1, w1) Γ ⊢ c2 : (L2, w2)
L1⊔ L2 ↓ w1⊙ w2 ↓

Γ ⊢ c1; c2 : (L1⊔ L2, w1⊙ w2)
(22)

The loop is a means of dynamically sequencing. From the
type system’s point of view it suffices to regard it as a se-
quence of twice the loop body as expressed by typing rule 23.
For an if-then-else-structure the types of both branches must
be compatible in order to yield a well-typed structure. Ei-
ther one or the other branch is executed, so the least upper
bound of the layout types and least upper bound of the form
types establish the adequate new document fragment type.

Γ ⊢ e : boolean Γ ⊢ c : (L, w)

Γ ⊢ while e do c : (L, w ⊙ w)
(23)

Γ ⊢ e : boolean Γ ⊢ c1 : D1 Γ ⊢ c2 : D2 D1⊔ D2 ↓
Γ ⊢ if e then c1else c2 : D1⊔ D2

(24)

Next the typing rules for controls are considered. The sub-
mit button is a visible control and must not occur outside
a form, in Core NSP it is an empty element. It obtains the
output type, the inside form type, and the empty web signa-
ture as document fragment type. Similarly an input control
obtains the output type and the inside form type. But an
input control introduces a form type. The type of the in-
put control is syntactically fixed to be a widget supported
type. The param-attribute of the control is mapped to the
control’s type. This pair becomes the form type in the con-
trol’s document fragment type. Check boxes are similar. In
Core NSP check boxes are only used to gather boolean data.

Γ ⊢ < submit/ > : ((•,⇓), ∅) (25)

T ∈ Bsupported

Γ⊢ < input type = ”T” param = ”l”/ > :
((•,⇓), {(l 7→ T)})

(26)

Γ ⊢ < checkbox param = ”l”/ > :
((•,m), {(l 7→ boolean)})

(27)

Hidden parameters are not visible. They get the neutral
form type as part of their fragment type. The value of the
hidden parameter may be a programming language expres-
sion of arbitrary type or an identifier of page type.

Γ ⊢ e : T

Γ ⊢ < hidden param = ”l” > e < /hidden > :
((◦,⇓), {(l 7→ T)})

(28)

The select element may only contain code that generates
option elements. Therefore an option element obtains the
option type OP by rule 30 and the select element typing
rule 29 requires this option type from its content. An op-
tion element has not an own param-element. The interesting
type information concerning the option value is wrapped as
an array type that is assigned to an arbitrary label. The
type information is used by rule 29 to construct the correct
form type.

Γ ⊢ d : (OP,m), {(l 7→ array of T)}

Γ ⊢ < select param = ”l” > d
< /select > : ((•,⇓), {(l 7→ array of T)})

(29)

Γ ⊢ v : T Γ ⊢ e : S S ∈ B l ∈ Label

Γ ⊢
< option >

< value > v < /value >
< label > e < /label >

< /option > : ((OP,m), {(l 7→ array of T)})

(30)

The object element is a record construction facility. The
enclosed document fragment’s layout type lasts after appli-
cation of typing rule 31, whereas the fragment’s form type is
assigned to the object element’s param-attribute. This way
the superparameter provided by the enclosed document be-
comes a named object attribute.

Γ ⊢ d : (L, w)

Γ ⊢ < object param = ”l” > d < /object > :
(L, {(l 7→ w)})

(31)

The form typing rule 32 requires that a form may target
only a server page that yields a complete web page if it is
called. Furthermore the form type of the form content must
be a subtype of the targeted web signature, because the
Core NSP subtype relations specifies when a form parame-
ter may be submitted to a server page of given signature.
Furthermore the form content’s must be allowed to occur
inside a form. Then the rule 32 specifies that the form is a
vizible element that must not contain inside another form.

Γ ⊢ l : w → 2 Γ ⊢ d : ((e,⇓), v) ⊢ v < w

Γ ⊢ < form callee = ”l” > d < /form > : ((e,⇑), ∅)
(32)

Now the layout structuring elements, i.e. lists and tables,
are investigated. The corresponding typing rules 33 to 37 do
not affect the form types and form occurrence types of con-
tained elements. Only document parts that have no specific
layout type, i.e. are either neutral or merely vizible, are al-
lowed to become list items by rule 33. Only documents with
list layout type may become part of a list. A well-typed list
is a vizible element. The rules 35 to 37 work analogously for
tables.

Γ ⊢ d : ((• ∨ ◦, F), w)

Γ ⊢ < li > d < /li > : ((LI, F), w)
(33)

Γ ⊢ d : ((LI ∨ ◦, F), w)

Γ ⊢ < ul > d < /ul > : ((•, F), w)
(34)

Γ ⊢ d : ((• ∨ ◦, F), w)

Γ ⊢ < td > d < /td > : ((TD, F), w)
(35)

Γ ⊢ d : ((TD ∨ ◦, F), w)

Γ ⊢ < tr > d < /tr > : ((TR, F), w)
(36)

Γ ⊢ d : ((TR ∨ ◦, F), w)

Γ ⊢ < table > d < /table > : ((•, F), w)
(37)

As the last core document element the server side call is
treated. A call element may only contain actual parameter
elements. This is ensured syntactically. The special sign
εact acts as an empty parameter list if necessary. It has the
empty web signature as call type. Typing rule 40 makes
it possible that several actual parameter elements uniquely
provide the parameters for a server side call. Rule 38 speci-
fies, that a server call can target an include server page only.
The call element inherits the targeted include server page’s
document fragment type, because this page will replace the
call element if it is called.

Γ ⊢ l : w→D Γ ⊢ as : v ⊢ v < w

Γ ⊢ < call callee = ”l” > as < /call > : D
(38)

Γ ⊢ εact : ∅ (39)

Γ ⊢ as : w Γ ⊢ e : T l /∈ (dom w)

Γ ⊢ < actualparam param = ”l” > e
< /actualparam > as : w ∪ {(l 7→ T)}

(40)

With the typing rule 41 and 44 arbitrary document fragment
may become an include server page, thereby the document
fragment’s type becomes the server page’s result type. A
document fragment may become a complete web page by
typing rules 42 and 44 if it has no specific layout type, i.e.
is neutral or merely visible, and furthermore is not intended
to be used inside forms. The resulting server page obtains
the complete type as result type. Both include server page
cores and web server page cores start with no formal para-
meters initially. With rule 43 parameters can be added to
server page cores. The rule’s premises ensure that a new for-
mal parameter must have another name than all the other
parameters and that the formal parameter is used in the
core document type-correctly. A binding of a type to a new
formal parameter’s name is erased from the type environ-
ment.

Γ ⊢ d : D d ∈ dynamic

Γ ⊢ < include > d < /include > : ∅ → D
(41)

Γ ⊢ d : ((• ∨ ◦,m ∨ ⇑), ∅) t∈strings d∈dynamic

Γ ⊢

< html >
< head >

< title > t < /title >
< /head >
< body > d < /body >

< /html > : ∅ → 2

(42)

Γ ⊢ l : T Γ ⊢ c : w → D l /∈ (dom w)

Γ\(l 7→ T) ⊢
< param name = ”l” type = ”T”/ >
c : (w ∪ {(l 7→ T)}) → D

(43)

Γ ⊢ l : P Γ ⊢ c : P c ∈ websig-core

Γ\(l 7→ P), {(l 7→ P)} ⊢
< nsp name = ”l” > c < /nsp > : 3

(44)

A server page core can become a well-typed server page by
rule 44. The new server page name and the type bound to
it are taken from the type environment and become the de-
finition environment. An NSP system is a collection of NSP
server pages. A single well-typed server page is already a
system. Rule 45 specifies system compatibility. Rule 46
specifies system completeness. Two systems are compatible
if they have no overlapping server page definitions. Further-
more the server pages that are defined in one system and
used in the other must be able to process the data they
receive from the other system, therefore the types of the
server pages defined in the one system must be subtypes of
the ones bound to their names in the other’s system type
environment.

s1, s2 ∈ system (dom ∆1) ∩ (dom ∆2) = ∅
((dom Γ2) � ∆1) < ((dom ∆1) � Γ2)
((dom Γ1) � ∆2) < ((dom ∆2) � Γ1)

Γ1, ∆1 ⊢ s1 : 3 Γ2, ∆2 ⊢ s2 : 3

((dom ∆2)−�Γ1) ∪ ((dom ∆1)−�Γ2) , ∆1 ∪ ∆2 ⊢
s1s2 : 3

(45)

(dom ∆) ∩ bound(s) = ∅
Γ, ∆ ⊢ s : 3 Γ ∈ R

Γ, ∆ ⊢ s :
√ (46)

Typing rule 46 specifies when a well-typed system is com-
plete. First, all of the used server pages must be defined,
that is the type environment is a pure record type. Second
server page definitions may not occur as bound variables
somewhere in the system.

Theorem 7.1. Core NSP type checking is decidable.

Proof(7.1): Core NSP is explicitly typed. The Core NSP
type system is algorithmic. Recursive subtyping is decid-
able. The least upper bound can be considered as a union
operation during type checking - as a result a form con-
tent is considered to have a finite collection of types, which
are checked each against a targeted server page if rule 32 is
applied.2

8. RELATED WORK
WASH/HTML is a embedded domain specific language for
dynamic XML coding in the functional programming lan-
guage Haskell, which is given by combinator libraries [23][24].
In [24] four levels of XML validity are defined. Well-formedness
is the property of correct block structure, i.e. correct match-
ing of opening and closing tags. Weak validity and ele-
mentary validity are both certain limited conformances to
a given document type definition (DTD). Full validity is
full conformance to a given DTD. The WASH/HTML ap-
proach can guarantee full validity of generated XML. It
only guarantees weak validity with respect to the HTML
SGML DTD under an immediate understanding of the de-
fined XML validity levels for SGML documents. In the
XHTML DTD [21] exceptions only occur as comments - in
XML DTDs no exception mechanism is available - however
these comments become normative status in the correspond-
ing XHMTL standard [22]; they are called element prohi-
bitions. In [18][2] it is shown that the normative element
prohibitions of the XHMTL standard [22] can be statically
checked by employing flow analysis [15][17][16].

There are a couple of other projects for dynamic XML gen-
eration, that garuantee some level of user interface descrip-
tion language safety, e.g. [8][9][12]. We delve on some fur-
ther representative examples. In [25] two approaches are
investigated. The first provides a library for XML process-
ing arbitrary documents, thereby ensuring well-formedness.
The second is a type-based translation framework for XML
documents with respect to a given DTD, which garuantees
full XML validity. Haskell Server Pages [14] garuantee well-
formedness of XML documents. The small functional pro-
gramming language XMλ [19] is based on XML documents
as basic datatypes and is designed to ensure full XML va-
lidity [13].

9. CONCLUSION
The best practice of the proven 3GL programming languages
– to define a programming system as the interplay of stati-
cally typed components – has not yet been adopted to the

development of Web interfaces. With respect to Software
design, this problem is tackled by the introduction of pro-
prietary concepts in several commercial Web technologies,
like the concept of object wrappers for the form data in the
SAP technology BSP (Business Server Pages). Dealing with
type errors is supported by web applications frameworks like
Struts or IBM Websphere, too, however, only dynamic con-
cepts are offered.

There are several initiatives that propose a statically typed
approach to web application development. With NSP, web
development with server pages is addressed. A precise de-
scription of the type system of NSP is desired, because it
(i) can be used as the specification for implementations of
NSP concepts, (ii) allows for precise reasoning about web
interaction and therefore (iii) deepens the understanding of
the interplay between web pages, forms and Web scripts.
Therefore, in this paper the core type system of NSP has
been given as a Per Martin-Löf style type system.

10. REFERENCES
[1] M. Abadi and L. Cardelli. A Theory of Primitive Objects -

Untyped and First-Order Systems. Information and
Computation, 125(2):78–102, 1996. Earlier version
appeared in TACS ’94 proceedings, LNCS 789.

[2] C. Brabrand, A. Møller, and M. I. Schwartzbach. Static
validation of dynamically generated HTML. In Proceedings
of Workshop on Program Analysis for Software Tools and
Engineering. ACM, 2001.

[3] L. Cardelli. Type systems. In Handbook of Computer
Science and Engineering. CRC Press, 1997.

[4] B. Courcelle. Fundamental Properties of Infinite Trees.
Theoretical Computer Science, 25:95–169, 1983.

[5] D. Draheim, E. Fehr, and G. Weber. JSPick - A Server
Pages Design Recovery Tool. In Proceedings of CSMR 2003
- 7th European Conference on Software Maintenance and
Reengineering. IEEE Press, 2003.

[6] D. Draheim and G. Weber. Strongly Typed Server Pages.
In Proceedings of The Fifth Workshop on Next Generation
Information Technologies and Systems, LNCS, pages
29–44. Springer, June 2002.

[7] V. Gapayev, M. Y. Levin, and B. C. Pierce. Recursive
Subtyping Revealed. In International Conference on
Functional Programming, 2000. To appear in Journal of
Functional Programming.

[8] A. Gill. HTML combinators, version 2.0. 2002.
http://www.cse.ogi.edu/ andy/html/intro.htm.

[9] M. Hanus. Server side Web scripting in Curry. In
Workshop on (Constraint) Logic Programming and
Software Engineering (LPSE2000), July 2000.

[10] P. Kilpeläinen and D. Wood. SGML and Exceptions.
Technical Report HKUST-CS96-03, Department of
Computer Science, University of Helsinki, 1996.

[11] B. Liskov. Data Abstraction and Hierarchy. SIGPLAN
Notices, 23(5), May 1988.

[12] E. Meijer. Server-side Scripting in Haskell. Journal of
Functional Programming, 2000.

[13] E. Meijer and M. Shields. XMλ - A Functional Language
for Constructing and Manipulating XML Documents. 2000.
http://www.cse.ogi.edu/∼mbs, Draft.

[14] E. Meijer and D. van Velzen. Haskell Server Pages -
Functional Programming and the Battle for the Middle
Tier. Electronic Notes in Theoretical Computer Science,
41(1), 2001.

[15] F. Nielson, H. Nielson, and C. Hankin. Principles of
Program Analysis. Springer, 1999.

[16] J. Palsberg and P. O’Keefe. A type system equivalent to
flow analysis. In Proceedings of the ACM SIGPLAN ’95
Conference on Principles of Programming Languages,
pages 367–378, 1995.

[17] J. Palsberg and M. I. Schwartzbach. Safety analysis versus
type inference. Information and Computation,
118(1):128–141, 1995.

[18] A. Sandholm and M. Schwartzbach. A type system for
dynamic web documents. In T. Reps, editor, Proc. 27th
Annual ACM Symposium on Principles of Programming
Languages, pages 290–301. ACM Press, 2000.

[19] M. Shields and E. Meijer. Type-indexed rows. In
Proceedings of the 28th Annual ACM SIGPLANSIGACT
Symposium on Principles of Programming Languages
(POPL’01), pages 261–275. ACM Press, 2001.

[20] J. Spivey. The Z Notation. Prentice Hall, 1992.
[21] The W3C HTML working group. Extensible HTML

version 1.0 Strict DTD. W3C, 2000.
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd.

[22] The W3C HTML working group. XHTML 1.0 The
Extensible HyperText Markup Language. W3C, 2000.
http://www.w3.org/TR/xhtml1/.

[23] P. Thiemann. Modeling HTML in Haskell. In Practical
Applications of Declarative Programming (PADL ’00),
LNCS, January 2000.

[24] P. Thiemann. A typed representation for HTML and XML
documents in Haskell. Journal of Functional Programming,
12(4):435–468, July 2002.

[25] M. Wallace and C. Runciman. Haskell and XML: Generic
combinators or typebased translation? ACM SIGPLAN
Notices, 34(9):148–159, September 1999. Proceedings of
ICFP’99.

[26] D. Wood. Standard generalized markup language:
Mathematical and philosophical issues. In J. van Leeuwen,
editor, Computer Science Today. Recent Trends and
Developments, LNCS, pages 344–365. Springer, 1995.

Style-based Architectural Analysis for Migrating a
Web-based Regional Trade Information System

Simon Giesecke
Software Engineering Group
Carl von Ossietzky University
26111 Oldenburg, Germany

giesecke@informatik.uni-oldenburg.de

Johannes Bornhold
Software Engineering Group
Carl von Ossietzky University
26111 Oldenburg, Germany

johannes.bornhold@informatik.uni-
oldenburg.de

ABSTRACT
In this paper, we present the MIDARCH method for selecting a
middleware platform in Enterprise Application Integration (EAI)
and migration projects. Its specific contribution is the use of archi-
tectural styles (MINT Styles) as a vehicle for binding architectural
knowledge. In addition, an ongoing case study is presented which
applies the MIDARCH method to a web-based regional trade infor-
mation system. The project involves the integration of three subsys-
tems, which have been developed rather independently in the past,
two of which are already web-based. The major motivation for mi-
grating the system is to improve evolvability of the system and to
make it more apt for the supply to a larger number of customers.

Keywords
ArchiMate, Architectural Description Languages, Architectural
Style, Cocoon, Enterprise Application Integration, Java, Web Mi-
gration, xADL

1. INTRODUCTION
Software reengineering is concerned with the transformation of
legacy software systems. Many reengineering projects aim to mod-
ernise systems that are based on outdated technologies, e.g. main-
frame systems, that are no longer properly maintained. The trans-
formation target of many business information systems are web-
based platforms. Today, we are in the situation that reengineer-
ing projects are also concerned with systems that are already web-
based, but need to be transformed for a particular reason. Typical
reasons are:

• The employed implementation technologies are already out-
dated themselves.

• Requirements have changed and the chosen architecture is
no longer adequate.

• Multiple systems are to be integrated.

WMR ’06 Bari, Italy

• The implementation technologies have been used in an inad-
equate way.

These reasons are not exclusive to web-based software systems.
In particular the latter reason appears like a generic maintainabil-
ity problem. However, in the case of implementation technologies
for web-based systems, such as Sun’s Java Server Pages [24] or
Apache Cocoon [1], many systems have been developed with only
a premature understanding of the architectural style endorsed by
these technologies.

The migration of such systems is often not possible without mod-
ifying the internal structure of the participating systems, because
they do not expose adequate interfaces. Migration projects there-
fore offer an opportunity to restructure the participating systems,
and enabling the integration using advanced middleware tech-
niques. Such approaches are also termed Enterprise Application
Integration (EAI), which is a special case of migration that involves
multiple, heterogeneous systems.

In this paper, we propose the MIDARCH method for supporting
the migration business information systems based on architectural
descriptions and architectural styles that are induced by the mid-
dleware used (Middleware INTegration Styles, MINT Styles). The
main feature of the method is the use of MINT Styles as a vehicle
for enabling reuse of architectural design knowledge across multi-
ple migration projects. In addition, we describe a case study of an
application of the method which involves a migration project con-
cerning a web-based regional trade information system, and present
first results of the case study.

1.1 MIDARCH Research Project
The major goal of the MIDARCH research project [10] is the de-
velopment and validation of a software engineering method for
migrating business information systems based on architectural de-
scriptions that exploit the benefits of architectural styles which
are endorsed by the middleware used. The method is called MI-
DARCH (MIDdleware style based ARCHitectural integration). Ar-
chitectural styles capture architectural knowledge and provide the
basis to reason about families of related software architectures. The
method supports the transfer of knowledge from one integration
project to another by creating and analysing architectural descrip-
tions that are explicitly based on some architectural style. Through
this, experiences from one integration project do not remain con-
strained to the specifics of the concrete architecture of the subject
system, but can be related to the MINT Style. Thus, integration

knowledge can be reused in other projects that consider the use of
the same style.

1.2 Overview
In the remainder of the paper, we provide the details of fundamental
topics that are required for the rest of the paper in Section 2. The
setting of the case study is described in Section 4. The research
approach taken is outlined in Section 5, which includes the outline
of the general procedure of the MIDARCH method. Preliminary
results of the ongoing case study are presented in Section 6. The
paper ends with a conclusion (Section 7).

2. FOUNDATIONS
In this section, we discuss some foundations we deem necessary
to understand the remainder of the paper. First, we introduce the
general research areas of Enterprise Application Integration (Sec-
tion 2.1) and Service-oriented Architectures (Section 2.2), which
form the conceptual basis of our approach. Afterwards, we discuss
the role of architectural styles for our research (Section 2.3) and
present the Architectural Description Languages we use for mod-
elling our case study (Section 2.4).

