
Han Schouten 5-1

Analysis and design of data warehouses

Han Schouten

Information Systems Dept.

Technical University - Delft, The Netherlands

han.schouten@is.its.tudelft.nl

Abstract

With the large-scale introduction of the data
warehouse concept, a new phenomenon has ap-
peared in the field of information systems devel-
opment. Facts in a data warehouse – as opposed
to those in an operational database – mainly rep-
resent immutable, aggregated or otherwise de-
rived, historical information. The aggregation
level and specific layout of management infor-
mation reports often cannot be specified on be-
forehand. Therefore, a data warehouse must be
designed in such a way, that it provides optimal
support for aggregation on the fly and for navi-
gation through aggregation hierarchies, that it al-
lows easy access to time series and that it enables
reporting in any desired layout.

This publication describes the outline of two
complementary methods for the analysis of data
warehouse relations; one simple and the other ad-
vanced. The simple method exploits the knowl-
edge contained in an ordinary relational schema.
The advanced method is based on the analysis of
derivation rules. Subsequently, the design of data
warehouses based on these methods is investi-
gated. Special attention has been given to the ac-
tuality of data warehouses that contain historical
information, to the transitivity of derivations, to
the navigation through aggregation hierarchies
via so-called drill paths and to the maintenance of
various aggregation levels within a single data
warehouse relation.

The copyright of this paper belongs to the paper’s authors. Permission to copy
without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW'99)

Heidelberg, Germany, 14. - 15. 6. 1999

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

1 Introduction

At least two different types of computer applications can
be distinguished in the information management of a
company: on-line transaction processing (OLTP) and on-
line analytical processing (OLAP). The first supports the
primary processes of the company with ordinary transac-
tion processing systems. The latter concerns management
information about and control over primary processes by
means of management information systems. [Inmon93]
gives several valid reasons for the physical separation of
the databases and the applications in these two areas.

A database filled with facts derived and aggregated from
an ordinary operational database for the sole purpose of
policy making is called a data warehouse. The facts in a
data warehouse may represent key performance indicators
to be used in a balanced score card approach to evaluate
the operation of a business. There are sound methods for
the analysis and design of ordinary transaction processing
systems. A comparable method for the development of
management information systems remains to be invented.
Inmon deals with many phenomena related to data ware-
house design, but leaves the ‘how’ of it completely un-
touched. This article is an attempt to devise a proper way
of thinking and working to achieve this goal.

When developing a transaction processing system, nor-
mally a distinction is made between the analysis of the
ideas of the people in and around an organisation and the
design of the way in which the operation of these ideas is
supported with information technology. This distinction
minimises the complexity of information analysis and
guarantees generally applicable and reusable definitions.
The information analysis that always precedes the design
of information systems results in definitions for elemen-
tary concepts, such as facts, constraints, derivations,
norms and prescriptions for desirable human behaviour.
These concepts represent the whole communicable expe-
rience of people in and around an organisation. These
concepts form the very basis of any conceivable applica-
tion in the form of an information system. The definition

Han Schouten 5-2

of these concepts is totally independent of some specific
application. The designer of an information system deter-
mines the eventual form in which the facts and the guid-
ance for the behaviour of human workers will be pre-
sented. The prescriptive qualities of a method for the
analysis and the design of information systems guarantee
reproducibility, verifiability and accountability.

Management information – as opposed to operational in-
formation – is always aggregated and, therefore, derived
information. Updating management information is rarely
necessary. Redundantly storing facts is, therefore, admis-
sible and sometimes – for better performance – even nec-
essary. Redundancy often concerns the registration of
management information at various aggregation levels.
Well-specified information requirements will often trans-
late into moderate levels of redundancy. On the other
hand, the automated support for policy development in its
broadest sense often results in considerable, yet necessary
levels of redundancy and extraordinarily large databases.
In this sense, the structure of a data warehouse more or
less depends of its intended usage.

The information in a data warehouse can be presented in a
countless variety of different reports. Facts of various
types can be plotted one against the other. When such
facts occur within some aggregation hierarchy, policy
analysts can pass through this hierarchy from the highest
to the lowest level (drill-down). At a given aggregation
level, the analyst can investigate each aggregation class
individually. The data warehouse design should, therefore,
optimally facilitate drill-down.

The distinction between analysis and design equally ap-
plies to the design of management information systems.
During analysis, more attention than with ordinary infor-
mation systems will have to be devoted to derivation
rules. In a data warehouse, each relation represents a col-
lection of derived facts grouped in a particular way. The
analysis consists in the detection of derivable facts and the
applicable derivations. The design consists in grouping
derivable facts into data warehouse relations. The theory
of grouping has been documented in [Bakema94]. In the
present article, the way of grouping derived facts into da-
tawarehouse relations is necessarily somewhat less ortho-
dox. Analysis and design according to the prescriptions
described in this article yield an optimally structured data
warehouse. What we consider optimal, largely depends of
the intended usage: standard report or broad analysis.

Success in the analysis of management information sys-
tems is proportional to the analytical skills of the persons
in charge. A precise and complete prescription for infor-
mation analysis is given in [Nijssen94]. Full treatment of
this subject exceeds the scope of this article. Apart from
detailing the notions of concept, identity and meaning, we
will not dwell on these matters. These notions are neces-

sary and sufficient for the analysis and formulation of
derivation rules.