2.1 Enterprise Application Integration
Enterprise Application Integration (EAI) is a special form of soft-
ware reengineering, concerning the integration of legacy business
information systems. The term Enterprise Application Integration
is essentially used in two different meanings: In one view, EAI is
used in a restricted sense to denote a specific approach to the in-
tegration of information systems which employs off-the-shelf EAI
components and is non-invasive with respect to the subsystems to
be integrated [18]. EAI in this first view always leads to loosely
integrated systems. In this view, EAI is distinct to (invasive) mi-
gration.

The other view on EAI refers to any approach to the integration of
information systems at the application level as EAI [11], which is
the view we take as well. In this view, EAI is a special case of mi-
gration that involves multiple, heterogeneous systems. However,
in our work, we focus the aspect of the middleware that is used
for integration. We have a wide view of middleware, i.e. we re-
gard any software layer that it used for enabling communication of
(often, but not necessarily, remote) subsystems or components as a
middleware platform. In the case of web-based applications, e.g.
Apache Cocoon or Servlet containers are considered middleware
platforms.

In [11], three architectural levels are distinguished: Business archi-
tecture, application architecture and technology architecture. Inte-
gration at each of these levels is described as inter-organisational
processes, Enterprise Application Integration and middleware inte-
gration, respectively. We are concerned with the latter two levels:
The selection of a middleware platform provides the infrastructure
for the implementation of the application architecture, and thus for
achieving Enterprise Application Integration.

2.2 Service-oriented Architectures
Service-oriented Architectures (SOAs) [12, 20] can both be re-
garded on a concrete, technical and on an abstract, conceptual level.
The first possibility involves the realization of components using
specific technologies creating a service infrastructure as web ser-
vices and the use of technologies such as WSDL, SOAP, UDDI,
etc. [29]. The conceptual view generalises this approach and does

not necessarily require a specific service-oriented realization, but
uses services at the elements of architectural description. One op-
tion for implementing a conceptual service-oriented architecture is,
of course, using explicitly service-oriented technologies, but other
technologies may be used as well. In the latter case, a well-founded
mapping of service-oriented concepts to the concepts endorsed by
the implementation technology should be provided (cf., e.g., [17]).

2.3 Architectural Styles
Architectural styles [23] and architectural patterns [3] are similar
concepts, which we deem equivalent for the purposes of this paper
and only use the former term, in order to better distinguish them
from lower-level design patterns [7].

Classical general-purpose architectural styles are the pipe-and-
filter, blackboard, layered, and event-based styles [23], and variants
thereof. These styles are often used in an informal manner to estab-
lish a common vocabulary for architectural design elements. In the
context of ADLs, formal specifications of architectural styles are
used, which define families of architectures or impose constraints
on concrete architectural configurations. A special case of archi-
tectural styles are those induced or endorsed by an implementation
platform, especially by middleware platforms which make use of
high-level abstractions [6]. We refer to such architectural styles as
MINT Styles.

2.4 Architectural Description Languages
Over the last 15 years, many Architectural Description Languages
(ADLs) have been developed with different goals and approaches
[22]. There is no broad agreement on a definition of an ADL, for
example there have been some debates on whether UML qualifies
as an ADL – be it UML as such or a specific usage of UML [8,
21]. We do not intend to provide a rigorous definition here either.
However, we briefly describe two ADLs, which play some role in
our research project: xADL 2.0 and ArchiMate.

2.4.1 xADL
xADL 2.0 [5] (we will use the brief form xADL in the following)
is an ADL which evolved from a traditional line of ADLs at the
University of California at Irvine. xADL is a collection of exten-
sions to the xArch [4] core ADL, which is meant to be a “stan-
dard, extensible XML-based representation for software architec-
tures” [4]. xADL was designed in a modular and extensible fash-
ion which is based on the modularity and extensibility of XML
and XML-Schema [28]. Tool support is available on different lev-
els. On the syntactical level, xADL benefits from its XML basis.
Generic tools can be used out of the box, e.g. XML validators can
validate xADL and also custom extensions. Another example are
syntax-based editors, which can understand the schemas and adopt
to custom extensions automatically. Specific xADL tools [26] are a
data binding library and a generator which automatically generates
a custom data binding library from a XML-Schema. Additionally
some higher-level tools are available.

2.4.2 ArchiMate
ArchiMate [19] is not a traditional ADL, insofar as it does not focus
exclusively on software architectures, but is used to describe enter-
prise architectures, which place – in the definition of ArchiMate’s
developers – software architecture in the context of the organisa-
tion(s) using the software. An enterprise architecture is “a coherent
whole of principles, methods, and models that are used in the de-
sign and realisation of an enterprise’s organisational structure, busi-

ness processes, information systems, and infrastructure” [19, p. 3].
The language closely resembles the UML, and can be mapped onto
the UML, but it is not merely an extension of the UML meta-
model. ArchiMate supports a layered modelling approach in es-
sentially three layers: business, application and technology archi-
tecture (similar to [11]). It is based on the concepts of SOA, so
services play a central role on each of the layers.

3. MIDARCH-METHOD
In this section we describe the generic MIDARCH method. The
activities proposed by the generic MIDARCH method are shown in
Figure 1. The activities shown are quite coarse-grained and must
be described on a more fine-grained level to be effectively imple-
mentable. Furthermore, no backsteps that might be necessary are
indicated in the figure, but the application of the method will be
very iterative in practise.

The steps can be structured into four activities, which consist of
several subactivities:

Activity 1: Scoping and Goal Definition The first activity con-
sists of two subactivities: Scope Definition and Require-
ments Elicitation.

Define Scope Scope Definition involves creating a list of
(sub)systems to be integrated.

Determine Current and Future Requirements
Requirements Elicitation involves the determina-
tion of the future requirements on the system, which
motivate the need for the integration, in detail, as well
as the current requirements on the system. Current
requirements may already be documented, but it must
be ensured that they are documented in a form that can
be compared to the future requirements.
As part of the requirements delta, high-level goals of
the integration are identified, which are important for
the second activity.
The requirements elicitation process is influenced by
the scope determined in the previous step, e.g. because
current requirements can only be determined on the ba-
sis of a specific system scope.

Afterwards, it must be determined if the requirements match
the functionality of the systems to be integrated. In this
case, scoping must be reconsidered. There may either be
functionality missing, in which case it must be determined
whether another (internally or externally available) system
can be considered in the integration. If some functionality
is not available in an existing system, it must be planned to
be newly implemented. There may also be (sub)systems that
are not needed to fulfil the future requirements.

Activity 2: Preparation The second activity consists of two sub-
activities preparatory with respect to Activity 3.

Develop Project-Specific Quality Model A project-speci-
fic quality model is developed, which is focused on the
migration goals identified in the previous activity.

Model Current Architecture The current architecture is
modelled using a suitable modelling language/method.
One goal of the overall research project is to evaluate

the suitability of different architectural description lan-
guages for this purpose. While probably no single mod-
elling language is suited for modelling any system, we
contribute to the body of knowledge on the use of mod-
elling languages, and thus provide support for the se-
lection of modelling languages in the future. Suitability
here involves the ability to express distinctive features
of the current and future architectures (which should be
modelled using the same notation and method to ensure
commensurability) and to analyse the system or archi-
tecture characteristics that occur in the quality model.

Activitiy 3: Architecture Exploration The third activity models
and explores different architectural alternatives. It may be
considered the core of the method and consists of four sub-
activities.

Choose/Model MINT Style In each iteration of this activ-
ity, one or more MINT Style(s) may be considered. At
least in the first iteration, multiple styles should be con-
sidered to enable a meaningful assessment in the fourth
subactivity. In the method description, we assume that
only one style is considered for better readability.
The style description may be either taken from a tax-
onomy of styles or may be specifically created. One
goal of the research project is to provide a taxonomy of
MINT Styles and an initial body of knowledge which
supports the selection of styles with suitable quality
characteristics.
A further goal of the research project is to evaluate the
usefulness of different levels of rigour of style descrip-
tions, most importantly informal style descriptions that
may include example architectures as opposed to for-
mal style descriptions in an architectural description
language as a constraint for concrete architectures in
the same language.

Model Candidate Architecture The candidate architecture
is modelled on the basis of the chosen style and the
current architecture to reflect future requirements.

Evaluate Candidate Architecture The Candidate Archi-
tecture is evaluated against the quality model using a
scenario-based architectural evaluation method such as
ATAM [16].

Assess Evaluation Results The evaluation results of the
candidate architectures developed so far and the cur-
rent architectures are assessed. If the results are found
to sufficiently support the integration goals, the activity
ends, otherwise further styles and architectures must be
considered.

Activity 4: Architecture Selection and Adoption The last activ-
ity is not considered within the method in detail, but is in-
cluded here to make the method complete within the context
of its intended application.

Choose Target Architecture Based on the results of the
previous activity, a target architecture is chosen, which
is based on the best architecture(s) that were identified
in the last step of Activity 3. If necessary, details which
have been left out in the previous activity are amended.

Adopt Target Architecture The systems are integrated and
possibly modified according to the chosen target archi-
tecture.

Define Scope

Determine
Current and

Future
Requirements

Activity 1:
Definition

Activity 2:
Preparation

Develop
Project-
Specific

Quality Model

Model Current
Architecture

Activity 3:
Exploration

Model
Candidate

Architectures

Evaluate
Candidate

Architectures

Assess
Evaluation

Results

Choose/
Model MINT

Styles

Activity 4:
Implementation

Choose
Target

Architecture

Adopt Target
Architecture

Figure 1: Activities of the MIDARCH method

Business Development

Department Agent

InterestedCompany

Employee

ParticipatingCompany

Employee

Desktop

Application

Query

Interface

Management

Interface

Figure 2: User roles and their relationships to the system’s in-
terfaces

4. CASE STUDY
In this section we give a brief overview of the regional trade infor-
mation system which is the subject of the case study (Section 4.1)
and the migration goals which shall be achieved (Section 4.2).

4.1 System Purpose
The trade information system is provided as a supporting tool for
sustainable regional development. The general idea behind this sys-
tem is to make information on the economic potential of a region
available to companies to increase regional business collaboration.

As indicated in the introduction, the subject system of the case
study is separated into three subsystems which have been devel-
oped rather independently in the past. Each of these subsystems
currently provides a distinct user interface. Two of these interfaces
are already web-based. There are three roles of users accessing
these interfaces. The relationships of user roles and interfaces are
shown shown in Figure 2. The business development departments

of the counties and municipalities in the covered region collectively
form the current customer, to which our cooperation partner pro-
vides the service.

First, an access-controlled web interface is used to collect and man-
age the data about the participating regional companies. It has two
main groups of users. The first group represents the agents at the
business development departments. These users can administrate
the data of their district’s companies and manage the users of the
second group, which represent the participating companies them-
selves.

Second, a web-based query interface is publicly available. It
presents information about companies which are located in the cov-
ered region. The ability to query this information by different filter
criteria facilitates finding potential collaboration partners among
regional companies, and thereby supports building regional busi-
ness networks. The data about each company consists of statistical
and address data as well as information on offered technologies,
special skills and cooperation interests.

As a kind of glue to the data-management interface the presentation
of each company’s data contains a hyperlink to edit it. Through this
link, new company users can use a registration mechanism to re-
quest a login to the system and the necessary rights to edit their data
records. In addition the business development department agents
have the ability to export their data in a spreadsheet file format.

The third user interface is provided by a desktop application which
goes back to a point in time before the development of the other
subsystems. Only part of the functionality offered via this inter-
face is still in use. It allows to manage private additions to the
data records, which are used only internally by the business devel-
opment departments. Currently, the new management subsystem
provides an export facility which allows the users of the desktop
application to manually download the up to date data in the desk-

top application’s proprietary file format and afterwards import it to
update their locally stored data.

The desktop application was originally also used to manage the
data, which is now managed through the web-based user interface.
Originally, the data was sent by the business development depart-
ments to the service provider by email and the service provider
manually combined the data fragments to feed the query subsys-
tem.

4.2 Migration Goals
There are three main migration goals: First, the system shall be
made ready for use by multiple customers. Second, it shall be made
more evolvable. Third, the availability of the system should be
improved.

The first goal must be seen in the context that this system was orig-
inally developed to be used in a single instance for a single region
and therefore no effort was made to support multi-customer capa-
bilities and customer-specific customisation needs. In the future,
this system shall be offered to multiple customers (i.e., other re-
gions). This means on the one hand that a greater effort must be
put on support the adaptability to special customer needs with a
manageable amount of human resources. On the other hand, spe-
cial care must be taken in the product development process to ei-
ther support hosting of multiple instances and a (semi)automated
update-mechanism to new releases of the product, or to add multi-
customer capabilities to a single instance of the system.

The second major goal is to increase the system’s evolvability [9,
ch. 2.2.5.2]. The system itself and its parts evolved over time.
Adoption to new requirements has become a challenging task
which requires involved developers to be familiar with many parts
of the current system. Evolvability is enabled at the architectural
level, which must be adequately reflected in the system’s imple-
mentation.

The third goal is to increase the availability of the system, e.g. by
introducing redundant components. Availability becomes more im-
portant when more customers are using the system.

5. APPROACH
In this section we describe the MIDARCH method’s adaptation to
the case study. This section is like section 3 structured according to
the activities of the MIDARCH method.

Activity 1: Scoping and Goal Definition

Define Scope In the case study we selected the three inter-
faces QueryInterface, ManagementInterface and Desk-
topApplication which are described in Section 4 and the
subsystems they depend on.

Determine Current and Future Requirements In the case
study, the requirements are elaborated on the basis of
different internal documents. These documents contain
information on the long-term vision for the software
system, non-functional requirements and use cases.

Activity 2: Preparation

Develop Project-Specific Quality Model We use an ap-
proach based on GQM (goal/question/metric) [27] to

create the quality model. Software quality has differ-
ent aspects: the internal (cf. [25]) and external (cf. [2])
quality of the software architecture description itself,
and the internal and external quality of the software sys-
tem it represents.

Model Current Architecture We plan to use ArchiMate
and xADL (see Section 2.4) to model both the current
and the candidate architecture in the case study. Archi-
Mate provides us with the ability to see the architecture
in an organisational context and to connect the applica-
tion domain with both the business and the technology
domain. With xADL, on the other hand, we are able
to model the architecture on the application level in de-
tail and to integrate the xADL architecture description
with the implementation artefacts. The connection be-
tween both languages is done on the application level,
enhanced with relations to the other levels (within the
ArchiMate description) and related to the development
artifacts (within the xADL description).

Activitiy 3: Architecture Exploration

Choose/Model MINT Style In the case study, we are ex-
ploring the suitability of xADL to describe architectural
styles.

Model Candidate Architecture This architecture shall be
modelled in xADL and ArchiMate analogously to the
model of the current architecture from Activity 2.

The last two steps of this activity Evaluate Candidate Ar-
chitecture and Assess Evaluation Results do not need any
special adaption to the case study.

Activity 4: Architecture Selection and Adoption

Choose Target Architecture In the case study, one detail
which must be added to the chosen target architecture
is the information which implementation artifacts cor-
respond to the architecture components, interfaces and
connectors. This shall be achieved through the Java ex-
tensions which are part of xADL.

Adopt Target Architecture A prototype of the chosen ar-
chitecture is created which shall show how the xADL
model of this architecture can be connected to the im-
plementation artifacts and thus be integrated with the
future steps in the development process. This is also
the last step taken in the case study. The adoption of
the examined systems to the target architecture is a task
out of the scope of the case study.

6. PRELIMINARY RESULTS
In this section we describe the current state of the case study. Ac-
tivity 1 has been virtually completed and we are currently in Ac-
tivity 2. The current architecture has been partially modelled, i.e.
coarse-grained components, their dependencies and the informa-
tion flow have been identified. These are described in Section 6.1.
An example of an ArchiMate model of a part of the system is pre-
sented in Section 6.2. In this model, the coarse-grained components
are refined and linked with information on the business and technol-
ogy levels. Finally, we describe the current middleware technolo-
gies and their usage in Section 6.3, and identify potential problems
with respect to the migration goals.

Management

Interface

Desktop

Application

Query

Interface

Export

Database
Query

Database

Web

Client

<<flow>> <<flow>>

<<flow>> <<flow>>

<<flow>> <<flow>>

<<flow>>

<<external>>

Figure 3: Component dependencies and information flow

6.1 Dependencies and Information Flow
An overview of the component structure and the information flow
of the subject system is shown in Figure 3. The two viewpoints are
combined in this diagram, because at this abstraction level there are
only few elements and the diagram can still be understood.

The different parts of the system have been developed at differ-
ent times. The oldest part is the desktop application which was
originally used to manage the data. The agents at the business de-
velopment departments used this system to collect the data of their
region. Periodically they sent their data to the Application Service
Provider (ASP) of the query interface where this data was merged
manually and fed into the query database. Now, the direction of
the information flow is inverted. The desktop application is up-
dated from the database of the management interface. It contains
an export facility which creates a snapshot of the data in the desk-
top application’s proprietary file format. The users can download
the file and use it to update their local application. This is shown
in Figure 3 by the flow lines from Database to ManagementIn-
terface and from there continued to DesktopApplication. Because
the Export is needed to create the file, there is a dependency from
DesktopApplication to Export.

The data management interface is the youngest part of the system.
It has a database of its own. Note the dependency from Manage-
mentInterface to Database. The users (agents at the business devel-
opment departments and employees of the participating companies)
can update the data through its web-based interface. The collected
data is then transferred periodically into the QueryDatabase. This
results in a delay before updates of the data are reflected in query re-
sults. The information flow is shown by the bidirectional flow lines
between WebClient, ManagementInterface and ManagementInter-
face, Database. The propagation to the QueryInterface, and thus to
the query results, can be read by the directed flows from Database
to Export continued to QueryDatabase and finally reaching Query-
Interface. There is no information flow in the reverse direction.

The last part is the query interface. For historical reasons it has
its own database and a slightly different database schema than the
management interface. As shown in Figure 3 it is only direct de-

pendent on the QueryDatabase. But as mentioned above, its data is
updated by the information provided by the Export, so to be useful
over a longer time, it needs the Export, this can be concluded from
the flow line between Export and QueryDatabase.

6.2 ArchiMate Model
Figure 4 shows an example excerpt from an ArchiMate model of
the current architecture, which shows the parts necessary for the
registration of new users. Its layout is based on an example given
in [14]. When a new company’s employee requests a login to man-
age the data about his company, he is in the role Company and uses
the RegistrationService to request his new login. This service is
realised on the business layer by the business process Registration
which depends on the PostOfficeService. This service is realised
on the application layer by the PostOffice and responsible for in-
forming the right person in the BusinessDevelopmentDepartment
role (BDD) to Check and possibly Accept this request. In the bot-
tom part, this figure shows that the PostOffice component needs an
available EmailService which, in the current case, is realised by
a MailServer on the technology layer which is installed on some
device that in not further specified. This example demonstrates
ArchiMate’s ability to show the relations between the different ar-
chitectures on the business, application and technology layers.

6.3 Middleware Technologies and Their Us-
age

We focus on the subsystems of the regional trade information sys-
tem which already provide a web-based interface, i.e. the query
and management interfaces. Both subsystems are based on Apache
Cocoon [1] but use the technology in different ways.

Apache Cocoon is a “a web development framework built around
the concepts of separation of concerns and component-based web
development” [1]. Cocoon is designed as a Java Servlet. Requests
are processed in a pipeline in which several components (filters)
are hooked together, i.e. it uses a variant of the pipe-and-filter ar-
chitectural style. Within the pipeline, filters communicate via a
stream of SAX events. The entry to the pipelined processing is a
generator followed by an arbitrary number of transformers and fi-
nalised by a serialiser which typically serialises the SAX events
into an HTML output. Apart from this basic concept, Cocoon has
the facility to read from and to serialise to many data formats like
XML, graphic formats, etc. Many extension filters are provided
off-the-shelf, which can be integrated into the pipeline and further
support the development of web applications. With regard to the re-
gional trade information system the most important extensions are
a framework for form handling and extended control flow support
(CForms).

The query interface of the regional trade information system does
not use special extensions of Cocoon. Most of its functionality is
embedded in XSP documents (a Cocoon-specific language similar
to Java Server Pages) which allow Java code to be embedded into
XML documents. From these XSP documents, direct queries to
the underlying database are made and the results are written into
an XML representation of the query result which is then further
processed by the following filters. These filters transform the query
result into an appropriate HTML representation.