The next chapter provides two theories and two methods
for the analysis of data warehouse relations. The first is
our workhorse that produces the bulk of our data ware-
house definitions. The second is our fancy horse and con-
cerns the analysis of derivation rules in conceptual terms,
i.e. independent of the shape in which the eventual deri-
vation will be presented. Armed with the result of a fully-
fledged information analysis, a data warehouse can be
designed. The design consists in the structure of the data
warehouse. We will devote special attention to evolving
objects in data warehouses, to the transitivity of deriva-
tion, to drill paths and to aggregation levels. In the chapter
called ‘Discussion’ various potentials and impracticalities
of the approach presented in this article will be consid-
ered.

2 The analysis of derivations

2.1 Concepts

Natural language oriented information analysis consists in
a set of prescriptions for the decomposition of natural
language sentences into phrases and the classification and
qualification of these phrases. Analysing sentences such
as:

(1) the person with identification number 12038
is resident of The Netherlands

(2) the person with identification number 12039
is resident of Belgium

produces the following fully classified and qualified re-
sult:

ST1 Nationality
SFT1 <person: ST2-OFT2> is resident of

<country: ST3-OFT3>
(1) 12038 The Netherlands
(2) 12039 Belgium

ST2 Person
SFT2 <identification number: NT1-NFT1>

identifies a person
(3) 12038
(4) 12039

OFT2 the person with <identification number: NT1-
NFT1>

ST3 Country
SFT2 <country name: NT2-NFT2b>

identifies a country
(5) The Netherlands
(6) Belgium

OFT3 <country name: NT2-NFT2a>

Han Schouten 5-3

NT1 Identification numberNFT1 identification number <…>

NT2 Country name
NFT2a the country name <…>
NFT2b <…>

The prescription that yields this result is documented in
[Nijssen94] and [Schouten94]. Moreover, [Nijssen94]
provides prescriptions for recognition and modelling of
various types of constraints and cases of generalisation,
specialisation and synonymy. Although the method may
help to recognise and analyse prescriptions for desired
human behaviour, it does not provide any prescription for
it. In this article, modelling derivation rules will receive
full attention. Only if all prescriptions are followed me-
ticulously, the analysis result will be reproducible and
may survive the severest scrutiny.

Apparently, a sentence of the type ‘Person’ can be ex-
pressed in two different ways: as a sentence formulation
according to ‘SFT2’ and as an object formulation ac-
cording to ‘OFT2’. The same observation applies to sen-
tences of the type ‘Country’ and the formulations ‘SFT3’
and ‘OFT3’. Many people wonder if objects are facts and
the other way around. Indeed, a sentence and the reference
to an object embedded in a sentence are just different
manifestations of a single concept in someone’s mind.

A human being is capable of communicating part of what
he is aware of. The unit of information in the human con-
science is called a concept. A concept is indivisible, has
an identity of its own and has at least one meaning. By
necessity, information analysis restricts itself to communi-
cable concepts and consists in the recognition of the iden-
tity, all meanings and all manifestations of concepts that
are worth considering in a given context. Among the ra-
tional and communicable concepts actually we only find
facts and other tenets. A fact can be communicated as an
assertion. A tenet can be communicated as a general rule
expressed in some natural language or otherwise. A tenet
always concerns facts of types that have been recognised
as relevant to a given context.

We can expand our experience with the notion that a per-
son is either a man or a woman and with the notion that
we can also identify every Dutch citizen with a so-called
‘Social Fiscal Number’: the SoFi-number. Moreover, we
know the date of birth and possibly the date of death of a
person. This produces the following result:

CT1 Nationality

ST1 Nationality
SFT1 <person: CT2-OFT2> is resident of

<country: CT3-OFT6>
(1/1) 12038 Belgium
(2/2) 12039 The Netherlands

CT2 Person
ST2 Person

SFT2 <identification number: NT1-NFT1>
identifies a person

(3/3) 12038
(4/4) 12039

OFT2 the person with
<identification number: NT1-NFT1>

ST3 Man
SFT3 <identification number: NT1-NFT1>

identifies a person that is a man
(7/4) 12039

OFT3 the man with
<identification number: NT1-NFT1>

ST4 Woman
SFT4 <identification number: NT1-NFT1>

identifies a person that is a woman
(8/3) 12038

OFT4 the woman with
<identification number: NT1-NFT1>

ST5 Person
SFT5 <SoFi-number: NT4-NFT4>

identifies a person
(9/4) 1482.63.152

OFT5 the person with
<SoFi-number: NT4-NFT4>

CT3 Country

ST6 Country
SFT6 <country name: NT2-NFT2b>

identifies a country
(10/5) The Netherlands
(11/6) Belgium

OFT6 <country name: NT2-NFT2a>

CT4 Point in time

ST7 Now
SFT7 <time value: NT3-NFT3b>

identifies the current point in time
(12/7) 18-03-1999 14:12:35

ST8 Reference date
SFT8 <time value: NT3-NFT3b>

identifies a point in time
that is a reference date

(13/8) 01-01-1999
(14/9) 01-02-1999
(15/10) 01-03-1999
(16/11) 01-04-1999

CT5 Birth

ST9 Birth
SFT9 <person: CT2-OFT2> is born on

<time value: NT3-NFT3b>
(17/12) 12038 10-12-1956
(18/13) 12039 03-01-1934

CT6 Death

ST10 Death

Han Schouten 5-4

SFT10 <person: CT2-OFT2> has deceased on
<time value: NT3-NFT3b>(19/14) 12039 18-02-1999