From a very abstract point of view, the management interface works
in a similar fashion. The first filters perform some operations on the
data and the following filters transform the result into a HTML rep-

Registration Check Accept

Company BDD

Participating

CompanyEmployee

BusinessDevelopment

DepartmentAgent

Registration

Service

UserInformation

Service

New User Registration

UserAdministration

Service

PostOffice

Service
CompanyAdministration

Service

UserInfo

Service
PostOffice

User

Administration

Company

Administration

Email

Service

Database

Service

Mailserver

Database

Application

Server
Servlet

WAR

Actors and Roles

External Business Services

External Application Services

Application Components and Services

External Infrastructure Services

Infrastructure

Figure 4: Partial ArchiMate Model of the Case Study System

resentation. Differences appear with a closer look to the first part
of the pipeline. The management interface makes use of Cocoon’s
form framework, which allows for better handling of form data and
constraints, and of Cocoon’s control flow framework, which allows
to send forms with a blocking function call and to formulate con-
trol flows in an explicit, closed form. This framework is realised
through a JavaScript API which provides access to underlying Java
objects. The second difference in comparison to the query interface
is the way, data is accessed. In the management interface, all data
queries and manipulations are performed with Java objects which
map to the underlying data storage (object-relational mapping us-
ing Hibernate [13]).

Potential Problem Areas
There are several problems with the current architecture with re-
spect to the migration goals. First, especially the query interface
is closely coupled to its underlying database, which is one of the
reasons why it still uses a database of its own with an old schema.
Because of this, it is technically hard to adopt new requirements
that have an impact the database schema, and the effort is difficult
to estimate.

Second, the mechanism which transforms the intermediate results
to a HTML representation has been identified as another difficulty
in practice. An own proprietary language has been developed for
the intermediate results which has grown over time and is nearly
unmaintainable now.

As a third problem area there are many tight couplings within the
Java implementation of the data model, so that requirement changes
often result in changes at many different places of the implemen-
tation which makes it harder to parallelise development tasks. For
this reason, it is not easy to isolate the data tier from the presen-
tation tier in the query and management subsystems, which is why
we did not split up the coarse-grained QueryInterface and Manage-
mentInterface components is Figure 3.

Part of the implementation of the query interface has been reused in
the management interface, but has been modified afterwards. Mod-
ifications must be ported manually in every case.

7. CONCLUSION
In this paper, we presented the MIDARCH method for integrating
heterogeneous business information systems on the architectural
level. Many integration projects are performed ad-hoc, i.e. without
using a systematic method specifically supporting the integration
process. Reuse of experience from other projects thus remains en-
tirely implicit. A few other methods for integration projects have
been proposed: Kazakov [15] proposed a semi-automated method
for software integration, which requires specifications of the in-
volved software components in the SHIQ description logic.

We do not specifically aim to automate integration efforts, but pri-
marily intend to make reuse of integration knowledge more effec-
tive. Tool support for this process is a subsidiary part of the overall
research project.

Methods for the development and composition of web services, e.g.
Semantic Web approaches, are not in the focus of our work, since
we are dealing with pre-web-service legacy applications.

We presented the current state of a case study which evaluates the
MIDARCH method. One of the next steps is the modelling of the

current and the endorsed usages of Cocoon explicitly as a MINT
Style. This and future case studies will provide feedback that will
be used to improve the method, and contribute to the knowledge
base on the quality characteristics of architectural styles that is nec-
essary for effective application of the method.

Additional future work includes the creation of a taxonomy of mid-
dleware platforms based on the MINT Styles they endorse. This
taxnomy would allow the stepwise refinement of integration tech-
niques within the exploration process (Activity 3 of the MIDARCH
method).

8. ACKNOWLEDGEMENTS
Thanks to Bernd Kramer and Kai Bruns at Regio GmbH, Olden-
burg. This work has been partially supported by the German Re-
search Foundation (DFG), grant GRK 1076/1.

9. REFERENCES
[1] Apache Foundation. Apache Cocoon.

http://cocoon.apache.org/, 2006.

[2] F. P. M. Biemans, M. M. Lankhorst, W. B. Teeuw, and R. G.
van de Wetering. Dealing with the complexity of business
systems architecting. Systems Engineering, 4(2):118–133,
2001.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, 1996.

[4] E. Dashofy, D. Garlan, A. van der Hoek, and B. Schmerl.
xArch, 2006. http:
//www.isr.uci.edu/architecture/xarch/.

[5] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A
comprehensive approach for the development of modular
software architecture description languages. ACM Trans.
Softw. Eng. Methodol., 14(2):199–245, 2005.

[6] E. Di Nitto and D. Rosenblum. Exploiting ADLs to specify
architectural styles induced by middleware infrastructures. In
Proceedings of the 21st international conference on Software
engineering, pages 13–22. IEEE Computer Society Press,
1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[8] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling
the needs of architectural description with object-modeling
notations. Sci. Comput. Program., 44(1):23–49, 2002.

[9] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of
Software Engineering. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2002.

[10] S. Giesecke. A method for integrating enterprise information
systems based on middleware styles. In International
Conference on Enterprise Information Systems (ICEIS’06)
Doctoral Symposium, 2006. Accepted for publication.

[11] W. Hasselbring. Information system integration. Commun.
ACM, 43(6):32–38, 2000.

[12] M. N. Huhns and M. P. Singh. Service-oriented computing:
Key concepts and principles. IEEE Internet Computing,
9(1):75–81, 2005.

[13] JBoss Labs. Hibernate, 2006.
http://www.hibernate.org/.

[14] H. Jonkers, M. M. Lankhorst, R. van Buuren,
S. Hoppenbrouwers, M. M. Bonsangue, and L. W. N. van der
Torre. Concepts for modeling enterprise architectures. Int. J.
Cooperative Inf. Syst., 13(3):257–287, 2004.

[15] M. Kazakov and H. Abdulrab. Semi-automated software
integration: An approach based on logical inference. In 3rd
International Conference on Enterprise Information Systems
(ICEIS), pages 527–530, 2004.

[16] R. Kazman, M. Klein, and P. Clements. Atam: A method for
architecture evaluation. Technical Report
CMU/SEI-2000-TR-004, Software Engineering Institute,
Carnegie Mellon University, 2000.

[17] I. Krüger and R. Mathew. Systematic development and
exploration of service-oriented software architectures. In
WICSA ’04: Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture (WICSA’04), pages
177–187. IEEE Computer Society Press, 2004.

[18] R. Land and I. Crnkovic. Software systems integration and
architectural analysis – a case study. In Proceedings of the
International Conference on Software Maintenance, pages
338–. IEEE Computer Society, 2003.

[19] M. Lankhorst et al. Enterprise architecture at work.
Springer, 2005.

[20] C. M. MacKenzie et al. Reference model for service oriented
architecture 1.0. Public Review Draft wd-soa-rm-cd1,
OASIS SOA Reference Model TC, Feb. 2006.
http://www.oasis-open.org/committees/
download.php/16628/wd-soa-rm-pr1.p%df.

[21] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E.
Robbins. Modeling software architectures in the unified
modeling language. ACM Trans. Softw. Eng. Methodol.,
11(1):2–57, 2002.

[22] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Trans. Softw. Eng., 26(1):70–93, 2000.

[23] M. Shaw and D. Garlan. Software architecture: perspectives
on an emerging discipline. Prentice-Hall, Inc., 1996.

[24] Sun Microsystems. Java Server Pages Technology.
http://java.sun.com/products/jsp/, 2006.

[25] W. B. Teeuw and H. van den Berg. On the quality of
conceptual models. In S. W. Liddle, editor, Proc. ER’97
Workshop on Behavioral Models and Design
Transformations, 1997.

[26] University of California at Irvine. xADL 2.0 – A highly
extensible architecture description language for software and
systems. http://www.isr.uci.edu/projects/
xarchuci/index.html.

[27] R. van Solingen and E. Berghout. The goal/question/metric
method : a practical guide for quality improvement of
software development. McGraw-Hill, 1999.

[28] World Wide Web Consortium. Extensible markup language
(XML), 2006. http://www.w3.org/XML/.

[29] O. Zimmermann, M. R. Tomlinson, and S. Peuser.
Perspectives on Web Services. Springer, 2005.

A framework for Web Applications Testing
through Object-Oriented approach and XUnit tools

Alessandro Marchetto and Andrea Trentini
Dipartimento di Informatica e Comunicazione,

Università degli Studi di Milano
Via Comelico 39, 20135 Milano, Italy

marchetto, trentini@dico.unimi.it

ABSTRACT
Nowadays Web applications quality, reliability and dependability
are important factors because software glitches could block en-
tire businesses and cause major embarrassment. Web applications
are complex and heterogeneous software, based on several com-
ponents, often written in many different languages and potentially
distributed over the Web. Thus, testing Web applications may be a
complex task. This paper presents the OO-based framework used
in our WAAT project (Web Applications Analysis and Testing) to
test traditional Web applications composed of Web documents, ob-
jects and server components (e.g., applications written in HTML,
Javascript, PHP4/5, etc.).

Our Web testing model named OTMW (OO Testing Model of
WAAT project) is inspired by the conventionalcategory partition
testing method applied to Web software through the use of a re-
verse engineered OO model used to describe the architecture of
existing applications. OTMW tests Web software using three dif-
ferent layers of test: unit, integration and system testing. This pa-
per describes the set of techniques used by OTMW in every testing
layer. To achieve this result this paper describes the OO model used
(based on UML class and state diagrams) and it defines the reverse
engineering techniques used to analyze software and to describe
them through the model. Moreover, the paper proposes a method to
identify software units and sequences of units to test applications
components and their interactions. Furthermore, it describes an
approach to define test cases using the reverse engineered models
with a technique based on the subdivision of input data in classes
of equivalence. Finally, this paper presents tools used to perform
some empirical experiments to evaluate the power, effectiveness
and flexibility of the OTMW approach.

Keywords
Web Applications,Object-Oriented, Testing

1. INTRODUCTION
Web applications have become the core business for many com-

panies in several market areas. The development, distribution and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web Maintenance and Reengineering 2006 (WMR 06).
March 24, 2006, Bari, Italy.

control of on-line services (on-line retail, on-line trading and so
on) can be the mean to and/or the object of business. The growth of
the World Wide Web led to the expansion of application areas for
new on-line services. For example, many businesses have at least
some Web presences with the relative e-commerce (buy/sell, CRM,
products information) functionalities. Web applications quality, re-
liability and functionality are important factors because any soft-
ware glitch could block an entire business and determine strong
embarrassments. These factors have increased the need for method-
ologies, tools and models to improve Web applications (e.g., ap-
plications design and development methodologies, documenting
tools, and development process and testing tools). Several pro-
posed methodologies to model and test Web applications are based
on existing Object-Oriented ones. For example, [8] and [7] model
Web applications from development point of view using OO; [13]
and [2] use OO model to represent reverse engineered information
extracted from existing Web applications; [14], [9], and [11] in-
troduce OO testing models; HTTPunit1, PHPUnit2 and Javascript
Assertion Unit3 are XUnit tools for functional Web testing inspired
to OO ones; and so on. Thus, the scientific community studies new
ad-hoc techniques or how to adapt existing OO techniques to use
them on Web software to improve the quality and dependability of
these software system.

Software testing is one the most important and effective approach
to verify software systems. Often, Web testing is performed travers-
ing the Web site to simulate navigation and user gestures in order to
verify possible executions (e.g., see [4], [14], [10]). Instead, the use
of OO approaches to design and describe (or implement) Web ap-
plications let us reuse the knowledge developed in the field of OO
testing in order to improve the quality of the implemented Web soft-
ware. Object-Oriented software systems are composed of a set of
objects collaborating through messages, and every object has fields
and methods thus, it has a set of states defining its evolution. More-
over, an OO language (e.g., Java) may support information hiding,
abstraction, inheritance, polymorphic calls, dynamic binding, ex-
ception calls, and concurrence, and so on. These specific assets
of OO software let the testers use some ad-hoc techniques to test
OO software. Often, in OO software the testing unit is the class
(or a group of strictly related classes) and the main testing levels
are: basic unit testing(the intra-method testing focused on meth-
ods behaviours);unit testing(the intra-class testing focused on the
test of isolated modules composing a software system);integration
testing(the inter-class testing focused on the test the correctness
of the interaction between software modules);system testing(the
testing of the entire system, for example, a system may be view as

1http://httpunit.sourceforge.net
2http://www.phpunit.de
3http://jsassertunit.sourceforge.net

black-box to test its functionalities). More generally, to test a class
(or a group of classes) we need to isolate it (them) from the soft-
ware system and we build the environment (scaffolding) needed to
perform the test for the class (or the group) and composed of test
cases, specific objects used in every test case, and oracles. In partic-
ular, we need to study its interactions with other classes (or groups)
and then, we need to build a set ofstubanddriver modules. Stub
is a (fictitious) module simulating the part of software called from
the object under test. While, a driver is a (guide) module simulat-
ing the pieces of program that invoke the object under test, and it
is used to prepare the environment needed to call the object under
test in order to execute a test case for it (a driver may instance new
objects, call methods, may define parameters and variables, and so
on). Therefore, a minimal test case for OO software is a set of
constructor calls, methods calls, parameters settings, inputs values
configurations, and so on.

This paper proposes a gray-box and OO-derived approach to test
existing Web software. The proposed approach named OTMW is
based on unit, integration and system testing. The starting point of
this approach is the use of reverse engineering techniques to ana-
lyze applications and describe them using a predefined OO model
composed of UML class and state diagrams. Thus, OTMW pro-
poses and approach to identify the set of units to test through a
method inspired by the conventional category partition method.
Moreover, to perform integration testing a testing order (i.e., se-
quence of units) is defined and then the clusters (i.e., group of units
of the order) are tested using the same partitions-based method.
Finally, system testing is performed (in terms of traditional Web
testing) traversing the Web site through sequences of URLs. How-
ever, this paper introduces the approach and shows how to apply it
on existing application through a detailed case study.

2. WEB MODELING
In literature several works suggest the use of OO models to de-

sign Web Applications in order to increase their dependability and
quality. Every technique (e.g., see Conallen [8]) maps OO and Web
concepts in order to define an OO-based logical point of view to de-
sign, describe and analyze Web systems. In our WAAT project an
OO model inspired to [8] has been developed using UML in order
to represent existing Web applications and in particular, legacy ap-
plications4. The main difference between the WAAT model and the
[8] is that the Conallen’s model aims at describing an application
from a logical point of view, as required when it is being designed.
On the other hand, the WAAT model focuses on the software im-
plementation, which is the starting point for the software analysis.
The WAAT model is based on UML class and state diagrams to
represent Web software. The class diagrams are used to describe
the structure and components of a Web application. E.g., forms,
frames, Java applets, HTML input fields, session elements, cook-
ies, scripts, and embedded objects. A specific asset of our WAAT
model is the definition of a fictitious function in a class represent-
ing a given Web page or object and containing code not wrapped
in functions or classes defined in the original source code. For ex-
ample, a fictitious method (e.g., “Main”) is added in a UML class
representing an HTML page to model the source code of the entire
HTML page. Furthermore, for a PHP4 page containing code with-
out the definition of functions, the page source code is wrapped

4Legacy applications are the kind of Web software where the busi-
ness logic is embedded into the Web pages, instead of more re-
cent and layered Web applications where the business logic is im-
plemented through server-side components. The analyzed applica-
tions are composed of Web documents (static, active or dynamic)
and Web objects.

in a “Main” fictitious method. From a logical point of view, this
(“Main”) method may be viewed as an implicit constructor of the
same class. Figure 1 shows the class diagram meta-model used in
the WAAT project. Every Web application model is an instance of
this meta model. Instead, state diagrams are used to represent be-
haviors and navigational structures of the elements described in the
applications class diagram. A navigational structure may be com-
posed of client and/or server pages, navigation links, frames sets,
form inputs, scripting code flow control, and other static and dy-
namic contents. The use of state diagrams let us model relevant
assets, such as an active document (i.e., composed by HTML and
client side scripting code). In particular, the state diagram of an
active document can define the function calls flow of the script-
ing code, and some relevant behaviors/navigation dynamic infor-
mation (e.g., dynamic links, frames, and so on).In our model, a
Web application is associated to a state diagram and Web docu-
ments are associated to substates (subdiagrams). A static document
is represented by a simple state, while an active document is rep-
resented by a composed state that may be concurrent if the page
contains client-side scripting code. Dynamic documents are mod-
eled by simple or composed state. If the document does not contain
some relevant navigation element, it is described with simple state,
with composed state otherwise. E.g., a dynamic page that builds
many client side HTML pages is modeled with a composed state
with many substates, one for every HTML page generated. In gen-
eral, the transitions are defined by links, function calls, and various
HTML form inputs. An HTML frame set is modeled via composed
concurrent state where every frame corresponds to a substate. See

Figure 1: Web Applications UML Meta-Model

[3] and [2] for more details and samples about the OO model used
in the WAAT to describe applications. To the aims of this paper,
we recall here that we introduce an approach to test Web software.
Nevertheless, the OO-based model used to represent Web applica-
tions is not really the focus of this paper because some existing
OO-based modeling techniques may be useful with the testing ap-
proach presented in this paper. Moreover, we use a set of reverse
engineering techniques ([2]) to recovery UML models from exist-
ing applications but OO-based models are often defined in a design
phase of the development life-cycle and the proposed approach may
be used too. The reverse-engineered model is based on static and
dynamic analysis. The technique uses static methods derived from
traditional source code analysis adapted to extract static and dy-

Figure 2: wTDG main rules

namic information from Web. Moreover a combined method based
on static and dynamic analysis is used to define navigational struc-
ture and application behavior. We have paid particular attention to
the server side dynamic aspects of Web applications, we analyzed it
with a dynamic method based on application execution and on mu-
tational analysis applied to source code [2]. This dynamic analysis
is performed with the generation of a set of source code mutants,
used into navigation simulation. Then, procedure results are an-
alyzed with static traditional source code techniques. The use of
mutation lowers user interactions in the reverse engineering phase
and let us defines a more detailed description.

To test an application we use its UML model composed of UML
class and state diagrams to extract several kinds of information us-
able to identify the units to test and/or to guide the test cases defini-
tion and/or to calculate the code coverage reached with a set of test
cases. In particular, using the class diagram we may build a graph
of the system components dependencies. While, using a UML state
diagram we may build an “extended function calls graph” (eFCG,
“extended” for the presence of the fictitious methods) for the en-
tire system (named class eFCG) and/or for every components (i.e.,
we may build a graph of the function calls for every system com-
ponent). In this case, for every software component that it is rep-
resented in the state diagram using a complex state (i.e., a state
grouping a set of sub-states) we build a eFCG where every node
is a sub-state and every edge is a state transition that exist among
states. In the case of our OO model, transitions between states may
be function calls (for both fictitious and not methods), link clicks,
specific user gestures needed to evolve the software, and so on.
Thus, a path in the eFCG represents a possible execution of the
software under analysis.

Several works studying the integration-orders problem use appli-
cation models (i.e., the class diagrams) as a basis to build a graph
representing dependencies among components. Then, this graph is
used in order to search the best integration order. In case of Web
software, we suggest to use the “Web Test Dependence Graph”
(wTDG). [12] presents an extended version of the original TDG
adapted for working with specific OO assets (polymorphic depen-
dencies, as well as the nature of the dependence such as aggrega-
tion, association, inheritance and so on). wTDG is a simplified ver-
sion of this TDG at classes-level. wTDG is a directed graph whose
vertices represent UML classes and directed edges represent de-
pendencies among them. A wTDG may contain loops because a
class may be directly or indirectly dependent from each other ones.
In the TDG, an arrow from B to A means that “B is test dependent
on A” thus, we need to test A before B. Figure 2 show four main
rules of the wTDG construction used to map UML class diagrams
in wTDG. Given two classes A and B:

1. If B extends A then A is test-dependent on B through an in-
heritance dependence and in wTGD the edge that connects A
to B is labeled “I”.

2. If A is a composition (or aggregation) of B, A is test-dependent
on B through an aggregation dependence and the A to B edge
is labeled “Ag”.

3. If A is associated or depends on B, A is test-dependent on
B through an association dependence and the A to B edge is
labeled “As”.

4. If A is associated to B through specific WAAT-model rela-
tionships defined using the UML stereotype “<<build>>”
(e.g., relationship existing between a server-side page and the
built one or more client-side pages) thus, B is test-dependent
on A through a specific association dependence and the A to
B edge is labeled “As-s”.

Through this set of rules we may build a wTDG from a reverse
engineered UML class diagram of Web applications.