CT7 Senior population size

ST11 Senior population size
SFT11 the male Dutch senior population at

<time value: NT3: -NFT3a> is
<number: NT5-NFT5>

(20/18) 01-01-1999 0
(21/19) 01-02-1999 1
(22/20) 01-03-1999 0

NT1 Identification number (Categorical)
NFT1 identification number <…>

NT2 Country name (Categorical)
NFT2a the country name <…>
NFT2b <…>

NT3 Time value (Interval)
NFT3a the time value <…>
NFT3b <…>

NT4 SoFi-number
NFT4 the SoFi-number <…>

NT5 Number
NFT5 a number of <…>

The broadest class of comparable concepts is called a
concept type. In a role definition like <country: CT3-
OFT6>, CT3 identifies the type of concepts fulfilling the
role ‘country’. OFT6 identifies the class of similarly
formed objects as well as the class of concepts with the
same meaning. In the sample sentences above, the number
in front of the slash identifies the sentence; the number
following the slash identifies the concept. The sentences
3, 7 and 9 are three different manifestations of concept 3.
Likewise, the sentences 4 and 8 are manifestations of con-
cept 4. Belgians don’t have a SoFi-number. Consequently,
such manifestations don’t occur. The meanings of sen-
tences 3 and 9 do not differ necessarily. The meaning of
sentence 7 is more specific than that of sentences 3 and 9.

The conjunction of several concepts is conceivable if
every individual concept in the conjunction is valid. Con-
sequently, every conjunction of concepts is divisible and
derives its validity from the validity of the concepts in-
volved. Primarily, information analysis restricts itself to
elementary assertive sentences. Composite sentences are
dealt with only after all elementary sentences have been
analysed. A compound sentence that is a simple conjunc-
tion is divided in its elementary components; each indi-
vidual component is then treated as an ordinary elemen-
tary sentence. Whenever the nature of composition is
more than a simple conjunction, such as an implication or
a disjunction, we have recognised a tenet that must be
treated as such. Every composite sentence that is not a

simple conjunction represents a constraint, a derivation, a
norm, or a prescription of desired human behaviour.

We may expand our consciousness, i.e. conceive new
concepts, by personal observation, by reasoning or by
communication with other persons. One person does not
have any means of access to the consciousness of a second
person other than the second’s reaction to what the first
has communicated. Only if the second person’s behaviour
is consistent with the first’s expectation on basis of what
he has communicated, the latter may conclude that the
other person has understood the concept communicated as
intended.

In this sense, information analysis is not more than a way
to specify tenets and a set of sophisticated behavioural
experiments to test tenets against the experiences of the
domain experts involved. A composite concept defines a
tenet correctly and completely if the composite concept –
given any set of valid composing concepts – is valid in the
opinion of every domain expert involved.

2.2 Derived Concepts

The expectation that some set of known, independent con-
cepts invariably leads to one particular result is expressed
with a derivation rule. Every conceivable derivation ac-
cording to this rule yields – precisely and completely – the
identity and the specific meaning of a single derived con-
cept. This section provides a notation and a method to
recognise, formulate and verify logical expressions that
document our tenets with regard to derivations.

2.2.1 A Notation for Rules

Any data warehouse embodies information that has been
derived from some operational information source. Given
a conceptual information model of the source, it is often
not particularly difficult to specify the derivation rule with
some derived concept type. Any formalism for logical
expressions can be used for this purpose: the Peano Rus-
sell notation, existential graphs, Prolog, or SQL. Person-
ally, I prefer a notation derived from the existential graphs
of Charles Sanders Peirce [Hartsh60]. [Creasy89] has
been the first to link this formalism to natural language
oriented information analysis under the acronym of
ENIAM. My own contribution exists in a profound theo-
retical and methodological foundation of the analysis of
rules as part of natural language oriented information
analysis [Schouten99]. Existential graphs provide the
minimally required basic concepts (identification, nega-
tion, conjunction), are theoretically sound and are practi-
cally indispensable.

The logical expression in figure 1 counts the number of
persons that are male Dutch citizens that have reached the
age of 65 years and are alive at a given reference date and
creates a concept of the type ‘Senior population size’ ac-
cordingly. This expression is indivisible and hence repre-

Han Schouten 5-5

sents an elementary concept. This is a tiny yet representa-
tive example of aggregation in a data warehouse. An ex-

planation of this figure follows below

Figure 1: The derivation of the number of male Dutch citizens that have reached
the age of 65 years and that are alive at a particular date

The white background with the shadow on which the
graph is portrayed is the sheet of assertion. Every asser-
tion placed on the sheet of assertion is true by definition.
Every concept that is placed on it is valid by definition.
Every combination of concepts that is placed on the sheet
of assertion represents a valid conjunction.

The rectangles with rounded corners that are alternately
coloured light grey and white, are called cuts and sym-
bolise the negation of every expression that is placed
within its boundary. If a cut is placed directly on the sheet
of assertion, this means that it is true that anything placed
within this cut is not true. Two cuts can never intersect.

In an existential graph, a dark grey ellipse symbolises all
conceivable concepts of the given type that satisfy the
conditions imposed. An alias and a concept type name
accompany each concept type symbol. The alias symbol-
ises any specific concept that can be instantiated under
this concept type symbol. A white rectangle within the
ellipse symbolises the role of a concept or the role of a
name or a value. Several contiguous roles symbolise a
sentence type with a meaning. An individual concept may
have several meanings. In such a case, the concept type
symbol shows as many sentence types with their names as
there are meanings. A role can be lexical or non-lexical,

6 5 ja a r

T h e N e th er -
la n d s

C ou n try

P o in t in tim e

P erso n

M an

P erso n R e fe ren ce d a te

N o w
N a tio n a lity

B ir th

D ea th

S en io r p o p u la t io n s ize

C :

P T:

P :

N :

B :

D :

S P :

tim e v a lu e

tim e v a lu e

c o u n try n a m e
c o u n try n a m e

ag e lim it

c o u n tryp e rso n

id e n t i f ic a tio n

t im e v a lu e 12p e rs o nid e n tf ic a tio n

tim e v a lu ep e rs o n

a g e lim itc o u n try t im e v a lu e n u m b e r

Han Schouten 5-6

depending of its referent being a simple value without
identity, or a concept having its own, inalienable identity.

A lexical role can be compared with some other role or
some other value expression such as a computation, a user
defined value or a literal constant. Whenever a concept is
being created, its lexical roles receive their values from
other roles and value expressions. A dashed line with an
operator symbol on it symbolises a comparison. A dashed
line with an arrowhead on it symbolises an assignment.
The arrangement of two small squares and a pentagon
with a minus sign symbolises a subtraction. The small
squares symbolise the arguments. The number in each
square defines the order of evaluation. The pentagon sym-
bolises the operator as well as the result of the computa-
tion. In this case, the result of the subtraction is compared
with the user-defined value of ’65 years’.

There are two types of user-defined values: mandatory
and optional. A mandatory user-defined value is depicted
black. An optional user-defined value is depicted white. A
mandatory user-defined value is only valid when it is pro-
vided with a significant value. Since a mandatory user-
defined value is a prerequisite for the derivation, its sym-
bol is always placed on an odd cut. An optional user-
defined value is always true and does not influence the
evaluation of a logical expression in any way. Hence, it
may be placed anywhere in an existential graph.

The concept that fulfils a non-lexical role can be identi-
fied; the concept that is going to fulfil a non-lexical role
can be instantiated. A solid line symbolises the identifica-
tion of a concept. A solid line with an arrowhead symbol-
ises the instantiation of a role with some concept.

The dark grey hexagon labelled ‘Senior population size’
symbolises the concept to be created as soon as some
situation enables its creation.

We should interpret an existential graph from the outside
inwards. The outer cut postulates that it is not true that a
significant age limit has been specified and that there is a
valid point in time ‘Now’ that is equal to some other valid
point in time ‘Reference date’ and that the expression
within the second cut would not be true. This is logically
equivalent to saying: “If the age limit has been specified
and the reference date arrives, then <some derivation pos-
sibly will take place>”. The derivation itself is also a ne-
gation within a negation and can be read as an implica-
tion: “If <the conjunction of all concepts in the antecedent
is true>, then create a concept of the type ‘SP: Senior
population size’. In this derivation, not the mere existence
of some concept of the type ‘P: Person’ is tested, but the
number of all concepts that obey the conditions imposed.
A concept of the type ‘Person’ counts if it is a man, i.e. if
it represents an element in the population of the sentence
type ‘Man’. Moreover, this person should be a Dutch citi-
zen, i.e. a concept of the type ‘Nationality’ with this per-
son fulfilling the role ‘person’ and a concept ‘Country’

representing ‘The Netherlands’ fulfilling the role ‘country’
must be valid. This person must also be 65 years old or
older, i.e. there must be a concept of the type ‘Birth’ with
this person fulfilling the role ‘person’ and the value in the
role ‘time value’ differing at least 65 years with the refer-
ence date. Also, this person should be alive at the refer-
ence date, i.e. there should not be a valid concept of the
type ‘Death’ with this person fulfilling the role ‘person’
that has a value in the role ‘time value’ smaller than or
equal to the reference date. If all these conditions are met,
nothing can stop the creation of a concept of the type
‘Senior population size’. The role ‘country’ of this con-
cept receives its fulfilling concept from the concept in-
stantiated under the concept type ‘Country’. The role age
limit receives its value directly from the user-defined
value. The role ‘time value’ receives its value from the
reference date. The role ‘number’ receives its value from
the number of persons counted. If the user-defined value
‘country name’ has not been specified, a concept of type
‘SP: Senior population size’ will be derived for each de-
fined concept of the type ‘C: Country’.

3 Analysing management information
systems

We may become aware of a derivation in several ways.
Apart from the organisation structure and prescriptions for
desirable human behaviour, the implementation of organ-
isational objectives produces a set of criteria for the de-
gree in which the organisation fulfils its objectives. Often
an organisation will produce reports at regular intervals
that present management information. Whenever the or-
ganisation structure and the standard reports provide in-
sufficient inspiration, we can survey the corporate infor-
mation model for the presence of countable or measurable
items.

In management science, key performance indicators (KPI)
are popular for measuring the degree in which an organi-
sation lives up to its critical success factors (CSF) [Kap-
lan96]. For a service company, the elapsed time between
the notification of a defect and its repair is a KPI in the
light of a CSC customer’s satisfaction. Twenty four hour
availability, is another. A data warehouse must provide an
impression of the state of every applicable KPI at any
given point in time. The interpretation of a set of KPI’s in
the light of some CSC, can be expressed as a norm.