3. OTMW-BASED WEB TESTING

3.1 Rationale
The testing performed in the OTMW model is inspired by the

category partition method (see [15] and [5]). This method is a spe-
cific sub-type of the functional testing method known as “equiva-
lence classes”-based testing (EC). The EC method, for every testing
layer (unit, integration, system) defines subdivisions of the applica-
tion input domain in equivalence classes which are used to derive
test cases. The main ideas are that a failure found by one value
in a class will be found by all values in the same class and that
all components of a class are treated in analogous mode by the
software (i.e., producing correlated results). The main goal of this
type of test is to define test data that may reveal possible classes
of errors/bugs. An equivalence class is represented using a set of
(valid and/or not valid) input data and a set of software states for
the output data produced through the class inputs. Thus, the cat-
egory partition approach may be viewed as composed of the fol-
lowing steps: software specification analysis to identify the func-
tional unit to test (and for every one, identification of its parameters
and the needed environments); classification of the identified units
in categories; subdivision of the categories in choices; definition
of constraints among the choices; definition and documentation of
tests. In more details, the OTMW model may be used to test an ap-
plication through a gray-box approach (i.e., a functional approach
that considers some interesting structural information to perform
the test) inspired by the category partition testing method and ap-
plied in six main steps to perform unit, integration and system test-
ing. These steps are the following:

• We need to build the OO model for the existing application
under testing.

• When the application under test is described through UML
class and state diagrams we use the class diagram to identify
software units to test in isolation.

• Then, we perform the unit testing and thus, for the current
unit under test, we use its state diagram to build its eFCG
(graph of function calls and actions) and we use eFCG as a
basis to define the test cases through the expected unit be-
havior shown in this eFCG (and using the idea of the “equiv-
alence class” to subdivide the input domain and to define the

set of representatives test cases). Then, we build the scaffold-
ing (i.e., stubs, drivers, oracles) needed to test unit through
the defined set of functional test cases. In particular, the scaf-
folding may be expressed in terms of fragments of code (i.e.,
scripting code) written using a set of XUnit tools. Thus, we
may execute every test case using these XUnit-based code.

• Then we need to identify the integration order of system units
needed to test the software components interactions (i.e., the
definition of the best user-adequate unit sequences). In this
phase, we use the wTDG graph, built from UML class di-
agram, to extract information about the components depen-
dencies and we use a genetic-based algorithm that analyzes
some coupling measurements among components in order to
devise the best set of sequences usable to test the components
integration.

• Then we test every cluster identified in the previous step
(a cluster is a group of software units collaborating among
them). In this case, we treat a cluster as a “big-unit” and we
use the merge of eFCGs for units in the same cluster to de-
fine the functional test cases and then to write scripting code
using the XUnit tools. Thus, we may test clusters using these
written classes of test.

• In the last step of OTMW we need to perform system test-
ing. In particular, we use the UML models to build a graph
considering only high level information in order to describe
the application as a graph composed of nodes representing
pages (considering client or server side and static or dynam-
ically generated pages) and edges representing links existing
among pages. Through this graph, we perform some ran-
dom walks paths to traverse the graph and to simulate user
navigations using a set of sequences of URLs randomly gen-
erated based on the graph coverage (i.e., nodes/edges/ paths
coverage).

The OTMW layered model lets us perform different kinds of test,
for example, in the unit testing we test every component of the
software architecture. A Web application may be written in sev-
eral languages and may be composed of some different components
collaborating among them. A component may be a client-side page
(e.g., composed of HTML and Javascript code), a server page (e.g.,
composed of PHP 4/5 code), and Web object and/or other compo-
nent (e.g., written in PHP, or ActiveX, or other server/client-side
scripting code, XML files and database, and so on). In particular,
for a complex page/object (such as written in PHP) we may test
its functionalities, or its main execution paths stressing several se-
quences of methods defined in the same page/object. On the other
hand, through the integration testing we test the integration (i.e.,
collaborations) of the software components. Thus, we treat a clus-
ter (i.e., group of software unit) as a unique unit with an interface
composed of the sum of the units interfaces, this let us test more and
more invoked sequences to stress methods of every unit in order to
analyze every state of the evolution and/or execution of every unit.
Finally, the system testing let us perform the conventional pages-
based testing in order to focus the test in the navigational system
and the structure of the application (i.e., sequences of pages). In
the following sub-sections we analyze and describe every step with
several details in order to guide the user (i.e., Web testers) to use
our OTMW to test Web applications.

3.2 Unit Testing
The main steps of the OTMW unit test are: identification of units

to test in isolation; test cases definition (using atesting tabledefined

through the analysis of the inputs and the eFCG for the current unit
under test); identification of the needed drivers and stubs; and test
script description using XUnit tools.

To test the elements composing the software we need to use the
UML class diagram used to describe it. We use this diagram to
identify the units that we may test in isolation. These kinds of units
may be:

• static HTML pages (with or without scripting codes)

• client side objects such as the scripting codes (e.g., fragments
of Javascript code)

• server side objects (e.g., objects written in PHP 4/5)

• server pages written in PHP 4/5 and their set of dynamically
generated HTML client-side pages (we consider a server side
page and its dynamically generated pages such as a unique
unit)

• client-side scripting code (e.g., Javascript) generating a set of
HTML pages (we consider as unique unit)

• Web objects and components (such as txt file, xml, database,
and so on)

• other components not previously classified.

However, the analysis of the dependencies (and their types) de-
scribed in the UML class diagram may be used to define compo-
nents representing units that may be tested in isolation and to iden-
tify they needed stubs. A Stub is a fictitious module simulating the
part of software called from the object under test. In particular,
dependencies such as: inheritances, compositions,<<build>>
are traditionally considered as “not breakable” while other such
as associations, aggregations,<<submit>>, and so on, may be
breakable. This information and the different kinds of elements
listed before may help us to identify units and stubs. For example,
a PHP server page that uses a PHP object to build a set of three
dynamically generated HTML pages may be viewed as composed
of two units. The first is the PHP object used by the server page
while the other is the server page with its three generated HTML
pages. Moreover, this last unit uses the PHP object and thus, this
unit needs a stub to execute it in the testing phase.

For every identified unit we build itstesting table(inspired by the
decision table defined in [5] for OO software and then refined in [9]
for Web software). This table is used to define a set of test cases
through our method inspired by the traditional category partition
approach. For the definition of a testing table for a unit: we need
to identify the input parameters of the unit (from our UML class
diagram); and then we need to describe the eFCG (the graph that
describes the unit executions in terms of function calls and actions
performed) for the modules composing the unit under test. We use
eFCGs to extract several paths (i.e., a path represents a possible
software execution at level of function calls and actions sequence)
through the traditional coverage criteria (such as: nodes, edges, n-
cycles path, couples of def-use, and so on coverage) applied to the
same graph. These paths are the basic information to define test
cases. For example, the eFCG for a PHP object may be a function
calls graph. Thus, traversing the graph through the coverage graph
criteria, we may extract several paths where every path is composed
of a sequence of methods (i.e., defined/used in/by PHP object) calls
and it represents a possible execution of the PHP object. Then, we
use these information as a basis to fill thetesting tablefor the unit
under test. Figure 1 shows the skeleton of a testing table composed

Input Output
Variables Actions State Expected [Expected State

Before Output Output After
Testing Actions] Testing

... ...

Table 1: skeleton of Testing Table

of two sections: the first for the input data and the other for output
(expected) data.

A table is composed of six sections as following:

• Variables: listing of the unit input. For example, for client-
side page the input fields of its HTML forms, for client-side
scripting functions the HTML DOM-tags, for server pages
the needed GET/POST variables, and so on.

• Actions: listing the actions (i.e., user gestures, function calls,
class instantiations, and so on) needed to perform the test-
ing. In particular, it represents a sequence of actions needed
to realize the unit execution extracted from the eFCG. For
example: link clicks, button press, method calls, class in-
stantiations, and so on.

• State Before Testing: containing the values assumed before
the test from specific application elements such as client-side
pages, cookies, tags, the state of used Web objects, session
variables, server objects, and so on.

• Expected Results: listing the expected output results when
the test is executed

• Expected Output Actions: describing the actions performed
by the pages/objects under test when the test case is executed
(i.e., the functionality performed with the test case, e.g., login
action, sending data, write files, and so on)

• State After Testing: describing the expected values assumed
after the test execution from specific application elements
such as the same described in the “State Before Testing” sec-
tion.

Notice that to fill theActionssection, the user (i.e., tester) needs
to identify the steps (user actions, method calls, objects instantia-
tion, etc.) useful to implement the execution path extracted from
the eFCG of the unit under test. Thus, the user may define more
than one sequence of steps usable to perform a single eFCG path.
In our testing table, the combination ofInput Variablesand Ac-
tions is used to identify the equivalence classes (EC) and thus, it
is used to subdivide the input domain of the application unit (com-
posed of input variables and states of the components under test)
in classes usable to derive several test cases of the same classes
(e.g., changing the input values). When the testing table is filled
we may proceed writing the scripting to execute test cases through
specific XUnit tools. For example, to test HTML-based pages we
may use tools such as: HTTPunit or HTMLUnit5 but also HTML
Tidy6, HTML validators7; to test server side objects written in PHP
4/5 we may use tools such as PHPUnit or PHP Assertion [1]; to
test objects based on Javascripts code we may use HTMLUnit or
JSUnit8 or Javascript Assertion Unit; to test components based on
5http://htmlunit.sourceforge.net
6http://www.w3.org/People/Raggett/tidy
7http://validator.w3.org
8http://www.edwardh.com/jsunit

more than one language (e.g., client side pages that send data to
server side pages we may use combination of this tools). In par-
ticular, every row of the table may represent a class of test cases
and may be converted in a testing script using these XUnit tools.
Then we may proceed with the test cases execution using the ad-
hoc written script code and repeating its execution using several
different input values.

Drivers and stubs modules are needed to test a given unit. A
driver is a (guide) module simulating the pieces of program that
invokes the object under test, and it is used to prepare the environ-
ment needed to call the object under test in order to execute a test
case (a driver may instance new objects, call methods, may define
parameters and variables, and so on). Typical Web driver may be
composed of fragments of code derived from pages or objects that
interacts with the unit under test, filling HTML forms, generating
events (e.g., to simulate user gestures), and so on. This type of code
may include scripting fragments (client/server side), Web objects,
DOM objects, and so on. Instead, a stub may be a client/server
page/object that it is used by the unit under analysis in order to
perform its task.

The main goals of this unit testing phase may be to test the
loading, in some different context, of every elements composing
the applications (e.g., pages, objects, page components such as
forms, scripts, tables, server components, and so on); the struc-
ture and navigational system of every component (e.g., elements
compositions, self links, submitting operations, etc.); the evolution
(in terms of states reached) of every complex components such as
client/server side code (e.g., using JSUnit and PHPUnit we may
test several different function calls sequences representing differ-
ent software executions); and the construction of the dynamically
generated pages (e.g., the HTML code generated by a server page).

3.3 Integration Testing
In the integration testing phase we test the interactions among

software components (i.e., units identified in the previous testing
step). In particular, we may test data or messages exchanged among
units. For example, we may test the following cases:

• the data/messages exchanged between an HTML page and
its Javascript code, such as function defined a Javascript frag-
ment and called in an HTML tag with mouse events, or HTML
tags filled with the returned value of a Javascript function.

• data/messages exchanged among PHP objects, such as func-
tions or data variables in a PHP5 class but defined in another
class.

• data/messages exchanged between an HTML page and a PHP
page that elaborates these data to generate outputs (e.g., HTML
form data submitted to PHP page, or PHP function called
from HTML code)

• the use of several kinds of files (e.g., TXT, database, XML)
to write, read, modify data from PHP or Javascript code

• the use of scripting code or server-side applications by a PHP
object

Therefore, in a Web application we need to test some different
types of interactions because every application may be written in
more than one software language (e.g., HTML, Javascript, PHP,
and so on). Thus, we need to test interactions such as among the
following elements: HTML code and Javascript; Javascript and
Javascript; Javascript and PHP; HTML and PHP; PHP and PHP;

Javascript, HTML and PHP; Javascript, HTML, PHP and other el-
ements (TXT, database, XML); and so on. To verify the interac-
tions among components we need to identify the sequence of units
to test. Then, we need to treat every integration cluster (group of
units in the sequence) as a single “unit” in order to fill itstesting
tableand to write its set of test cases.

Given a software system, to test its components and their re-
lationships, the first problem is to decide the integration order, be-
cause different orders may define some different complexity in terms
of effort. For OO-modelled software it may be very difficult to
choose the testing order because the system has specific assets (i.e.,
information hiding and abstraction, inheritance, and so on) and
because the architectures may be very complex and several com-
ponents may be strongly connected (i.e., cyclical dependencies).
Thus, to define the best integration order we need to use a method
studying the components dependencies and the scaffolding com-
plexity. For example, we may consider a small system composed
of four classes (A B C and D), and where “B uses C”, “C uses A”,
and “D uses A”. In this case, some possible integration orders may
be found defining a topological order9 of the class-usage graph, for
example A D C B or A C B D may be orders usable into integration
testing. Instead, if this system contains anotheruse relationship
such as “A uses B” the system contains a dependencies loop (com-
posed of the classes A B C), thus it is impossible to define a topo-
logical order, but we may define a partial order such as A D C B
(where A needs B as stub), or A C B D (where A needs B as stub).
In literature, there are several works that use class diagrams rep-
resenting OO systems (and defined during the analysis and design
phase or extracted from code using reverse engineering techniques)
as a basis to build graphs representing relationships among compo-
nents then analyzed through deterministic or random approaches to
find optimal integration orders. Most of the proposed strategies are
focused on the analysis of this dependencies-graph derived in order
to minimize the effort needed to test the application and (often) the
effort is expressed in terms of stubs number (or complexity) needed
to test using a specific integration order. In particular, the proposed
solutions “break” some dependencies in cycles contained in graph
to obtain an acyclic graph representing the dependencies of the en-
tire system. This approach implies that the modules related to the
broken relationships need to be stubbed in the integration testing.
However, there are several deterministic and random approaches
usable to define how to break cycles and devise orders, see [12]
for a review of existing techniques and for some empirical com-
parisons. These approaches may be grouped in four categories as
following:

• finding of the strictly connected components (SCC) of the
system (dependencies cycles); and to break some (one or
more) randomly-selected dependencies in SCC

• finding the strictly connected components (SCC) of the sys-
tem (dependencies cycles); to weigh every dependency in
SCC counting the parameters passing through this depen-
dency; and to break the dependency with the smaller weight

• finding the strictly connected components (SCC) of the sys-
tem (dependencies cycles); for every component in SCC count-
ing the number of cycles it belongs to; and to break the com-
ponent that is part of the highest cycles number

• finding the best orders using a genetic algorithm (i.e., a semi-
random approach, see [6]) that uses the permutation encod-

9A topological order is a node ordering for a direct graph such that
each predecessor node of a given node is listed before the same
node in the topological ordering

ing where every chromosome is a string of class labels and
that defines a chromosome as an integration order (i.e., a
sequence of system classes). Then to evolve the popula-
tion using a set of genetic operators (selection, mutation and
crossover) and a fitness function based on the stubbing com-
plexity (in terms of coupling measure between the current
test order and its needed stubs).

When the units order has been defined we may start the test of
every cluster composing this sequence. We test all clusters using
the same methods and tools used in the unit testing, because we
consider every cluster as a unique “unit” with an interface described
as the sum of all units-interfaces composing the cluster. This let us
define several invocation sequences to stress methods of all units
in cluster, in order to verify the cluster in every state it may reach.
Thus, for a cluster we need to identify its input variables, to define
its needed stubs and drivers and to fill its testing table. We use
eFCGs of units in cluster to define relationships existing among
components, and then we extract several paths from these graphs
through coverage criteria. Finally, we may filled testing table and
we may use it to extract a set of test cases and to write the testing
scripts using XUnit tools. Finally, we may execute them more than
ones time using several different values for input variables.

3.4 System Testing
The system testing for a Web application may be essentially

based on high level representation where the application is described
through a graph composed of nodes corresponding to Web pages
and edges corresponding to links. In our modeling approach, we
may extract this graph from the UML class diagram. Then, the
test consists in sequences of URLs requested to Web server with
their inputs values (if needed). This test let us verify the naviga-
tional system and the structure of Web application by traversing
the graph. [4] shows the approach used in our WAAT project and
implemented in TestUml tool. While, [14] describes another sim-
ilar approach. We recall here that the main goal of this paper is
to describe an approach to perform unit and integration testing of
Web software. However, to perform system testing we traverse a
given Web application simulating user (random) navigations and
gestures. In particular, we use the application graph to extract
several paths (sequences of URLs) selected through conventional
coverage measures such as nodes or edges, n-cycles paths, def-use
couples coverage, and so on. Then, these sequences (test cases)
are completed with the needed input values and executed (more
time) performing requests to the Web server. This testing method
is semi-automatic due to the fact that the user (tester) must com-
plete the inputs not randomly identified or extracted from log-files
analysis.

4. CASE STUDY
MiniLogin is a simple Web application we use to show how to

apply the OTMW approach to existing software systems. This ap-
plication is composed of some PHP5 and HTML files with Javascript,
and its main functionality is to control the access to a reserved Web
area through login and password. Through WebUml (see [3]), the
tool that implements our reverse engineering techniques, we per-
form static and dynamic analysis on this Web application in order to
extract information needed to build MiniLogin UML model com-
posed of UML class (Figure 3) and state diagrams. In the following
sub-sections we show how to apply our Web testing approach to
MiniLogin in case of unit and integration testing. Instead, for the
system testing (we would like to recall here that it is not the main
goal of this paper) see [4] for more information about techniques

Input Output
Variables Actions State Expected [Expected State

Before Output Output After
Testing Actions] Testing

Javascript1
(1) ptagUsername,
1.load script in HTML def(formMain.user) true login and ptagPassword ==
2.call controlData() def(formMain.psw) or password “is Number” or
3.read returned value def(ptagUsername) false verification “is String (with Number)”

def(ptagPassword) or “is String”
(2) ptagUsername ==
1.load script in HTML def(formMain.user) true login “is Number” or
2.call controlUsername() def(ptagPassword) or verification “is String (with Number)”
3.read returned value false or “is String”

control php
(3)

$user, $psw 1.class instantion new String $user.$psw
2.call setCombine() equal to strings
3.read returned value $user.$psw concatenation
(4)

$user, $psw 1.class instantion “one” or $user.$psw
2.call setCombine() “two” or” strings
3.call verify() “theree” or concatenation
using 2. result “error” and
4.read returned value verification

memberphp
(5)

$user, $psw 1.class instantion def($count) to control the $count+1
2.call counter() $count session or
3.read returned value variable $count=0...

Table 2: MiniLogin samples of testing table

Figure 3: MiniLogin UML Class Diagram

used in the WAAT project to perform system testing as briefly in-
troduced in the previous sections.

4.1 Unit Testing
We identify the unit to test considering different types of ele-

ments composing the application UML class diagram (HTML static
page, PHP page/object, HTML dynamically generated pages, etc.)
and the types of the relationships existing among elements (associa-
tions, aggregations, compositions, etc.). For example, there are two
Javascript objects (Javascript1/2), one PHP page (memberphp),
one PHP object (controlphp), several HTML pages, and so on. In
the case of unit testing, for every unit we need to define stubs and
drivers usable in the test phase. We identify these elements us-
ing the dependencies described in the class diagram. For example,
the PHP page named memberphp has (“use”) relationship with:
PHP object named controlphp and with an HTML page (named
accesshtml). Instead, the PHP object controlphp has no relation-
ship with other PHP elements but only one with a TXT file. Thus,
control php may be tested as a unit stubbing the TXT file, while
memberphp needs three stubs to be tested. Furthermore, to test a
Javascript code usually we need to stub the fragment of the HTML

Figure 4: MiniLogin samples of eFCGs

page that interacts with this scripting code (and its DOM too). In
our case, the object Javascript1 needs to stub the indexhtml page.

For every unit we need to fill its testing table as described in the
previous sections. In particular, we identify every method (con-
sidering also the fictitious methods “Main”), we identify the input
variables and the variables used by current unit but defined in other
ones. For example, Javascript1 contains a method namedalertMsg
that has four parameters as input. Furthermore, the same unit has a
method namedcontrolPswthat does not have input parameters but
that uses two variables defined in another unit such as an HTML
form field (i.e., formMain.password) and a HTML page tag (i.e.,
namedptagPasswordin index html).