Given a particular KPI, there is a simple way and a more
robust, fundamental way to analyse its derivation. The
simple way exists in defining elementary data warehouse
relations merely on basis of weak functional dependen-
cies. The fundamental approach defines the way in which
some KPI can be derived with the help of existential
graphs. One way does not exclude the other, but each is
best suited to its own particular field of application. Be-

Han Schouten 5-7

cause of their complementary nature both approaches will
receive attention in this article.

3.1 The easy way

There is an easy method to capture the bulk of a data
warehouse from readily available data in operational data-
bases, provided, there exists a well-conceived relational
data model. First, this model must be transformed into a
graphical form that suits our purposes. When some for-
eign key in a table or relation references another, the rela-
tion that contains the reference is called child and the re-
lation that is referred to is called parent. When some rela-
tion is a specialisation of another, the first is called sub-
type and the second super type. The subtype relation itself
may be the super type of another set of subtypes. Prefera-
bly, we draw this type of diagram as follows:

Figure 2. Search paths in a relational model.

In this diagram, the relation ‘Sub 2’ has one parent rela-
tion ‘Parent’ and one child relation ‘Child’. The relation
‘Sub 2’ is one of the three subtypes of the relation ‘Super’
and has itself one subtype ‘Sub 2.1’.

An attribute of a relation that represents a KPI is almost
always some magnitude of the absolute, ratio or interval
scale type. Every attribute of a relation is either part of the
primary key to that relation, or functionally depends on it.
If a relation has an alternate key, then every dependent
non-key attribute also fully functionally depends on the
alternate key. Apart from functional dependencies of pri-
mary and alternate keys, we may assume a weak func-
tional dependency of some non-key attribute of every
other attribute within the same relation. As far as the latter
are worth considering, we call these classifying attributes.
Very often, the strength of the dependency of some KPI
on classifying attributes will be the subject of data analy-
sis on a data warehouse.

Attributes that belong to the categorical or ordinal scale
type lend themselves perfectly as classifying attributes.

Attributes of the absolute, ratio or interval scale type must
often be cast to some range of discrete intervals first. The
latter necessarily represents some ordinal scale. If a data
warehouse contains historical data, the cast of a timestamp
to some ordinal scale of time periods often provides a
most suitable classifying attribute.

The set of weak functional dependencies is not depleted
with the non-key attributes within the same relation. If
some KPI weakly depends on a foreign key, we may ex-
tend this dependency to the primary key that it references
and to every attribute that functionally depends on it.
Following foreign key references is – in the diagram
shown above – literally a way of look-up. Look-up legiti-
mately provides additional classifying attributes. Search-
ing in the opposite direction is called drill-down. It is ab-
solutely inconceivable, that some attribute would depend
of attributes reached by drilling down.

Conceptually, every instance of a relation has its own in-
alienable identity. In the case of an instance of a super
type, however, every applicable subtype relation provides
attribute values that specifically belong to the meaning
associated with that subtype and to that particular instance
of the super type. Therefore, if some KPI weakly depends
on the attributes in a particular super type or subtype rela-
tion, it weakly depends on all attributes of all applicable
subtypes of the super-most relation and on all parents of
these super- and subtypes.

The selection of classifying attributes determines the ap-
plicability of a data warehouse. Insufficient selectivity
results in a bulky data warehouse that will be difficult to
manage and hard to understand. If we restrict ourselves
too much we may loose opportunities. Irrespective of how
many classifying attributes we take into consideration, the
combination of all classifying attributes with one depend-
ent attribute precisely represents one elementary func-
tional relation. The chapter on the design of data ware-
houses explains how such elementary relations can be
grouped into useful data warehouse relations.

3.2 A more advanced approach

Some KPI’s don’t exist as such in an operational database
and must be derived. Sometimes, the logical expression
for such a derivation is simple. Often, however, its analy-
sis and verification requires huge efforts. Then, a perfect
way of working and modelling pays for itself.

An organisation invariably derives the criteria for its per-
formance from facts obtained from its ‘shop floor’. Do-
main experts can decide which concepts assist in achiev-
ing a particular derivation result and how. Analysts can
help to find the proper logical expression to describe the
derivation.

Existential graphs have proven to be a tremendous help in
formulating and verifying the exact nature of our beliefs.

Sub 2.1Sub 2

Child

Parent

Super

Sub 3

Sub 1

Han Schouten 5-8

In an existential graph that expresses our belief concern-
ing the derivability of some concept, the concepts that
trigger the derivation always appear in conjunction in the
first cut. The concepts that provide classifying variables
and the derived concept always appear in conjunction in
the second cut. Every classifying concept will fulfil an
independent role in the concept to be derived. A simple
conjunction may not produce the required result in the
case of optional dependent concepts, such as ‘Death’.
Here, the non-existence of a concept of this type is re-
quired and a simple negation suffices. In other cases an
embedded implication, equivalence or non-equivalence is
called for.

4 Designing management information
systems

4.1 Design considerations

A management information system provides for the deri-
vation of management information obtained from the or-
dinary course of affairs in a company, its storage and its
use. The logical expression that documents a derivation
rule is the precipitation of a tenet concerning this course
of affairs. A logical expression is itself a composite, yet
irreducible concept. We may state the following:

A composite concept defines a belief correctly and
completely if this is – without any reservation – con-
ceivable itself in the experience of an arbitrary do-
main expert given an arbitrary set of composing ele-
mentary concepts that are conceivable themselves.

We may expect the same quality of the implementation of
any belief in a management information system. All op-
erations performed on operational data during and after
loading it into a data warehouse, should fully maintain the
logical coherence that we have recognised during analysis.
Deviation from this principle would damage the credibil-
ity of the system and could seriously endanger the man-
agement of a company.

A conceptual information model including derivation
rules describes conceivable concepts in their most ele-
mentary form. In this form, no consideration whatsoever
has been implied of the way in which concepts will be
stored or presented, let alone a way that guarantees opti-
mal performance.

The relational model provides an optimal strategy for
storage and retrieval of information. This model clusters a
variety of elementary concepts, in which another concept
fulfils a unique role, around this concept and stores it as
such. Such a cluster of concepts is called a tuple or row. A
relational database only provides lexical references to
concepts. The notion of concept type only exists in the
name of the relation, tuple type or table that acts as a
container for similar tuples. This way of storing informa-

tion prevents information redundancy and that is an es-
sential instrument for the maintenance of information in-
tegrity. Moreover, clustering improves query perform-
ance.

Data warehouse design leaves us greater freedom. A data
warehouse derives its consistency mainly from the con-
sistency of the source data. Customarily, data in a ware-
house are never changed. Consequently, the fifth normal
form is no longer crucial to information integrity. Better
performance can be obtained by:

1. Cluster elementary concepts that represent dependen-
cies of KPI’s on similar ranges of classifying attrib-
utes;

2. Aggregating KPI’s in a clustered relation over all val-
ues of a classifying attribute or combinations of these.

To enhance understanding and usage of a management
information system, the correspondence between roles in
the data warehouse and roles in the operational database
must be known and documented.

4.2 Designing the data warehouse

The analysis of derivation rules may have resulted in a
rather large number of logical data warehouse relations.
Irrespective of the way in which these relations have come
about, these mainly represent functions, i.e. dependencies
of a single, possibly derived variable on a set of classify-
ing variables. The purpose of data warehouse design is, to
cluster as many as possible elementary, functional rela-
tionships into the smallest possible number of composite
data warehouse relations.

Mainly, there are two reasons for clustering elementary
data warehouse relation into one composite relation:

1. The sets of classifying attributes are equal;

2. The set of classifying attributes of one data ware-
house relation is a subset of the other.

The first reason is the ordinary clustering of elementary
relationships according to similarities in primary keys.
Very often, a derivation rule is a function: the derivation
applied to a particular combination of independent classi-
fying variable values produces a single dependent variable
value. By definition, the instantiation of a function is an
elementary sentence. Elementary sentences sharing the
same set of independent variables can be clustered into a
composite relation. In a data warehouse, the set of inde-
pendent classifying attributes represents its primary key
and identifies each object residing in it.

The second reason can be understood by considering the
semantics of existential graphs. If a role of a concept in an
existential graph is unbound, its referent does not influ-
ence its evaluation in any way. If such a role is connected
to an optional connector via a line of comparison and that

Han Schouten 5-9

connector is not provided with some significant value,
then this role does not influence the evaluation process
either. If the dependent variable in a data warehouse rela-
tion represents an aggregation (sum, average, etc.) of
some variable, an undefined classifying variable results in
the aggregation over all values that it assumes in that rela-
tion.

Grouping is not allowed if two elementary relations repre-
sent derivations that logically exclude each other. This
may be the case, if both derivations concern different spe-
cialisations of the same concept type. E.g., the relation
that represents the result of counting the number of male
persons like the one in figure 1 can not be grouped with a
similar relation for women, just like that. We must estab-
lish, first of all, that either two different units of counting

are concerned, or that we must add a classifying attribute
‘Gender’ to the composite data warehouse relation. With
the first solution, the nature of the population is interlaced

with the name of the derived attribute, e.g., ‘Number of
men’ and ‘Number of Women’. The second solution re-
quires a semantically equivalent schema transformation.
Originally, the gender that was implied in the specialisa-
tions ‘Man’ and ‘Woman’ of the concept type ‘Person’.
Now, the gender will be expressed explicitly in a binary
concept ‘Gender’ with a role ‘person’ and a role ‘expres-
sion of gender’ with two possible values ‘male’ and ‘fe-
male’. This solution is demonstrated in figure 3. The latter
being more elegant, we will henceforth assume this solu-
tion. If the gender is not specified, all persons that meet
the other conditions imposed will be counted.

In a data warehouse relation, an unspecified classifying
variable means that each aggregation has been performed
over all values of that variable. In this respect, a data

warehouse relation differs noticeably from its relational
counterpart in OLTP. The relational model according to
[Codd90] prohibits undefined values for primary key at-

Figure 3. A semantic equivalent of the derivation in figure 1.

6 5 ja a r

T h e N e th e r la n d s

M a le

C o u ntry

P o in t in tim e

P erso n

P erson

R efe ren ce date

N ow

N atio n a lity

G en der

B irth

D eath

S en io r m a lepopu la tio n s ize

C :

P T:

P : N :

G :

B :

D :

SP :

tim e v a lu e

a g e lim it

c o u n t ry n a m e

e x p . o f g e n d e r

t im e v a lu e

c o u n try n a m e

c o u n try

e x p . o f g e n d e r

p erso n

p erso n

id e n tif ic a tio n

tim e v a lu e 12p erso n

t im e v a lu ep erso n

a g e lim i tc o u n try e x p . o f g en d e r t im e v a lu e n u m b e r

Han Schouten 5-10

tributes. An undefined independent variable value in a
data warehouse relation has an unambiguous, well-
understood meaning and is entirely admissible.