Then through the state diagram of every unit we build its eFCG
(see Figure 4 for some Minilogin samples10). From this eFCG we

10In this figure, to semplify the readability, we have omitted some

<head>
<script src=’jsUnitCore.js’>
</script>

</head>...
<body>...
<script name=’test’ language=JavaScript>
function testcontrolData() {

document.all.ptagUsername.innerText=’’
document.all.ptagPassword.innerText=’’
document.formMain.username.innerText=’prova’
document.formMain.password.innerText=’prova’
assertTrue(controlData())

assertEquals(document.all.ptagUsername.innerText,
’Username is String’);

}
function testcontrolUsername() {

document.all.ptagUsername.innerText=’inizio’
document.formMain.username.innerText=’prova’
debug(document.all.ptagUsername.innerText);
assertTrue(controlUsername());
debug(document.all.ptagUsername.innerText);

assertEquals(document.all.ptagUsername.innerText,
’Username is String’);
}
</script>
</body>

Figure 5: Javascritp 1 test cases: (1),(2)

extract some paths using the conventional coverage criteria (i.e.,
nodes or edges coverage) in order to select several possible execu-
tions of the current unit (at funcion calls and actions level). For
example, considering the eFCGs in Figure 4 we may extract the
following execution paths:

• Javascript1: Main, controlData, ret; Main, controlData, con-
trolUser, ret; Main, falseSubmit, alertMsg, end; (1)Main,
controlData, alertMsg, ret; (2)Main, controlUser, ret; and so
on

• control php: (3)Main, setCombine, ret; Main, verify, fileRead,
ret; (4)Main, setCombine, verify; ret; Main, fileRead, fopen,ret,
and so on

• memberphp: Main, get, get, writefile, controlphp.setCombine,
sc, controlphp.verify, v; (5)Main, counter; Main, writeFile,
counter; and so on

Through this set of information and using our knowledge about
the MiniLogin application we may fill the testing table for every
unit. Table 2 show fragments of testing tables for three units of
the Minilogin application (i.e., Javascript1, controlphp, and mem-
ber php). Now, we may use the testing table with the XUnit tools
to write test cases, every row of the table may represent a class of
test cases that may be implemented in a testing script. For example,
the rows (1) and (2) of Table 2 may be implemented with JSUnit
tool as shown in Figure 5. Instead, the rows (3) and (4) may be
implemented using PHPUnit2 as shown in Figure 6. Moreover, the
row (5) may be also implemented through PHPUnit2 as shown in
Figure 7. In this last case, to treat the memberphp page as a unit
testable with XUnit tools we need to wrap the entire page code in a
fictitious “Class member ...” and the main code of the same page on
a fictitious method “function Main()...”. This lets us treat the PHP
page as a conventional OO class. In the set of written testing cases,
the only case that found a “bug” is for the controlphp object and it
is named “testsetCombineVerifyErrorInTest()”. In particular, for

information such as the label of the edges corresponding to actions
to perform

<?php
require once(’PHPUnit2/Framework/TestCase.php’);
require once(’control.php’);
class controlTest extends

PHPUnit2 Framework TestCase {
public function testsetCombine withStringValues(){

$control=new control();
$user="primo’;
$psw=’secondo’;
$expectedOutput=’primosecondo’;
$output=$control->setCombine($user,$psw);
$this->assertEquals($expectedOutput, $output);

}
public function testsetCombineVerify error(){

$control=new control();
$user=’primo’;
$psw=’secondo’;
$expectedOutput=’error’;
$output1=$control->setCombine($user,$psw);
$output2=$control->verify($output1);
$this->assertEquals($expectedOutput, $output2);

}
public function testsetCombineVerify ErrorInTest(){

$control=new control();
$user=’user’;
$psw=’one’;
$expectedOutput=’one’;
$output1=$control->setCombine($user,$psw);
$output2=$control->verify($output1);
$this->assertEquals($expectedOutput, $output2);

}
public function testsetCombineVerify correct(){

$control=new control();
$user=’User1’;
$psw=’One’;
$expectedOutput=’one’;
$output1=$control->setCombine($user,$psw);
$output2=$control->verify($output1);
$this->assertEquals($expectedOutput, $output2);

}
}
?>

Figure 6: control php test cases: (3),(4)

this test case we expect the string “one” as result but after the ex-
ecution we obtain “error”, this is due to the fact that the fragments
of PHP code written for this test case contains a mistake (i.e., not
the application).

4.2 Integration Testing
To do integration test among software units, identified in the pre-

vious step, we need to define an integration order among them (i.e.,
a sequence of units that helps us to define the order in which to test
the units). Thus, from the MiniLogin class diagram we extract the
wTDG and we use it to calculate some coupling measures among
units. Then, we use this measures in wJenInt, that is our ad-hoc
written tool implementing a genetic algorithm [6] usable to devise
an optimal testing order through a fitness function based on cou-
pling measure used to calculate the stubbing complexity (that is
expressed in terms of coupling measures between the current order
and its needed stubs). In the case of MiniLogin we have defined
the following integration order: Javascript1; psw txt; control php;
img; memberphp; input; form; Javascript2; indexhtml; error-
MoreTimehtml; errorhtml; accesshtml; clientPagephp; client-
Page1; clientPage2; clientPage3. Through this order we need to
cut only one dependency associating Javascript1 and indexhtml
elements. Therefore, we need to test every cluster defined in this
order and that contains units collaborating among them, for ex-
ample, we test: pswtxt -control php; (6)memberphp, controlphp
(7)Javascript1, input-form; Javascript1, memberphp, input, form,
index html; (8)memberphp, controlphp, clientPagephp, client-

Input Output
Variables Actions State Expected [Expected State

Before Output Output After
Testing Actions] Testing

Cluster 1
(7.2) ptagUsername,
1.load indexhtml def(formMain.user) ptagUsername== login and ptagUsername==
2.put user string def(formMain.psw) ’is String’ password “is String” and
3.onMouseOut activation def(indexhtml.ptagUsername) +alert(Number Sedning) verification ‘ptagPassword==
4.call controlUsername() def(indexhtml.ptagPassword) undef
5.click submit
6.onMouseClick activation
7.call controlData()

Cluster 2
(8)

$username 1.load indexhtml def(formMain.user) access OK + username and
$password 2.put real username def(ptagPassword) load accesshtml + password

3.put real password
4.click submit
5.load accesshtml
6.it contains gif and link
7.click link ...

Table 3: MiniLogin samples of Integration testing table

import com.gargoylesoftware.htmlunit. * ;
import java.net.URL;
import com.gargoylesoftware.htmlunit.html. * ;
import junit.framework.TestCase;
import java.util. * ;
public class SimpleHtmlUnitTest extends junit.framework.TestCase {
public void testHomePage1() throws Exception {

WebClient webClient = new WebClient();
java.net.URL url = new java.net.URL(’http://localhost:8080/ ãlex/logred2/index.html’);
HtmlPage page = (HtmlPage) webClient.getPage(url);
assertEquals(’Home Page’, page.getTitleText());
HtmlForm form = page.getFormByName(’formMain’);
HtmlTextInput textField=(HtmlTextInput)form.getInputByName(’username’);
textField.setValueAttribute(’prova’);

HtmlPage appWindow=(HtmlPage) page.executeJavaScriptIfPossible(
textField.getOnMouseOutAttribute(),’testCU’,false,textField).getNewPage();

assertEquals(’Home Page’, appWindow.getTitleText());
assertEquals(’Username is String’,

appWindow.getHtmlElementById(’ptagUsername’).getFirstChild().asText());
HtmlSubmitInput button = (HtmlSubmitInput)form.getInputByName(’Submit’);
List collectedAlerts = new ArrayList();
webClient.setAlertHandler(new CollectingAlertHandler(collectedAlerts));
HtmlPage newPage = (HtmlPage)button.click();

List expectedAlerts = Collections.singletonList(’Number sending’); [or ’Numbero sending’]
assertEquals(expectedAlerts, collectedAlerts);

}
}

Figure 8: cluste1 test case (7.2)

<?php
require once(’PHPUnit2/Framework/TestCase.php’);
require once(’member.php’);
class memberTest extends

PHPUnit2 Framework_TestCase {
public function testcounter 1(){

$mem=new member();
$mem->counter1();
$this->assertEquals(0, $ SESSION[’count’]);

}
public function testcounter_2(){

$mem=new member();
for($contatore=1;$contatore<=10;$contatore++){

$mem->counter1();}
$this->assertEquals(10, $_SESSION[’count’]);

}
}
?>

Figure 7: member php test case (5)

Page1, accesshtml; and so on.
For every cluster we use the eFCGs of its units identifying the in-

vocation sequences of methods/variables used among units to col-
laborate. For example, for (6) may be: (memberphp.Main & con-
trol php.Main), memberphp.wF, controlphp.setCombine, controlphp.verify.
While, for (7) possible sequences may be: (7.1) (indexhtml.Main
& Javacript1.Main & input.Main & form.Main), formMain.user,
input.onMouseOver, Javacript1.controlUser; (7.2) (indexhtml.Main
& Javacript1.Main & input.Main & form.Main), formMain.user,
input.onMouseOut, Javacript1.controlUser, formMain.submit, in-
put.onMouseClick, Javacript1.controlUser; and so on. While for
(8) a possible sequence may be: (memberphp.Main & controlphp.Main),
member.writeFile, controlphp.setCombine, controlphp.verify, client-
Page.Main, clientPage.cp1, cp1.Main, cp1.Main, cp1.gif, cp1.link,
index html.Main;

Then, we may fill the testing tables (see Table 3 for samples)
for clusters and, using XUnit tools we may write the scripting code
to test clusters. Tables 8 and 9 show the testing classes written in

import com.gargoylesoftware.htmlunit. * ;
import java.net.URL;
import com.gargoylesoftware.htmlunit.html. * ;
import junit.framework.TestCase;
import java.util. * ;
public class SimpleHtmlUnitTest extends junit.framework.TestCase {

public void testHomePage1() throws Exception {
WebClient webClient = new WebClient();
java.net.URL url = new java.net.URL(’http://localhost:8080/ ãlex/logred2/index.html’);
HtmlPage page = (HtmlPage) webClient.getPage(url);
assertEquals(’Home Page’, page.getTitleText());
HtmlForm form = page.getFormByName(’formMain’);
HtmlTextInput textField=(HtmlTextInput)form.getInputByName(’username’);
textField.setValueAttribute(’User1’);
HtmlTextInput textField2=(HtmlTextInput)form.getInputByName(’password’);
textField2.setValueAttribute(’One’);
HtmlPage appWindow1=(HtmlPage) page.executeJavaScriptIfPossible(textField.getOnMouseOutAttribute(),

’testCU’,false,textField).getNewPage();
assertEquals(’Home Page’, appWindow1.getTitleText());
assertEquals(’Username is String’,

appWindow1.getHtmlElementById(’ptagUsername’).getFirstChild().asText());
HtmlPage appWindow2=(HtmlPage) page.executeJavaScriptIfPossible(textField2.getOnMouseOutAttribute(),

’testCP’,false,textField2).getNewPage();
assertEquals(’Home Page’, appWindow2.getTitleText());
assertEquals(’Password is String’,

appWindow2.getHtmlElementById(’ptagPassword’).getFirstChild().asText());
HtmlSubmitInput button = (HtmlSubmitInput)form.getInputByName(’Submit’);
List collectedAlerts = new ArrayList();
webClient.setAlertHandler(new CollectingAlertHandler(collectedAlerts));
HtmlPage newPage = (HtmlPage)button.click();
List expectedAlerts = Collections.singletonList(’<username>User1</username><password>One<password>’);
assertEquals(expectedAlerts, collectedAlerts);
assertEquals(’ACCESS’, newPage.getTitleText());
HtmlElement root=newPage.getDocumentElement();
List imgs=root.getHtmlElementsByTagName(’img’);
assertEquals(1,imgs.size());
assertNotNull(newPage.getAnchorByHref(’index.html’));
HtmlAnchor link = newPage.getAnchorByHref(’index.html’);
HtmlPage page3 = (HtmlPage) link.click();
assertEquals(’Home Page’, page3.getTitleText());
}

}

Figure 9: cluste2 test case (8)

HTMLUnit and related to test cases (7.2) and (8).
When testing classes are written using the filled testing tables we

may perform the test by repeating the test cases execution changing
input values.

4.3 System Testing
We recall here that it is not the main goal of this paper, see [4]

for details about the system testing performed in our WAAT project.
Generally speaking, using TestUml tool from the class diagram we
build an high level graph of the application under test where nodes
are Minilogin Web pages and edges are links. Then we use cover-
age criteria and random walks analysis to extract some paths that
helps us to traverse the application graph and to simulate user nav-
igations and gestures. In this case of system testing, a test case
is a sequence of URLs (of the pages composing the defined se-
quence) and its input values. For example, in case of Minilogin ap-
plication the following sequences of URLs and inputs (expressed
in the form<page to load, [list of parameters values]>) may be a
set of test cases: (index.html), (member.php); (index.html), (mem-
ber.php, “username”, “password”), (access.html); (member.php, “user1”,
“psw1”), (errorTime.html); (member.php, “user2”, “psw2”), (er-
ror.html), (index.html); and so on.

5. CONCLUSIONS
In this paper we have presented our OTMW framework usable

to test Web applications through an OO approach. In OTMW we
use an OO model to describe applications from a logical point of
view and then we identify software units testable in isolation (such
as client and/or server Web pages, scripting code, Web objects, and
so on) and, for every one, we perform a category-partition derived
technique to test it at function call level. Then, we use an existing
technique to derive an integration order (i.e., sequence of units) and
we use it to select clusters (i.e., group of units of the order) to test
using the same functional-derived approach. Finally, we perform a
system testing using traditional Web testing in terms of sequences
of URLs. Through this OTMW framework we treat (i.e., design
and test) Web software as traditional OO software in order to test
several aspects such as navigational system, functionalities, struc-
ture and, in order to test every component in every state, in differ-
ent execution contexts, in isolation and in collaboration with other
components exchanging data or messages. Moreover, OTMW uses
tools developed in our laboratory for the WAAT project (such as
WebUml, TestUml, wJenInt) but to execute the test cases it uses
traditional XUnit testing for Web applications.

6. REFERENCES
[1] Php assertion.

http://jsassertunit.sourceforge.net/docs/phpassertunit.html.
[2] C. Bellettini, A. Marchetto, and A. Trentini. Dynamic

Extraction of Web Applications Models via Mutation

Analysis.Journal of Information -An International
Interdisciplinary Journal- Special Issue on Software
Engineering, 2005.

[3] C. Bellettini, A. Marchetto, and A. Trentini. WebUml:
Reverse Engineering of Web Applications.19th ACM
Symposium on Applied Computing (SAC 2004), Nicosia,
Cyprus. March 2004.

[4] C. Bellettini, A. Marchetto, and A. Trentini. TestUml:
User-Metrics Driver Web Applications Testing.20th ACM
Symposium on Applied Computing (SAC 2005), Santa Fe,
New Mexico, USA. March 2005.

[5] R. Binder.Testing Object-Oriented Systems.
Addison-Wesley, 1999.

[6] L. Briand, J. Feng, and L. Y. Using genetic algorithms and
coupling measures to devise optimal integration test orders.
14th international conference on Software engineering and
knowledge engineering, Italy. 2002.

[7] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a modeling language for designing
Web sites.Ninth International World Wide Web Conference
(WWW9), Amsterdam, Netherlands. May, 2000.

[8] J. Conallen.Building Web Applications with UML.
Addison-Wesley, 2000.

[9] G. A. Di Lucca, A. Fasolino, F. Faralli, and U. De Carlini.
Testing Web Applications.International Conference on
Software Maintenance (ICSM’02), Montreal, Canada.
October 2002.

[10] C. Kallepalli and J. Tian. Measuring and Modeling Usage
and Reliability for Statistical Web Testing.Ieee Transactions
on Software Engineering, November 2001.

[11] D. C. Kung, C. H. Liu, and P. Hsia. An Object Oriented Web
Test Model for Testing Web Applications.24th International
Computer Software and Applications Conference
(COMPSAC 2000), Taipei, Taiwan. October 2000.

[12] V. Le Hanh, K. Akif, Y. Le Traon, and J. Jéźequel. Selecting
an Efficient OO Integration Testing Strategy: An
Experimental Comparison of Actual Strategies.15th
European Conference on Object-Oriented Programming
(ECOOP2001), 2001.

[13] F. Ricca and P. Tonella. Building a Tool for the Analysis and
Testing of Web Applications: Problems and Solutions.Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’200), Genova, Italy. April 2001.

[14] F. Ricca and P. Tonella. Analysis and Testing of Web
Applications.23th International Conference on Software
Engineering (ICSE’2001), Toronto, Canada. May 2001.

[15] M. Young and M. Pezz̀e. Software Testing and Analysis:
Process, Principles and Techniques.John Wiley and Sons
(WIE), 2004.

Supporting the Evolution of Service Oriented Web
Applications using Design Patterns

Manolis Tzagarakis
Computer Technology Institute

26500 Rion
Greece

+30 2610 960482

tzagara@cti.gr

Michalis Vaitis
University of the Aegean

University Hill, GR-811 00 Mytilene
Greece

+30 22510 36433

vaitis@aegean.gr

Nikos Karousos
University of Patras

26500 Rion
Greece

+30 2610 960482

karousos@cti.gr

ABSTRACT
Web applications make increasingly use of services that are
provided by external information systems to deliver advanced
functionalities to end users. However, many issues regarding how
these services are integrated into web applications and how
service oriented web applications evolve, are reengineered and
refactored are still addressed in an ad hoc manner. In this paper,
we present how design patterns can lessen the efforts required to
integrate hypermedia services into web applications. In particular
we present how evolution and maintenance issues are addressed
within Callimachus, a CB-OHS that web applications need to
integrate in order to provide hypertext functionality to end users.

.

Categories and Subject Descriptors
D.3.3 [Programming Languages]:

General Terms
.

Keywords
Web application, service oriented architectures, hypertext.

1. INTRODUCTION
The term “web application” characterizes a particular class of
applications that make use of internet technology to deliver
content and services such as HTTP, HTML, XML and Web
Services [1]. One particular class of Web applications deals with
integrating information systems into web applications.

Web applications are still developed in an ad hoc manner,
resulting in applications that fail to fulfill several importand
requirements including:

1. User needs, meaning that the web application is not
what the user wanted

2. Easy maintenace and evolution

3. Long useful life

4. Performance and security.

 As already pointed out in [13]

"Web systems that are kept running via continual stream of
Patches or upgrades developed without systematic approaches”

The problems are even more complicated, when web applications
are built upon service oriented architectures (SOA) that differ
greatly fom traditional client server architectures. SOA exhibit
great flexibility with respect to services and require new
approaches to service integration. Within the hypermedia field,
Component-Based Hypermedia Systems (CB-OHS)[15] have
emerged, consisting of an underlying set of infrastructure services
that support the development and operation of an open set of
components (called structure servers), providing structure services
for specific application domains. The theoretical and practical
aspects of this promotion of structure from implicit relationship
among data-items to a first-class entity constitute the subject of
the field of structural computing [5]. Attempts to integrate
services provided by CB-OHS with web applications are already
underway [14].

CB-OHS are among the forerunners of a trend for service-
oriented computing (SOC) [8]; the computing paradigm that
utilizes services as fundamental elements for developing
applications [2] and relies on a layered SOA. A SOA combines
the ability to invoke remote objects and functions (called
“services”) with tools for dynamic service discovery, placing
emphasis on interoperability issues [3]. As both hypermedia
applications and the class of web applications categorized as
informational [1] are content-intensive, the employment of
structure services (following the SOC paradigm) would improve
efficiency and convenience [9].

Unfortunately, today’s developers of hypermedia and web
applications face various problems when attempting to integrate
services offered by CB-OHS into web applications. This is in
particular true when considering evolution and maintenance
issues. Currently, such concerns are addressed by developing
structure services from scratch [4] redesigning appropriately the
provided services. We argue that one of the reasons for this
situation is the lack of both an adequate software engineering
framework for CB-OHS construction, integration, and
maintenance and the appropriate tools to support it. This results in
ad-hoc integration methodologies which produce systems missing
certain essential characteristics including difficulty to evolve and
maintain.

In this paper, we present how design patterns can lessen the
efforts required to integrate hypermedia services provided by
service oriented systems into web applications. In particular we

present how evolution and maintenance issues are addressed
within Callimachus, a CB-OHS that web applications need to
integrate in order to provide hypertext functionality to end users.

The paper is structured as follows: first we outline aspsects of
SOA that makes integration into web applications difficult and
error prone. We then present Callimachus and how the services
provided are integrated into web applications. Next, we present
and analyse the design patterns that are used to address evolution
and maintenance concerns. Finally, future work concludes the
paper.

2. Service Oriented Architectures (SOA)
Traditionally, hypermedia systems have been built according to
client server (or point-to-point) architectures that provided an
adequate framework for bringing hypertext functionality to web
applications. However, the design and development of these
hypermedia systems were based on assumptions that reflect the
architecture upon which they were developed. Moving
hypermedia systems to service oriented architecture requires these
assumptions to be re-examined and adjusted. This is because
service oriented archtectures differ greatly from client server
architectures. Table 1 summarizes the main differences between
service oriented and client server architectures.

In service oriented architectures, bindings to services (i.e.
references to operations provided by services) are established
dynamically and during runtime which is completely
incompatible with client server based hypermedia systems where
such binding of clients to services happen very early in the
development process (in particular during design or compile
time). At run time, changing bindings is impossible.

Table 1. Comparison of Client Server vs Service-Oriented
Architectures

Client Server Architectures Service Oriented
Architectures

Early binding
(compile/development time)

Late binding (run time)

Domestic (evolve smoothly and
planned)

Feral (evolve abrupt and
uncontrolled)

Location dependent Location independent and
transparent

Single interface (protocol) Set of interfaces
(protocols)

Development oriented Integration oriented
Tightly coupled Loosely coupled
Monolithic Composable
Stable Unstable due to ad hoc

nature

While client server architecture evolves in a controlled and
disciplined fashion, service oriented evolves in a rather feral way.
This is mainly due to the autonomous nature of services that
implies an autonomous evolution path as well. As a result client-
side bindings to hypermedia services can easily be invalidated. In
addition, it is evident that while client server architectures exhibit
location dependence thus forbidding changes in location
information (e.g. in terms of host and port) service oriented

architectures are location independent making conventional
clients unable to operate in such an environment. With respect to
the supported interfaces, in client servers systems only a small,
bound number of interfaces are supported whereas in service
oriented systems an unbound number of interfaces exists. Thus
while in client server systems it is enough for all software entities
(e.g. client application) to be reactive when considering interfaces
to hypermedia services, in service oriented architectures all
software entities need to be proactive. Furthermore, client server
systems are tightly coupled systems, meaning that design changes
in the service are followed by design changes on the client side.
This is not the case in service oriented characterizing this
architecture as loosely coupled. Finally, while in client server
systems the main task during development is to extend the client
and the server respectively, in service oriented architectures the
main task of a developer is to integrate services.

From the above discussion it is clear that service oriented
architectures represent an environment where all software entities
need to exhibit flexibility, autonomy, and adaptability in order to
function correctly and take advantage of the plethora of services
that are presented. Within such an agile environment, web
developers require new tools and infrastructures that will enable
smooth evolution as well as seamless integration of the provided
services into web applications.

2.1 The Callimachus Component Based
Hypermedia System.
Callimachus is an open hypermedia system [6, 7] that aims at
providing hypertext functionality to an open set of applications. It
provides support for wide range of domain specific abstractions
thus addressing a broad range of hypertext domains [5]. Such
domains include navigation, allowing the interlinking of
information and taxonomic reasoning to develop for example
directory services on the world wide web [14].

Callimachus follows a component-based architecture as depicted
in figure 1. Each component provides a number of services
through which clients can request domain specific hypertext
functionality. Its primary architectural elements are client
applications, structure servers and infrastructure. Client
applications can be either native or third-party applications, such
the MS Office Suite and Emacs, or even web servers and entire
web applications. Client applications (clients for short) request
services from structure servers using a well defined protocol.
Structure servers provide the domain specific abstractions of a
particular hypermedia domain by offering a consistent set of
services. The infrastructure provides services across hypermedia
domains such as storage, naming and notification.

The on-the-wire messages sent between clients and structure
servers are encoded using XML and transferred using HTTP
tunneling. The adoption of this technique has been imposed
mainly by the need to overcome the access restrictions to non
WWW services enforced by firewalls. HTTP is used as a
transport protocol to tunnel client requests. The Content-Type
parameter specifies the protocol that is being used.

All client-side aspects of the protocol come in the form of a
library that implements an API. Different structure servers require
different protocols to communicate with client applications. The

construction of the client-side API takes place during the
development of the structure server. In Callumachus, all structure
servers have the form of a TCP/IP daemon listening on a specific
port for incomming requsts. Each structure server can serve
concurrently many clients that can be of different types (e.g. web
application, Emacs etc).

Figure 1: The conceptual architecture of Callimachus and
how it is integrated with web applications

Being clients, web applications request structuring services from
Callimachus and content services form other information systems.
For example, in case the web application provides directory
services, it invokes structuring services such as openCategory or
getPathOfCategory from Callimachus, and it resolves the
returned content identifiers using the content services. At the web
application layer, the outcome of both service invokations are
merged and transformed to the appropriate format (e.g. html or
XML). The result is then sent back to be displayed to end users.

The development of structure servers and the integration
mechanisms (i.e. APIs) follows an evolutionary rapid prototyping
approach with short iterations and many releases. This means that
there is a constant evolution of services with which the entire
framework has to cope with.

Design and development is split into tasks, each one dealing with
a particular aspect of the structure server. Three main tasks are
carried out, each producing a prototype subsystem. The
integration of developed subsystems results in a working structure
server. The specification, design and implementation of each
subsystem does not follow a particular process model, because of
their tightly coupled nature and their “small” size as software
artifacts. These tasks are described more detailed below.

Server shell development: During server shell development, the
structure server’s interface is built. In this task, the emphasis is on
the design of the exact procedure the structure services are
invoked. More precicely, all aspects of the structure server when
viewed as the receivers of client requests are addressed. Such
aspects include listening to, parsing and validating incoming
requests, as well as preparing and passing these requests to the
domain model for execution.

Domain model development: During this task, the syntactic and
behavioral aspects of the domain-specific abstractions (including
their relationships) are designed and developed. The syntactic and

behavioral specifications originate from the scenario and are
defined in terms of the Callimachus Abstract Structural Element.

Integrator development: The aim of this task is the development
of the necessary software modules that will enable integration of
clients with the structure server. These modules come in the form
of a client-side API. Specifically, a wrapper container and a
communicator are developed [52] so that client applications are
able to request structure services.

The prototyping phase starts with the development of an initial
domain model prototype. Consequently, the server shell and the
integrator prototypes are developed. After an initial cycle, each
prototype is refined by constantly iterating through the tasks until
an acceptable structure server prototype has been completed. The
prototype structure server is tested by end-users aiming to assess
its accordance to the scenario.

These challenges include both non-functional and functional
aspects of structure servers:

Incremental service (and operation) formalization: During
prototyping, the set of the provided services (and operations that
clients can request) is initially unknown, with their name,
behavior and parameters slowly emerging, as prototypes become
available for testing. By having services emerging and evolving
while development is progressing, the emphasis is on ways to
easily integrate new or modify existing services, without requiring
changes in functionally unrelated modules of the structure server
(which cause major concerns to developers). In particular, the
goal here is to achieve localization of the effects during the
evolution of services.

Smooth evolution of protocol implementations: Although the
design of multi-protocol support ensures easy integration of new
protocols developed entirely from scratch, it does not address
evolution of existing protocols. During protocol evolution, new
methods might be added to existing protocol implementations;
existing methods might change their signature or might even be
associated with different operations at the domain model layer.
Such tasks need to be carried out quickly to ensure short iteration
cycles.

3. Design Patterns
Within the Callimachus project, design patterns [11] have been
proven a valuable mechanism to support smooth evolution of
hypermedia services and their seamless integration with Web
applications.

In particular, design patterns are utilized to address changes at the
hypermedia services layer due to new web application needs as
well as changes at the web applications layer due to changes at
hypermedia services. Consequently, two types of design patterns
can be identified: patterns that address concerns at the hypermedia
services layer and patterns that address concerns at the web
application layer.

Next, for each layer, we briefly present the design patterns used.
Although the design patterns discussed are already well known,
the focus is mainly on what benefits can be gained when using
them in service oriented environments.

Web Application

Structure Server 1

Infrastructure

Storage Server

RDBMS

ODBC

API

Naming Server Notification Server Template
Repository Server

Structure Server 2
API

Structure Server N
API

Content services Structuring services

3.1 Design Patterns at the Hypermedia
Service Layer
3.1.1 Protocol Handlers
Everytime a connection with a client is establised, all received
requests for structure services need to be parsed in order to be
checked for validity and prepared for execution. Validity
checking includes the examination of the conformance of the
requesting message to the syntax of the domain protocol
specifications, as well as to the semantics of the domain model
functions (i.e., the indicated operations along with the type of
parameters supplied). Preparing a request for execution refers to
the necessary actions dealing with determining the appropriate
operation in the domain model that has to be executed. Such tasks
are the responsibility of the protocol handler [12]. Since different
structure servers require different protocols, development of
protocol handler is performed every time a new structure server is
developed. The situation gets more perplexed when considering
that the same structure server can be accessed using different
protocols meaning that the same structure server needs to provide
support for a number of protocols that need to be activated at
runtime. The question thus is how to make the same set of
operations provided by structure servers available through
different protocols.

To achieve smooth evolution of protocol issues within structure
servers, parsing of incomming requests must be decoupled from
invocation of the operation that requests designate. For this
reason, the strategy design pattern is used [11]. This permits also,
the parsing algorithm to vary according to the incomming request.

How the strategy design pattern is utilized is depicted in figure 2.
Within each structure server, the ServerContext class deals with
all low level aspects of receiving a request from the TCP/IP
socket, as well as parsing the HTTP headers of the tunneled
request. The class also maintains a reference to an instantiation of
the HypertextProtocol, an abstract class that is used to parse the
received request and supports only the public virtual methods
Parse and Clone. While the Parse method encapsulates the
suitable algorithm for parsing and preparing incoming requests,
the Clone method returns a copy of the HypertextProtocol
instance, used in the context of the prototype design pattern. All
protocols supported by a particular structure server, are derived
from the HypertextProtocol class. Every derived class (that
constitutes a protocol handler) implements the method parse,
where the appropriate code for parsing, validating and preparing
the request is placed by the developer. The appropriate protocol is
determined and instantiated during runtime based on HTTP’s
Content-Type parameter. For this task, the prototype design
pattern is utilized, determining how the appropriate available
protocol implementations are declared and instantiated during
runtime. The hypertext protocol factory is part of the
ServerContext class and is instantiated during initialization of the
structure server. There is exactly one hypertextProtocolFactory
for every structure server.

ParseRequest()

HTProtocol

HTProtocol->Parse()

ServerContext

Parse()
Clone()

HypertextProtocol

Parse()

NavProtocol

Parse()

OHP

Parse()

Navigational

Figure 2 : Protocol Handler

Adding support for new protocols is fairly trivial, allowing
developers to focus only on parsing and preparing without
spending time about how to integrate the new protocol into the
structure server. During design time, developers have to create a
class that resembles their protocol implementation (derived from
the HypertextProtocol class) and to provide the
implementation for the Parse method. Furthermore, they have to
register the new class in the factory’s registerProtocol
method that takes place in the factory’s constructor. During
runtime, correct deployment of the new protocol handler is
ensured by the prototype design pattern [11], since the mechanism
of how to determine which class to instantiate is independent of
protocol handlers.

3.1.2 Service Execution
Different web applications may require different set of operations
from the same structure server. For example some web
application providing directory services might require complex
editing of entire subtrees such as deleting directories or moving
and copying them to different locations while others don’t.
Moreover, for all available operations, undo, redo, logging and
queuing options should be available. The question here is how to
systematically extend the available operations (and thus services).
The goal is to provide domain specific operations in a plug-and-
play fashion. To support such development tasks, the invocation
of an operation needs to be seperated from its execution. Within
Callimachus, this is achieved using a variation the active object
and command processor design patterns [10].

In the design pattern of figure 3, all client requests (denoting
operations, such as openNode, traverseLink in case of a
navigational structure server and deleteDirectory in case of a
taxonomic structure server) are instantiated as separate objects.
There exists one class for each operation available to clients,
elevating operations to first class entities, thus allowing them to
be stored, scheduled and even undone. Such treatment of
operations also allows the support of transactions. All available
operations are derived from the DomainOperation class, an
abstract class with two methods: Execute and Undo
(implemented by the concrete derived classes). The Execute
method of each concrete class executes the operation by calling
the appropriate method of the class HMDomain that represents
the interface to the domain model subsystem. For example, the
openNode class would call the openNode method of class
HMDomain.

The appropriate concrete operation instances are created by the
HypertextProtocol class, after having parsed and validated

incoming client requests. The HypertextProtocol class decides
which operation to instantiate in order to be flexible with respect
to which method of HMDomain class to invoke. There might be
cases where a matching method might not be available in the
HMDomain class, so an equivalent method (or set of methods) in
that class should be invoked. For example, a getNode operation
(that would be modeled as a separate class) has to invoke the
available openNode method (i.e., an equivalent method) of the
HMDomain class, when a getNode method is not available. Such
choice is conveniently done in the HypertextProtocol class after
parsing and before the execution phase of client requests.

1..*
opq->insert(op)

operation()
dispatch ()

OperationProcessor

Execute()
Undo()

DomainOperation

openNode createLink traverseLink

HMDomain
<<Execute>>

insert()
remove()

OperationQueue

HypertextProtocol <<create>>

Response

Figure 3: Service execution

The HypertextProtocol class enqueues all operation instances by
calling the Operation method of the OperationProcessor class.
There is exactly one OperationProcessor instance for every
structure server. Thus, an OperationProcessor constitutes a
singleton [12]. The OperationProcessor class maintains the
operation objects in the OperationQueue, and schedules their
execution. The OperationQueue class may arrange the operations
by priority and decide which operation is ready to be executed by
calling the operation’s canExecute method. Operations are
dequeued and executed concurrently by calling the appropriate
methods of the HMDomain class. Each operation executes in a
separate thread of control. The output of each operation is
available through a specific class (see Response class in Fig. 3)
that is used to send replies back to clients.
During structure server evolution, developers can systematically
approach the problem of constant change in the domain
operations, in the protocol specifications and in their bridging.
New operations can be added during design time by extending the
DomainOperation class and delegating execution to the
appropriate domain specific interface method. Since identification
and invocation of the operation are provided by the framework at
run-time, developers can focus only on semantic aspects of the
operations. In addition, the framework provides the foundation for
supporting a number of advanced (but necessary) capabilities,
such as the undo/redo operations, as well as transaction manage-
ment for all structure servers in a uniform manner, thereby
reducing maintenance efforts.

3.2 Design Patterns at the Web Application
Layer
While the previous sections presented design patterns that
facilitate the evolution of structure server when new web
applications requirements emerge, the following design patterns
address concerns at the web application layer and in particular
attempt to address issues that deal with hypermedia service
invocation.
With respect to invocation, the patterns aim at providing
mechanisms to achieve the following:

1. provide a single point from which requests to the
hypermedia services originate.

2. Offer templating mechanism for re-occuring invocation
schemes.

3.2.1 Single Invocation Point: Dispatching requests
Everytime developers need to issue requests from the web
application layer to Callimachus they place code (e.g. that uses
the API for accessing hypermedia services) in different web
application modules. Such approach to hypermedia service
provision results in code that is unstructured and thus
unmaintainable. The question here is how can be hypermedia
service invocations be systematically integrated into web
applications reducing thereby maintainance efforts.
Systematic integration is achived by using the action dispatcher
design pattern. The action dispatcher design pattern provides a
single access point for communication with hypermedia services,
selecting the appropriate action by dispatching centrally all
incomming requests. Firgure 4 depincts the action dispatcher
design pattern.
In Figure 4, all requests for hypermedia services are dispatched by
the Dispatcher class that creates the appropriate operation that
needs to be requested from structure server. Thus, every operation
that is available by a particullar structure server is represented as
a separate class. Each such class, in turn, extends a generic Action
Handler class.

Figure 4: Dispatchign requests

Selection of the specific operation (or action) is done using a
creational pattern (e.g. factory method).

3.2.2 Request chaining
At the web application layer and specifically during the handling
of a particular user request, a number of hypermedia services need
to be invoked sequentially – passing responses from one
invocation to the other - to complete a user transaction. Moreover,
situations arise where hypermedia and content services need to be
invoked sequentially to produce the final response that will be

Dispatch()

CreatesDispatcher

Handle()

Action Handler

Handle()

OpenDir

Handle()

createDir

Handle()

copyTree

Response

sent back to the user. Similar invocations schemes are used within
the web application layer (and not only in relation with
Callimachus) such as validating user request using filters before
invoking hypermedia services.

Figure 5: Sequential invokation of operations

Figure 5 depicts the design pattern to support sequential
invocation schemes. Currently at the web application layer, two
types of operations can be chained: filter and hypermedia service
invocations. Actions that need to be invoked within such “chain”
need to extend the appropriate class providing developers a
convenient way to specify sequential invokation of services and
operations in general.

4. CONCLUSIONS AND FUTURE WORK
In this paper we presented design patterns that address evolution
concerns in web application that are based on SOA. In particular
we described what design pattterns have been implemented within
the Callimachus project – a CB-OHS- that provides hypermedia
services to a broad range of clients including web applications. In
Callimachus, design patterns are used to address evolution and
maintenance concerns at the web application and hypermedia
service layer. Although the design patterns mentioned are already
known, we have discussed them in a service oriented context.

Future work includes identifying additional design patterns to
address even more elaborate evlolution scenarios. We believe that
design patterns have a particular role to play when building web
applications on SOA.

5. REFERENCES
1. Ginige, A., Murugesan, S., Web Engineering: An

Introduction, IEEE MultiMedia, 8(1), Jan.–Mar. 2001,
pp. 14–18. (CHI ’00) (The Hague, The Netherlands,
April 1-6, 2000). ACM Press, New York, NY, 2000,
526-531.

2. Papazoglou, M. P., Georgakopoulos, D. (eds.), Service-
Οriented Computing, Communications of the ACM, 46(10),
2003.

3. Agrawal, R., Bayardo, R. Jr., Gruhl, D., Papadimitriou, S.,
Vinci: A Service-Oriented Architecture for Rapid Development

of Web Applications, in Proceedings of the 10th Int’l
Conference on World Wide Web (WWW ’01, Hong Kong,
Hong Kong), 2001, pp. 355–365.

4. Wiil, U. K., Nürnberg, P. J., Hicks, D. L., Reich, S., A
Development Environment for Building Component-Based
Open Hypermedia Systems, in Proceedings of 11th ACM Int’l
Conference on Hypertext and Hypermedia (Hypertext ’00, San
Antonio, Texas, USA), 2000, pp. 266–267.

5. Nürnberg, P. J., Leggett, J. J., Schneider, E. R., As We Should
Have Thought, in Proceedings of the 8th ACM Int’l Conference
on Hypertext and Hypermedia (Hypertext ’97, Southampton,
UK), 1997, pp. 96–101.

6. Tzagarakis, M., Avramidis, D., Kyriakopoulou, M., Schraefel,
M., Vaitis, M., Christodoulakis, D., Structuring Primitives in
the Callimachus Component-Based Open Hypermedia System,
Journal of Network and Computer Applications, 26(1),
January 2003, pp. 139–162.

7. Vaitis, M., Papadopoulos, A., Tzagarakis, M., Christodoulakis,
D., Towards Structure Specification for Open Hypermedia
Systems, in Proceedings of the 2nd Int’l Workshop on
Structural Computing, Springer-Verlag LNCS 1903, 2000, pp.
160–169.

8. Wiil, U. K., Multiple Open Services in a Structural Computing
Environment, in Proceedings of the 1st Int’l Workshop on
Structural Computing (SC1, Darmstadt, Germany), Technical
Report AUE-CS-99-04, Aalborg University Esbjerg, Computer
Science Department, Denmark, 1999, pp. 34–39.

9. Beringer, D., Melloul, L., Wiederhold, G., A Reuse and
Composition Protocol for Services, in Proceedings of
Symposium on Software Reusability (SSR’99, Los Angeles,
California, USA), 1999, pp. 54–61.

10. Buschmann, F., Meunir, R., Rohnert, H., Sommerland, P., Stal,
M., Pattern Oriented Software Architectures: A System of
Patterns, John Wiley & Sons, 1996.

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.

12. Hu, J., Schmidt, D. C., JAWS: A Framework for High-
performance Web Servers, in Fayad, M., Johnson, R. (eds.),
Domain-Specific Application Frameworks: Frameworks
Experience by Industry, John Wiley & Sons, 1999.