So far, we have recognised two sources of elementary data
warehouse relations: weak functional dependencies in
operational databases and derived concepts produced by
the invocation of a derivation rule. Irrespective of its
source, we may visualise a data warehouse relation as a
black box with connectors; connectors symbolising classi-
fying variables to the left of the black box and connectors
symbolising dependent variables to its right. In this way
we can rapidly investigate large numbers of different sce-
narios.

Figure 4 depicts the same functional dependency as the
one represented by the fact type derived in figure 3, now
as a ‘black box’.

Figure 4. Counting the number of living persons

Figure 5 shows an elementary relation that expresses the
dependency of the average income of living persons on a
similar set of classifying variables.

Figure 5. Calculating the average income

Given an identical set of independent variables, the black
boxes in figures 4 and 5 can be united within a single
black box, as is shown in figure 6.

Figure 6. The number of persons and their income

Considering the meaning of unbound roles in aggrega-
tions, we unite all elementary relations in which inde-
pendent variables depend on fully identical sets of inde-
pendent classifying variables, or subsets thereof, into
composite relations. The result is a set of data warehouse
relation in which the combination of all independent vari-
ables represents the key to several dependent variables.
Because of the degree of freedom we experience in clus-
tering elementary data warehouse relations into composite
ones and because every conceivable aggregation level can
be maintained within a single relation, a data warehouse
usually consists of a few relations only.

4.3 Transitive derivability

In a transitive derivation, at least one independent variable
is itself derived. An average is always a transitively de-
rived variable; the sum and the number of observations
from which the average are calculated both represent de-
rived variables. When the object counted is the same as
the object of summation, a single black box suffices.
However, when the object counted differs from the object
summed up, e.g. the tax administration dividing the total
amount spent for verifying tax declarations in some region
by the number of taxable persons living in that region in
order to obtain some measure of efficiency, two black
boxes that share some or all of the independent variable
with equal values are required. Such derivations demand a
particular order of evaluation. Figure 7 shows such a sce-
nario.

Figure 7. Transitive derivation.

(num ber o f pe rson s)

(reference da te)

(age low er lim it)

(exp ression o f gender)

'6 5 ye ars'

'M a le '

'The N etherlands'

'1996-01 -01 '

(coun try nam e)
L iv in g p erson s

(average incom e)

(reference date)

(age low er lim it)

(exp ression o f gend er)

'6 5 years '

'M a le '

'The N etherla nds'

'1996-01 -01 '

(coun try nam e)
L iv in g p erson s

(num ber o f p ersons)

(e ff ic iency ra te)

(to ta l am oun t)

(type o f tax)'Incom e '

'U trecht ' (reg ion nam e)

Taxa b le p e rson s

E xp en ses

1

2

:

(num ber o f persons)

(average incom e)

(reference date)

(age low er lim it)

(exp ression o f gend er)

'6 5 years '

'M a le '

'The N etherla nds'

'1996-01 -01 '

(coun try nam e)
L iv in g p erson s

Han Schouten 5-11

4.4 Evolving data warehouse objects

If the history of the evolution of concepts in a database is
registered, timeline attributes represent classifying vari-
ables that can be treated accordingly. Only dependent
variables that have been modified between the last and the
before last database extraction, will be considered for up-
dating the data warehouse. To prevent counting un-
changed dependent values more than once, only those
dependent variables that have changed may be registered
in the newly created data warehouse tuple.

Otherwise, if no history is maintained in the database, the
moment of database extraction may provide a suitable
timestamp. Here, the specific dependency of a dependent
variable from its classifying variables in the database must
be compared with its equivalent in the data warehouse.
Series of changes between two successive extractions will
go unnoticed, however. The classifying variable in this
case can be a simple timestamp, or a derived status vari-
able that expresses a stage in the lifecycle of the data
warehouse object at the moment of extraction. Here also,
only modified dependent variables may be registered, in
order to prevent counting the others more than once.

Selecting several related data warehouse objects, e.g., to
calculate the elapsed time between two successive extrac-
tions, may be difficult in some data analysis applications
and near impossible in others. If such a variable is rele-
vant, it is good practice to calculate it at the moment of
extraction and store it as a dependent variable in the data
warehouse object concerned.

4.5 Classifying variables and Drill paths

Some data warehouse relation may be the result of looking
up classifying attributes at several successive levels of
parent relations. If the foreign key attributes have been
included as classifying attributes, aggregation of depend-
ent variables over those foreign key attributes, provides
clean sums, counts, averages and so on for a particular
class within the enveloping parent category.

Such a hierarchy of embracing categories represents a
useful means to traverse a data warehouse relation from
the highest aggregation level to the lowest, or to perform
drill down. Such hierarchies are called drill paths.

If no other provisions are made, the nature and origin of
classifying variables in a data warehouse relation are lost.
Therefore, in a data warehouse, the knowledge that sev-
eral classifying variables represent a drill path, must be
maintained explicitly.