13. Dart, S.: Configuration Management: the missing link in
Web engineering. Artech House, 2000.

14. Karousos, N., Pandis, I., Reich, S., and Tzagarakis, M.
(2003). Offering Open Hypermedia Services to the
WWW: A Step-by-Step Approach for the Developers.
In Proceedingss of Twelfth International World Wide
Web Conference WWW2003, (Budapest, Hungary), pp.
482-489.

15. Wiil, U., Nurnberg, P., Evolving hypermedia middleware
services: Lessons and observations. Proceedings of the
Thirteenth ACM Symposium on Applied Computing (SAC
99), San Antonio,TX, US, Mar.,1999

executionUnit

execute()

Execute()

Filter

Execute()

<<Next>>

ServiceMethod

Execute()

CheckSession LogAction

Execute()

Towards Empirical Validation of Design Notations for Web
Applications: An Experimental Framework

Paolo Tonella1, Filippo Ricca1, Massimiliano Di Penta2, Marco Torchiano3

1ITC-irst, Trento, Italy
2University of Sannio, Benevento, Italy

3Politecnico di Torino, Italy

tonella@itc.it ,ricca@itc.it, dipenta@unisannio.it, marco.torchiano@polito.it

ABSTRACT
Web application design involves at least one additional di-
mension over traditional software design: navigation, as sup-
ported by hyperlinks. Available design notations for Web
applications offer enhanced separation of different design
concerns (among which, navigation) and promise increased
understandability and maintainability. However, such claims
have not yet been tested in the field.

In this paper, we propose a framework for the execution of
empirical studies aimed at assessing the cost-effectiveness of
Web design notations. The context of the empirical studies
is a typical maintenance and evolution scenario, involving
activities such as program comprehension, impact analysis
and change implementation. The most important obstacles
and challenges in the design of such studies will be consid-
ered in this paper. We will propose counter-measures and
possible mitigations for them. Finally, we will instantiate
the framework into a specific empirical study that we plan
to conduct in the next few months.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.7 [Distribution, Maintenance, and Enhance-
ment]:

Keywords
Empirical Studies, Web Applications, Design Notations.

1. INTRODUCTION
Web application design is a complex activity which requires
the ability to deal with multiple and different kinds of con-
cerns. A Web application is typically composed of various
parts that need to be modeled at design time. Among them,
the most important ones are persistent data, business logic,
navigation structure, user interface. Other relevant concerns
include security, transaction management, authentication.

All these dimensions of a Web application must be addressed
properly in the design documents.

Several design notations and methodologies have been pro-
posed in the literature, in an attempt to provide solutions
to the problems mentioned above. Among the most refer-
enced approaches are WebML [2], UWE [6], WSDM [10],
OOHDM [9], Conallen [3]. Many of these notations are ex-
tensions of UML [8]. Their most distinctive feature is typi-
cally the ability to model explicitly the navigation structure
of a Web application through a dedicated model. Such a
model is often accompanied by “more traditional” entity-
relationship (or similar) models (for the data), static and
behavioral models (e.g., class, interaction and activity dia-
grams) for the business logic, etc.

Separation of concerns during Web application design is
clearly important during the initial development. However,
it poses many problems during the maintenance and evolu-
tion phase, which actually accounts for the vast majority of
an application’s life cycle[4]. In fact, it is hard to keep the
different views up to date and aligned. Traceability towards
the implementation may be also problematic. The overlaps
and interferences between different models may be hard to
detect. Overall, it might be not so obvious that the benefits
encountered during the initial development are kept during
the evolution phase, if assessed against the associated costs
(updates, alignment, traceability, etc.).

In such a context, it is extremely important to precisely un-
derstand the relative merit of the various models that have
been proposed in the literature, once considered during the
maintenance and evolution of an existing Web application.
It might be the case that some design notations are useful
mainly during the initial development, while becoming only
marginally useful later, with a negative cost-benefit trade
off. Others might on the contrary reveal themselves as pow-
erful tools that can be used to tackle the typical maintenance
and evolution scenarios. Gathering such knowledge is fun-
damental for the final user, who would be able to make an
informed decision. However, no empirical study was con-
ducted so far in this direction. In the literature, Web design
methodologies are evaluated only on small examples con-
structed ad-hoc by the proponents or through isolated case
studies, whose results cannot be usually generalized and do
not provide any comparative information.

Goal Analyze the support given by Web design notations to the comprehension and
modification activities during evolution.

Null hypothesis No significant effect on effectiveness of task execution and quality of the result.
Main factor Design notations being validated.
Other factors Systems, tasks, subjects and subject skills, training, tools.
Dependent variables Knowledge acquired, capability to locate changes precisely, quality of the result.

Table 1: Template for the empirical studies.

In this paper, we propose a framework for the execution of
empirical studies aimed at comparing different design no-
tations in order to assess the support they provide to the
maintenance and evolution of Web applications. The aim of
the framework is to support systematic and controlled ex-
ecution of experiments for the empirical validation of Web
design notations. The framework specifies the high level goal
and research questions of the studies, identifies the relevant
factors and proposes ways to deal with the main challenges.
An instance of the framework is a specific empirical study,
for the assessment of specific notations in a specific evolution
scenario. In this paper, an instance related to the validation
of the stereotyped class diagrams (following the Conallen’s
notation) is presented.

Section 2 describes the framework, while Section 3 presents
one example of instantiation of the framework, which is the
empirical study we are going to conduct in the next few
months. Conclusions and directions for future work are
drawn in Section 4.

2. TEMPLATE FOR THE EXPERIMENTAL
DESIGN

Table 1 summarizes the main elements of the experimen-
tal framework. Such a template follows the guidelines from
well–known experimental software engineering books by Wohlin
et al. [11] or Juristo and Moreno [5].

The general goal is quite clear: assessing Web design no-
tations in the maintenance phase. When instantiating the
framework, the general goal takes the form of a specific val-
idation objective that addresses a specific question about
the relative merit of specific notations, selected among those
available in the literature.

2.1 Hypothesis
The null hypothesis is that the treatments being compared
(e.g., two design notations) exhibit no significant difference.
When the null hypothesis can be rejected with relatively
high confidence, it is possible to formulate an alternative
hypothesis, which typically admits a positive effect of one
design notation in the execution of maintenance tasks. The
alternative hypothesis can be further specialized according
to the specific context in which it holds (see Table 3). In
turn, this is characterized by the independent variables (see
discussion of other factors below). The alternative hypoth-
esis is formulated in terms of the main independent variable
controlled in the experiment, i.e., the design notations being
used.

2.2 Treatments

The treatments compared can be either two alternative web-
specific design notation or a general purpose notation and a
web-specific notation.

2.3 Objects
In order to support maximal internal and external valid-
ity of the studies, all the other independent variables that
may affect the outcome of the study must be taken into ac-
count and possibly controlled. These include the software
systems that are the object of the maintenance tasks and
the tasks themselves. To mitigate the effect of these factors
on the experiment’s validity, the subject systems should be
selected with features (size, complexity, functionality) that
are typical of real Web applications. The tasks should be
representative of the activities carried out by Web develop-
ers in their daily work.

2.4 Subjects
The subjects executing the maintenance tasks are another
crucial factor affecting the possibility to generalize the out-
come of the study. To mitigate the effects of this factor,
proper training should be given to the involved subjects, so
as to ensure a common, basic knowledge of the technologies
involved in the experiment, as well as of the design nota-
tions being validated. Moreover, questionnaires can be used
to assess the actual skills of the participating subjects and
to (possibly) include them among the factors (independent
variables) being considered. Such an assessment allow to
properly design the experiment, ensuring a uniform distri-
bution of subjects with high and low ability across all ex-
periment groups. Moreover, the awareness of the subjects’
ability permits to use blocking [11] when analyzing the re-
sults.

The tools provided to the subjects and the associated pro-
gramming environment must be also selected carefully, so
as to mimic, as much as possible, the working environment
used for Web development.

2.5 Procedure and design
As discussed above, several factors affect the internal and
external validity of an empirical study such as the one we
are proposing. We already described ways to mitigate their
effect on the generality of the results. For some of them,
an additional method is counter-balancing, which can be
achieved through careful design of the experimental sessions.

Table 2 shows an experimental design which balances the ef-
fects of the software system under maintenance, of the order
of the treatments and of the learning curve of the involved
subjects. This is achieved by dividing the subjects into four
groups and involving them in at least two experimental ses-
sions (laboratories). The order in which the systems under

Goal Analyze the use of stereotyped UML diagrams reverse engineered from the code.
Null hypothesis 1 No significant effect on comprehension level.
Null hypothesis 2 No significant effect on impact analysis.
Null hypothesis 3 No significant effect on maintenance result.
Main factor Stereotyped (Conallen’s) UML diagrams vs. traditional UML diagrams.
Other factors Systems (TuDu and DMS), tasks (comprehension, impact analysis and maintenance),

subjects (students), training, tools.
Dependent variables Comprehension level, accuracy of impact analysis, quality of modified code.

Table 3: Template instance for validating the use of stereotyped (Conallen) UML class diagrams in software
maintenance tasks.

Group 1 Group 2 Group 3 Group 4

Lab 1 Sys1-Treat1 Sys1-Treat2 Sys2-Treat1 Sys2-Treat2
Lab 2 Sys2-Treat2 Sys2-Treat1 Sys1-Treat2 Sys1-Treat1

Table 2: Experimental design.

study are presented to the subjects is reversed when consid-
ering groups 1, 2 with respect to groups 3, 4. The order of
the treatments is also reversed between groups 1, 3 and 2,
4. The combination of system and treatment is completely
counter-balanced, by covering every possible sequence of sys-
tem and treatment.

Overall, this experimental design requires the execution of
at least two experimental sessions with at least four groups
of subjects. When these constraints are met, complete bal-
ancing of the order in which systems are considered and
treatments are subministered is obtained.

2.6 Variables
In order to measure the effects of a treatment (design no-
tation), metrics must be defined that allow evaluating the
experimental hypotheses. For example, such metrics could
capture the comprehension level reached, the ability to lo-
cate the requested change and the quality of the modified
system. Questionnaires, code inspections and change im-
pact estimates are examples of techniques that can be used
to derive metrics that map to the effects to be measured.

3. INSTANTIATING THE TEMPLATE
We are planning the execution of a first empirical study that
instantiates the framework described in the previous section.
The goal of the study is to analyze the use of stereotyped
UML diagrams (following the approach by Conallen [3]),
with the purpose of evaluating their usefulness in Web ap-
plication comprehension, impact analysis and maintenance.
The quality focus is ensuring high comprehensibility and
maintainability, while the perspective is multiple:

• Researcher: evaluating how effective are the stereo-
typed reverse engineered diagrams during maintenance.

• Project manager: evaluating the possibility of adopt-
ing a Web application design and reverse engineering
tool in her/his organization.

3.1 Hypotheses

Since we are interested in how stereotypes affect comprehen-
sion level, impact analysis and maintenance, we formulate
three different null hypotheses (and the related alternative
hypotheses):

• H01: When doing a comprehension task the use of
stereotyped reverse engineered class diagrams (versus
non-stereotyped reverse engineered class diagrams) does
not significantly affect the comprehension level.
Ha1: When doing a comprehension task the use of
stereotyped reverse engineered class diagrams (versus
non-stereotyped reverse engineered class diagrams) sig-
nificantly affects the comprehension level.

• H02: When doing an impact analysis task, the use
of stereotyped reverse engineered class diagrams (ver-
sus non-stereotyped reverse engineered class diagrams)
does not significantly affect the accuracy and the ef-
fectiveness in the execution of the task.
Ha2: When doing an impact analysis task, the use
of stereotyped reverse engineered class diagrams (ver-
sus non-stereotyped reverse engineered class diagrams)
significantly affects the accuracy and the effectiveness
in the execution of the task.

• H03: When doing a maintenance task, the use of stereo-
typed reverse engineered class diagrams does not sig-
nificantly affect the effectiveness in the execution of
the task.
Ha3: When doing a maintenance task, the use of stereo-
typed reverse engineered class diagrams significantly
affects the effectiveness in the execution of the task.

3.2 Treatments
The treatment considered in this experiment is the design
notation proposed by Conallen [3]. Since this notation ex-
tends UML through a set of stereotypes, the notation used
for comparison (second treatment) is basic UML, with no
Web-specific stereotype. The aim is to determine the amount
of improvement (if any) that can be obtained by means
of Conallen’s stereotypes in the maintenance and evolution
phase. A similar, prelimilary study, focused on the use of
stereotypes for comprehending applications related to the
communication domain has been conducted by Kuzniarz
et al. [7]. The authors showed that the use of stereotypes
helped to improve the comprehension. Diagrams are reverse
engineered from the code and then adjusted manually, so as
to reproduce a situation where diagrams are aligned with
the code and at the same time represent a meaningful and
compact abstraction of the implementation.

Figure 1: Basic UML class diagram (left) compared to Conallen’s diagram (right).

TuDu
Files LOC

Java 62 2929
JSP 19 1232
Total 81 4161

DMS
Files LOC

Java 40 3731
JSP 11 1125
Total 51 4856

Table 4: Characteristics of the systems under study.

Figure 1 gives an example of the extra information provided
by Conallen’s diagrams, compared to that usually repre-
sented in standard UML class diagrams. The modeled Web
application implements a glossary. On the left is the ba-
sic UML diagram, showing the Servlet (GetEntries) and the
database. On the right, the same diagram is enriched with
Conallen’s notation. It includes the client pages generated
by the Servlets (e.g., EntryListing), the static pages (Glos-
sary home) and the hyperlinks (notation: <<link>>).

3.3 Objects
Two Web applications were selected for this study: DMS
and TuDu. Both are small/medium size applications (see
Table 4) based on the Servlet/JSP technology and down-
loaded from sourceforge.net. Although commercial or in-
stitutional Web applications may be larger, given the time
constraints of the experiment and the involved subjects (stu-
dents), it was not feasible to consider larger examples. The
application domains of the selected system is pretty typi-
cal of existing Web applications. The same holds for their
organization and overall functioning. TuDu1 is an on-line

1http://app.ess.ch/tudu

application for managing todo lists supporting cooperative
work of distributed teams. It can be accessed via RSS feed.
DMS2 is a document management system, providing a Web
centric interface to manage, access and distribute documents
which are kept under version control.

3.4 Subjects
The subjects participating in the study are University stu-
dents. The study will be replicated at three different sites:
University of Trento, University of Sannio (Benevento) and
Politecnico di Torino, in Italy. The participating students
are at different levels of their course of studies, ranging from
undergraduate students, to graduate and master students.
Replication with students having different levels of exper-
tise will give us the opportunity to investigate this further
dimension, by comparing the results obtained at the differ-
ent sites.

3.5 Procedure and design
Students will be trained on Conallen’s notation, as well as
all the technologies used in the target applications (e.g.,
Servlets/JSP). They will be involved in four experimental
sessions (laboratories), each lasting approximately 2 hours.
The assignment given to each group of students in each lab-
oratory follows the experimental design in Table 5, which is
an instance of the counter-balanced scheme described in the
previous section.

Each laboratory in the original scheme (see Table 5) is split
into two (Lab N-a, Lab N-b, with N = 1, 2). The first lab-
oratory (Lab N-a) consists of the execution of a compre-
hension task followed by impact analysis. Comprehension
is driven by a request for change. Impact analysis consists

2http://docmgmtsys.sourceforge.net/

Group 1 Group 2 Group 3 Group 4

Lab 1-a TuDu-Con TuDu-UML DMS-Con DMS-UML
Lab 1-b TuDu-Con TuDu-UML DMS-Con DMS-UML
Lab 2-a DMS-UML DMS-Con TuDu-UML TuDu-Con
Lab 2-b DMS-UML DMS-Con TuDu-UML TuDu-Con

Table 5: Instantiation of the experimental design.

of an estimate of the portions of the Web application af-
fected by the requested change, The second laboratory (Lab
N-b) is the implementation of the change. The program-
ming environment will be the one students are familiar with
(Eclipse), with plugins supporting the design notation being
validated (Conallen). The treatments indicated in Table 5
are Conallen (Con) vs. basic UML (UML).

Finally, we will ask students to fill-in a survey question-
naire (both after Lab N-a and Lab N-b) regarding the task
and system complexity, the adequacy of the time allowed
to complete the tasks and the usefulness of the provided
diagrams.

3.6 Variables
The dependent variables of the study are:

• Comprehension level (hypothesis H01).

• Capability of doing impact analysis (hypothesis H02).

• Quality of the maintained code (hypothesis H03).

In order to assess the effects of the treatments on the de-
pendent variables, we will use questionnaires, test case exe-
cution and design/code inspections, and we will measure:

1. Number of correctly answered questions and time needed
to answer them (both for the comprehension and for
the impact analysis questionnaire).

2. Functional behavior of changed code (passed test cases).

3. Time required to implement the changes.

4. Flaws in new design (determined through inspections).

5. Code quality (determined through inspections).

4. CONCLUSIONS
The research in Software Engineering (SE) is expected to
produce scientific knowledge. However, this is difficult to
achieve since humans are typically in the loop of any novel
SE technology. This is especially true for design notations,
such as those proposed for the development of Web applica-
tions.

This work represents a first step in the direction of gather-
ing systematic knowledge [1] about the cost-effectiveness of
Web design notations. We have defined a common frame-
work for the empirical studies focused on this topic. Then,
we have instantiated the general template, obtaining the
design of the first experiment that will be executed in this

area. We tried to control as much as possible the factors
possibly affecting the outcome of the experiment. Repli-
cation at three different sites, with different subjects, will
further strengthen the results. In the design of the exper-
iment, particular care was devoted to the balancing of the
main independent variables.

A lot of future work remains to be done. First, we will ac-
tually conduct the planned experiment and replicate it at
three distinct sites. We will also encourage further replica-
tions by other researchers outside the initial project team.
We expect that the results of the study will provide feedback
on the usefulness of different design views, according to the
tasks at hand and depending on the features of the appli-
cation under study. Data on the (possibly) different behav-
iors of subjects with different skills will be also gathered.
Overall, we aim at putting the design notations proposed
for Web applications in the context of a maintenance and
evolution scenario, in order to assess their cost effectiveness.
Replication with notations different from the one considered
initially will be also fundamental to corroborate our initial
findings.

5. REFERENCES
[1] V. Basili, F. Shull, and F. Lanubile. Building

knowledge through families of experiments. IEEE
Transactions on Software Engineering, 25(4):456–473,
July/August 1999.

[2] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing Data-Intensive
Web Applications. Morgan Kaufmann, 2002.

[3] J. Conallen. Building Web Applications with UML.
Addison-Wesley Publishing Company, Reading, MA,
2000.

[4] T. C. Jones. Estimating Software Costs. McGraw Hill,
1998.

[5] N. Juristo and A. Moreno. Basics of Software
Engineering Experimentation. Kluwer Academic
Publishers, Englewood Cliffs, NJ, 2001.

[6] A. Knapp, N. Koch, and G. Zhang. Modeling the
structure of web applications with argouwe. In Proc.
Fourth Int. Conference on Web Engineering. Springer
Verlag, July 2004.

[7] C. W. L. Kuzniarz, M. Staron. An empirical study on
using stereotypes to improve understanding of uml
models. In Proceedings of the International Workshop
on Program Comprehension (IWPC), pages 14–23,
Bari, Italy, 2004.

[8] J. Rumbaugh, I. Jacobson, and G. Booch. Unified
Modeling Language Reference Manual.
Addison-Wesley, 2004.

[9] D. Schwabe and G. Rossi. An object oriented
approach to web-based application design. Theory and
Practice of Object Systems, 4(4):207–225, 1998.

[10] O. M. F. D. Troyer and C. J. Leune. Wsdm: a user
centered design method for web sites. In Proceedings
of the seventh international conference on World Wide
Web 7, pages 85–94. ACM Press, 1998.

[11] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

User-Centered reverse engineering: Genesis-D project
Luca Mainetti

Dipartimento Ingegneria
dell’Innovazione

Università di Lecce
Via per Arnesano, 73100 Lecce,

Italy
Tel: +39 0832 297216

Fax: : +39 0832 297279

luca.mainetti@unile.it

Roberto Paiano
Dipartimento Ingegneria

dell’Innovazione
Università di Lecce

Via per Arnesano, 73100 Lecce,
Italy

Tel: +39 0832 297296
Fax: : +39 0832 297279

roberto.paiano@unile.it

Andrea Pandurino
Dipartimento di Ingegneria

dell’Innovazione
Università di Lecce

Via per Arnesano, 73100 Lecce
Italy

Tel.: +39 0832 297229
Fax: +39 0832 297279

andrea.pandurino@unile.it

ABSTRACT
In the last years, the requirements of the end-users are notably
evolved. A good software must not have only a good functionality
cover but it also must have good usability features. From this
point of view, the most recent design methodologies focus on the
interaction between the end-user and its user experience; in this
way, the design focus there is not on the data element
(represented as objects or relational entity) but on the end-user
and its perception of the information anymore. According to
growing needs, it is more and more frequent the requests of
reengineering of existing products that, developed in many years,
have a good coverage of the application domain; these existing
products result completely unsuitable to the modern paradigms of
interaction. In this paper, we introduce an experience of
reengineering (in web perspective) of a legacy application on the
environment monitoring. This experience has been performed into
the industrial research project (funded by Italian Government)
called “Genesis-D”1 (Global Environmental Network System of
Information for Sustainable Development) that understanding the
importance of the new user-centred approach wants to
reengineering its own products.

Categories and Subject Descriptors
D.2.0 [Software]: Software engineering – General.

General Terms
Management, Documentation, Design, Standardization,
Languages, Theory, Legal Aspects.

Keywords
User experience, Web application design, Environmental domain,
reverse engineering process

1. INTRODUCTION AND BACKGROUND
The rapid growth of the web and the on-line services has made
the complexity of the design and the following development
manageable only through structured and engineered approaches.
In order to improve the web application (WA) quality, the

1 The leading company is Edinform SpA and is located in Lecce

designer must not only manage the information and navigation
aspects but, also all the multi-user and multi-device requirements
combined with the customization needs; although, these aspects
have been subject of study [6][3], their cohesion and mutual
implications have brought to the birth of new methodological
approaches.
In the last years, several design solutions have been proposed;
their main goal is to adapt the well know methodology to the new
WA requirements; thus, these methodology would be able to
introduce complex contents and to manage the requirements of
user-accessibility.
The methodologies so adapted are founded on the idea that to
model any page type (and so to describe a WA), is enough to
represent its fundamental elements (pages, form and link) and to
relate themselves through the classical object-oriented
relationships.
Starting from this perspective, we have to take in consideration
Jim Conallen approach [4]: WAE (Web Application Extension),
an UML profile that adding new stereotypes, simplifies the Web
page representation. WAE is strongly confirmed in the industrial
environment and UML community. WAE is very useful and
powerful when is used to describe the logical design of the
software modules that composes a Web system; but, on the
contrary, it has some weakness (due to the lack expressive ability
and the inadequacy) to represent the User Experience aspect.
These considerations are helpful both when the designer is
planning an application ex-novo and when he/she is making an
application reengineering; rather, in a phase of reengineering the
semantics of the user experience must drive the designer: the
designer must not be influenced by the object-oriented paradigm.
After all, supposing to have a pure object-oriented design, if
WAE was applied the result would be only the same application
translated in the web domain but with the same politics of
interaction of the first one getting a "porting" and not a
reengineering in the user-centred point of view. Starting from
these considerations, we introduce a reengineering experience in
which different design techniques, both traditional and user-
centred, are combined.

2. THE APPLICATION DOMAIN AND THE
APPLICATION

The approach to the environmental protection (understood as
habitat of all the organisms and as organic structures of systems
and subsystems), is evolved considerably. If, in the sixties, the
public administration attitude was finalized to control to the law
prescription, today great importance is given to the knowledge
acquisition of the factors that heavily affect the environment
quality; this choice is determined by the high growth rate of the
population and by the evolution of the productive system that
make pressure on the environment.
Today the monitoring activity and environmental control are
made not only by the public administrations such as Municipality,
Provinces, Regions but also by several associations and
organizations and by protection environment agencies in the
national and international territory.
The number of involved actors and the need to acquire the quality
status of the environment and territory, lead to create a consistent,
coherent and reliable informative exchange. To achieve this goal
organization and institution nets (with the target to improve the
collaboration for a common environmental politics) were born.
The efforts to collect and to delivery the environmental
knowledge in Italian and European area does not match in
regional institutional level, because the technological
infrastructures does not support informative exchange. In this
context take places the research project GENESIS-D[1] sponsored
by Edinform S.p.A in collaboration with the University of Lecce
and Polytechnic of Milan. The project goal is the creation of a
"framework" for the modelling and the development of software
systems about the environmental management at regional or sub-
regional institutional level. The Web applications, obtained
starting from the framework Genesis-D, have to improve the
interface and the interchange of environmental information
among different institutional subjects such as Regions, Provinces,
Municipality, ARPA (Regional Agencies for the environmental
protection), etc.
The application domain is characterized by a considerable number
of actors (public administrations, authorities, corporate bodies,
local health services, experts of domain, etc), of administrative
documents (norms and national laws, regional, directives of the
European Community, etc.), of studies (international standard,
studies of sector, models, etc.). It is clear that the creation of a
framework based on the reverse reengineering of existing product
(developed in about ten years), that considers many laws, studies,
is a good starting point. In accord with Edinform S.p.a., it was
established to perform the reverse engineering of the application
SIRA (Environmental Regional Information System).

2.1 SIRA
SIRA supports the environment management and control
activities in a regional context.
In accord with the standard SINAnet (Cognitive National System
and of the Environmental Controls), SIRA split the environmental
subject in the thematic area base of the National Thematic
Centres: Waters inside and sea coastlines (EKB-AIM), Wastes
(EKB-RIF), Soil and contaminated sites (EKB-SSC), Nature
Preservation (EKB-CON), Air climate and emissions in

atmosphere (EKB-ACE), Physical Agents (EKB-AGF). This
segmentation strategy is the base of EKB (Environmental
Knowledge Base). Its reality is the Environmental Reality
composed by environmental facts and phenomena.
Starting from this point of view, SIRA is structured in the
following subsystems:

• General registry: it manages all the registry data of the firms,
of the subjects and of the operational structures with an impact
on the environment or that they have involved in the control
and in the environmental prevention.

• Management procedures: it allows the administrative
management of the documents produced by the activity of
environment monitoring.

• Soil: it allows the management of data coming from the
monitoring of the environment risk areas (polluted sites and
plants at risk of accidents with dangerous substances) present
on the regional territory.

• Water: it allows the management of data coming from the
monitoring of hydrographical basins, the water bodies, the
waterworks, the withdrawal work, the unloading and presence
of mud on the regional territory.

• Nature: it allows the management of data coming from the
monitoring of the protected areas, and of the relative areas of
protection, on the regional territory.

• Wastes: it allows the administrative management of the unique
form of environmental declaration, annually introduced by the
firms and by the municipalities that they participate in the cycle
of waste management.

• Security: it allows the definition of the access profiles of the
system.

3. THE REVERSE ENGGINEERING
PROCESS

As written above, in the first project phase the main goal is the
reengineering (with user centred approach) of SIRA. In order to
manage the complexity of the application domain and taking into
consideration the kind of application, the creation of a process in
order to correctly drive the designer is needed. The main process
is divided in three macro-phases:
1. Requirements elicitation and analysis. This phase can be

divided in two parts: the first one uses the "user centred"
approach focused on the stakeholders and on their goals; the
second one aims to represent the application domain
knowledge. In the first sub phase, we recommend the use of
requirement engineering approach based on "goal oriented"
techniques; in our case study, we used the methodology
AWARE based on the KAOS theory of Lamsweerde [5].
This technique traces the meaning of each requirement that is
related to its specific goal. The "stakeholder" is whoever
(end-user, developer, manager, buyer, financier, etc.) has a
specific interest in the system and so it is able to express his
goals. The goals of a specific stakeholder can eventually be
shared with other one. A single goal not related to a specific
stakeholder, it is not a goal for the web system and it must be
therefore deleted. The output of the analysis is a user-centred
vision of the application requirements and will be the base
for the following process phases. The second sub phase,
instead, uses object-oriented technique to perform the

application reverse engineering. Output of this sub phase is
the complete diagrams (class diagram and sequence diagram)
that could be defined still part of the requirement engineering
because they aim to describe the application domain. Our
case study describes the application SIRA using OO
paradigm and this is a good starting point for the informative
object study of the domain and the relationships among
them.

2. User experience design. This is the first phase of the
reengineering and must have performed using WA design
methodologies based on user centred approach. In the case
study, we used two methodologies IDM [2] (used to describe
the interactive and navigational essential aspects of multi-
channel applications, focusing on the dynamics of dialogue
end-user / application) and E-Wood (Edinform Web Object-
oriented Design) that, refining the IDM analysis, uses the
object-oriented techniques integrated with the necessary
semantics for the web applications. Both the two designs
have kept in mind of the informative objects derived by the
SIRA reverse engineering combined with the goal-oriented
analysis; in other words, the two methodologies allow to
filter the OO analysis with the goal-oriented vision of the
domain for the specific stakeholder. The E-Wood design
methodology has been created by the Polytechnic of Milan,
and inherits the notation from UML. E-Wood allows the
conceptual design of the application with the WAE profile.
Thus, its output could be adapted to the specific
implementation technology.

3. Implementation design. The output of the phase is intended
to the developer and provides the implementation model of
the system; in other words, it describes through WAE the
pages and the software components that the developer must
implement using a specific implementation technology such
as Micorsoft .Net, J2EE model 1, J2EE model 2 etc. It is
called also "logical design" and it allows adding the
implementation details directly connected with the system
and the selected architecture.

In figure 1, it is possible to see the process scheme of reverse
engineering. The transition from the conceptual modelling E-
Wood to the implementation design is made easier thank to the
guidelines provided. The guidelines provide several advantages to
create the final product; in fact, applied in a systematic way after
having established the architecture type to use, they allow to
conform the implementation of specific E-Wood structures and
accordingly to get an uniformity in the code; in other words, the
guidelines limit the freedom of the developer to translate the
methodology objects in code.

Figures 1: Scheme of the process of reverse engineering

3.1 The E-Wood methodology
Following UML community approach, in order to model the page
features such as layout, contained, navigation in E-wood several
views are used. The goal is to separate the different aspects into
different design in order to improve the quality of the analysis of
the aspects that are correlated each other. The required views are:

• Structural navigation view: it specifies the pages used to
represent the information content related to a conceptual entity.
In this view the navigation among these pages is defined too.

• Association view: it allows to specify how create the navigation
between pages that describe different entity linked by a
semantic association.

• Navigation Path view: it allows to specify as the navigation
among pages created for supporting the end-user interaction
with driven path of navigation.

• Operation Views: it allows to specify the pages that support the
execution of operations.

The E-Wood methodology provides also these general views:

• Page Template View: it defines the general structure of the
pages and the aspects of layout specifying general contents and
links of landmark shared with various pages.

• Navigational Map View: it provides a view of whole
application, or related to the screens belonging to a single
package of pages, showing the main Screens and the possible
navigation among them.

4. REVERSE ENGINEERING OF THE
SIRA APPLICATION

According to the process described above, the SIRA application
reverse engineering was performed. In the stakeholder analysis, it
must be highlighted that different authorities and corporate bodies
share the responsibilities for protecting and preserving the
environment, that operate at different institutional levels
(municipality, intercity, provincial, inter-provincial, regional,
inter-regional, national, EU, etc). Among these subjects, at
national level we remember the APAT (Agency for the Protection
of the environment and Technical services), the Minister of the
environment, the Forest Body of the State, the Italian Red Cross,
the Civil Protection, etc. At regional level it is opportune to
mention the various ARPA (Regional Agencies for the Protection
of the environment), the Basin Authorities and the Park
Authorities, the Provinces, the Regions. At provincial level we
remember the APPA (Provincial Agencies for the Protection of
the environment), the metropolitan cities, the prefectures, the
provinces, the offices responsible for police force and public
order, while at town level there are the municipalities. Studying
the competences of these corporate bodies, it is possible to
identify not detailed professional figures (that would be hundreds
considering that each organization has an inside structure and own
rules) therefore we focused on the roles that the figures assume in
an environmental monitoring system; in detail, three different
typologies of roles are been founded:

• Government role: who adopts the opportune tools of
government for the protection and preservation of the
environment and cooperating with the government end-users

User Goal
Diagram

C-IDM

L-IDM

Architecture

WAE

Application

IDM Goal
Oriented

E-
Wood

E-Wood

Model

Requirements Designer User Experience Designer Application
Designer

Methodology

ACTOR

Output

PHASE

1.Requirement Enginering 2.Conceptual Design
3.Logical/Implementati

on

OO
Analysis

Class &
Sequence

Implementation
Guidelines

of other corporate body and authorities in order to perform
an integrated territory management. The first level goal are:
Optimal management of the territory, Reduction of the level
of acoustic pollution, reduction of the level of atmospheric
pollution, the waters' preservation, reduction of the wastes
and reclamation of the polluted sites, preservation of the
human health.

• Coordination role: supervise the job of the operational end-
user; it provides all the necessary information to the
government end-user to adopt the opportune measures. Its
goals are the same of high-level government role but with
different assignments and functionality; for instance, in order
to perform an optimal management of the territory, the
coordination end-user takes in care the promotion and
planning of the use services of the local areas and parks (as
the creation of cycle routes); thus, it performs studies and
projects preparatory to the environmental activities and
territorial planning, it finds the development opportunities of
the territory compatible with the environment, it promotes
initiatives to enhance the naturalistic patrimony and to
protect the biodiversity and the environmental quality, and it
deals with the management of the censuses of the wildlife
and of the surveys of the habitats in the natural reserves.

• Operational role deals with to perform the surveys for the
environmental monitoring and to point out to the
coordination end-user about particular anomalous values
emerged by the analyses performed so that to be able to
adopt the opportune measures, effect the plans of
management of the reserves, deals with to perform the
inquiry of environmental impact evaluation for the
realization of new works, and to perform the environment
monitoring, that is to periodically perform the censuses of
wildlife and the survey of the habitat in the parks, in the
reserves and in the other areas of interest.

At the end of the AWARE analysis, the reverse engineering of the
application SIRA was performed with Object-oriented paradigm.
The application SIRA from the end-user point of view is very
bind to the information managed; in fact, the user interface in its
structure and navigability mirrors the relational model and,
therefore, it is limited to a set of forms of insert/view.
The environment business logic is directly contained instead in a
set of objects related to the insert forms. The application allows
the end-user profiling preventing the access to particular
information to the end-users not authorized.
The OO analysis identified about 190 classes with the relative
methods and objects (in figure 2 a part of the class diagram is
showed).

Figures 2: Part of the class diagram of SIRA

In the figure 2, the identified objects are tightly bind to the
information that represent and cannot directly be used in a user-
centric application, since they mirror the data and do not keep in
mind as they are perceived by the end-user. Using the goal
analysis and the detailed information (attributes and methods)
derived from the OO analysis, the IDM methodology is applied.
The conceptual model of the new system of environmental
monitoring has been realized keeping in mind the thematic of the
environmental domain: Water, Soil, Air, Nature, and Waste.
Keeping in mind therefore the aforesaid thematic environmental
and the typologies of stakeholders, have been realized for each
end-user five IDM views, one for each thematic. In figure 3 the
IDM scheme of the thematic Water for the Government is
showed.
The founded topics contain all the information derived by the
objects (OO analysis) modified with the end-user perception of
them: for instance, the topic "waterworks" contains inside the
dialogs act: General Features (Description, Type of work, Type of
waterworks net, Manager, Year of realization, flow in, flow out,
Pressure in, Pressure out, K, Quota), Geographical Location
(imprint, geo-code, geo-references), Law / normative
(Denomination, Text, Category tool, Absorbed Tool). It is clear
that all the dialogs acts derives from different objects; in fact, in
the class diagram there is the object RKB.OSS of which the
waterworks is an instance that is related with the class "DIA unit
of application" to which the geo-references (GeoImprint Unit) is
related.

Figures 3: View of Government End-user for the thematic

Water

DIA GOAL
DIA GOAL*

UNIT DIA

DIA
Category

DIA Event

DIA
Strategy

UNIT APP
DIA

UNIT APP
OSS

Document

Company

Water

Company
Monitoring Place

Water Basin

PublicMonitoring Season
Waterworks

At the end of the IDM design (in which the information is
modified in terms of user experience), the E-Wood analysis is
performed; thus, all the E-Wood views for specific end-user and
environmental thematic are produced: Structural Navigation
View, Association View, Navigation Paths View, Operations
View, Page Template View, Navigational Map View.

Figures 4: View of the navigational map of the water Body for
the government end-user

The figure 4 shows the navigational map of the "water body"
object.
At the end of the E-Wood modelling, established the software
architecture, the implementation view could be produced. This
task is not excessively complex because E-Wood uses a similar
notation of implementation views and thus, it is possible to
establish a mapping between the objects of the conceptual
modelling and those of the "implementation view"; furthermore,
Polytechnic of Milan has established the guidelines that allow an
easy translation of the E-wood diagrams in the specific
architecture.

Figures 5: "implementation View" of the navigational map of
the water Body for the government end-user

The Figure 5 shows the implementation view of the navigational
map of the water Body for the government end-user in the case
was chosen as implementation architecture MVC model 2: the
request controller is present and each JSP page invokes the bean
of the corresponding entity.

5. CONCLUSIONS
The growing demand of new services and the continuous interest
for the web is forcing a lot of company to evolve their
applications. This transition is heavy: all the application logic has
to change from a system vision to user centric vision. The
information is not fundamental while the perception and the
interaction that the user has with it is the design core. It is clear
that whether to resolve the problem of the reengineering is not
enough a methodology but it is necessary a process that leads the
designer to understand the domain, the stakeholders and the
following phase of analysis and design. This paper presents a
reengineering process that, integrate well known methodologies
as Aware, Object-oriented, IDM and E-wood, applied to a real
case. The output is good: a logical model effectiveness and
uniform ready to be implemented. The effort to perform the
complete design with user centred approach has required just 4
months of a designer (a very small effort for a domain very
extended). It is sure, that the introduction of the guidelines for the
implementation level, constitutes a great facilities for the designer
and it allows to get a design more uniform and correct. Since the
guidelines are tightly connected with the selected implementation
architecture, a very interesting future development is to create
new guidelines toward new technologies.

6. REFERENCES
[1] Balconi T., Mainetti L., Paolini P., Perrone V., GENESIS-D:

Formal description of the Conceptual Model, Polytechnic of
Milan, deliverable D2.2, project GENESIS-D, October 2004.

[2] Bolchini, D., Piccinotti, N., Randazzo, G., Gobbetti, D., IDM
To User-Centred Model Shaping User Interaction as to
Dialogue, In Proceeding of the HCII 2005 International
Conference on Human-computer Interaction (Las Vegas,
USA, 2005).

[3] Brusilovsky, P. Methods and tecnique of adaptive
hypermedia. User modeling and user adaptive interaction,
vol 6, nos. 2-3, (1996) 87-129.

[4] Conallen, J., Building Web Applications with UML, Second
edition. Addison-Wesley, 2003.

[5] Dardenne, T., Van Lamsweerde, T., Fickas, S. Goal-directed
Requirements Acquisition. Science of Computer
Programming, (1993) Vol. 20.

[6] Oreizy, P., Gorlick, M.M., Taylor, M.M. et al. An
Architecture-Based Approach to Self-Adaptive Software.

Collection link
1..N

Collection
link
1..N

Scarico idrico

Association link
0..N

Collection link
1..N

Collection link
1..N

Tutti gli
scarichi idrici

che si
riversano nel
corpo idrico

Tutti i corpi idrici
di un tipo

Tutti gli
intervalli di

tempo

Tutti i tipi di
corpi idrici

Tutti i corpi idrici
con valori di indici
fuori norma in un

intervallo di tempo

Corpo idrico
Link

Tutte le aree
geografiche

Tutti i corpi idrici
di un’area
geografica

Collection link
1..N

Collection link
1..N

Ente o
organismo

Association link
0..N

Enti che
governano il
corpo idrico

link

Sorgente non
puntuale

Sorgenti non
puntuali che
influenzano il
corpo idrico

Association link
0..N

link

ALL
TIME

ALL TYPE
WATER

ALL WATER

NOT LOCAL
SOURCE

WATER

Gov.
Corporate

WATER
UNLOADED

ALL WATER
UNLOADED

ALL NEAR
 WATER
BODY

ALL
SIMILAR
 WATER
BODY

ALL

GEOGRAFI

Gov.
Corporate

NOT LOCAL
SOURCE

	complete.pdf
	paper4.pdf
	INTRODUCTION
	Service Oriented Architectures (SOA)
	The Callimachus Component Based Hypermedia System.

	Design Patterns
	Design Patterns at the Hypermedia Service Layer
	Protocol Handlers
	Service Execution

	Design Patterns at the Web Application Layer
	Single Invocation Point: Dispatching requests
	Request chaining

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