4.6 Aggregation levels in the data warehouse

The designer of a data warehouse can define a single data
warehouse relation that may hold every conceivable ag-
gregation level. An undefined classifying variable in a
data warehouse tuple means that every derived variable in

the same tuple represents the aggregate of all individual
dependent variables that occur in conjunction with a de-
fined value of the classifying variable at a lower aggrega-
tion level. In this way, all aggregation levels of a data
warehouse object – ranging from the most elementary
level to the highest aggregation level – can be unambigu-
ously maintained within a single data warehouse relation.

An aggregated value is best associated with several other
derived values that describe the original population and
that facilitate further aggregation, whenever needed. The
number of observations from which the aggregate has
been derived must be known. Also maintaining the lowest
and the highest observed value and the median of all ob-
servations may come in handy; after derivation such in-
formation may get lost. Next to that, the sum and the sum
of squares of all observations must be stored at least. In
this way, the mean, the variance and the standard devia-
tion can always be calculated. When more recent obser-
vations are added to a data warehouse relation, the new set
of aggregates can be computed without having to recur to
the original values.

At the level of elementary observations, by definition, the
number of observations equals one and the sum equals the
value observed.

5. Conclusions

This article describes the outline of an approach for the
analysis and design of data warehouses. As such, a data
warehouse is the database of a management information
system. Where [Inmon93] just explains what must be
done, this article explains how this can be achieved. The
approach in this article aims at procedural precision, com-
pleteness and prescriptiveness. As an outline it may not be
perfect in every respect. At its very best, it is a guide for
practical application that leaves ample room for further
research and improvement. An educationally sound publi-
cation about this subject would rather fill a book and
would not fit into an article such as this.

The analysis and design of a data warehouse based on
principles derived from information theory offers several
remarkable and possibly new perspectives. A data ware-
house relation may be considered as a set of grouped ele-
mentary functions sharing the same set of classifying vari-
ables or a subset thereof. The largest set of classifying
variables serves as the primary key to the data warehouse
relation. If a classifying variable has an undefined value,
all dependent variables represent aggregates of original
observations over all tuples that feature a defined value of
that classifying variable. In this respect, a data warehouse
relation differs essentially from a relation according to
[Codd90] in which undefined primary key attributes are
inadmissible.

Every aggregation procedure can be described completely
and correctly with a logical expression – possibly in the

Han Schouten 5-12

form of an existential graph – provided, the identity and
meaning of the concepts involved is known and well un-
derstood. Apart from the derived concept, an existential
graph that represents a derivation rule shows concepts that
provide either classifying variables or dependent variables
or concepts that link these together. The derived concept
usually features one role, whose value is the result of
counting, accumulation, averaging, or any other computa-
tion and that functionally depends on the conjunction of
all classifying variables distinguished in the derivation.
The excellent qualities of existential graphs such as sim-
plicity, readability and logical completeness make them
indispensable for the analysis of derivation rules.

The special meaning associated with undefined classifying
variables in data warehouse relations offers the designer
several degrees of freedom. He may sensibly combine
several aggregation levels of a data warehouse object in a
single data warehouse relation. This helps to prevent a
combinatory explosion of conceivable aggregation levels.
Likewise, successive stages in the life cycle of a data
warehouse object along with all relevant data can be reg-
istered and exploited in a single data warehouse relation.

Transitive derivability occurs and requires attention. The
data warehouse designer is compelled to consider a par-
ticular order of derivation.

The fancy horse and the workhorse portrayed in this arti-
cle have proven to reinforce each other rather than com-
pete with one another. Looking-up classifying variables in
a hierarchy of enveloping relations provides a valuable
first scan. The rule-based approach helps us to identify
and investigate more intricate derivations.

References

[Nijssen94] Nijssen G.M., Schouten H. Matemataal
voor bedrijfseconomie en bedrijfskunde.
PNA Publishing, Beutenaken, 1994. ISBN
90-5540-002-5.

[Hartsh60] Hartshorne C., Weiss P. (editors). Col-
lected papers of Charles Sanders Peirce.
Volume IV: The simplest mathematics.
Book II: Existential graphs. Pages 293 -
464. Harvard University Press, Cambridge,
Massachusetts, USA, 1960.

[Creasy89] Creasy P. ENIAM – A more complete con-
ceptual schema language.
Proceedings of the fifteenth international
conference on very large databases, Am-
sterdam. (1989).

[Schouten94]Schouten H. The rules of the game – How
to formally specify the NIAM information
analysis method. Working papers of the
Second International NIAM Conference,
Albuquerque, New Mexico, USA, 1994.

 [Inmon93] Inmon W.H. Building the Data Ware-
house. John Wiley & Sons, Inc.1993. ISBN
0-471-56960-7.

[Bakema94] Bakema G.P., Zwart J.P.C., Lek H. van
der. Fully communication oriented NIAM.
Working papers of the Second International
NIAM Conference, Albuquerque, New
Mexico, USA, 1994.

[Codd90] Codd E.F. The relational model for data-
base management – Version 2. Addison-
Wesley Publishing Company, Inc., 1990.
ISBN 0-201-14192-2.

[Kaplan96] Kaplan R.S., Norton D.P. Using the bal-
anced scorecard as a strategic management
system. Harvard Business Review, January-
February 1996.

[Schouten99]Schouten, H. A repository for existential
graphs. Journal of Conceptual Modeling,
April 1999. http://www.inconcept.com/jcm

