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Abstract

This paper presents a proposal for a Data Ware-
house Conceptual Data (CDWDM) Model which
allows for the description of both the relevant ag-
gregated entities of the domain—together with
their properties and their relationships with other
relevant entities—and the relevant dimensions in-
volved in building the aggregated entities. The
proposed CDWDM is able to capture the database
schemata expressed in an extended version of the
Entity-Relationship Data Model; it is able to in-
troduce complex descriptions of the structure of
aggregated entities and multiply hierarchically or-
ganised dimensions; it is based on Description
Logics, a class of formalisms for which it is possi-
ble to study the expressivity in relation with decid-
ability of reasoning problems and completeness of
algorithms.

1 Introduction

Data Warehouse—and especially OLAP—applications ask
for the vital extension of the expressive power and func-
tionality of traditional conceptual modelling formalisms in
order to cope withaggregation. Still, there have been few
attempts[Catarciet al., 1995; Cabibbo and Torlone, 1998]
to provide such an extended modelling formalism, despite
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the fact that (1) experiences in the field of databases have
proved that conceptual modelling is crucial for the design,
evolution, and optimisation of a database, (2) a great va-
riety of data warehouse system are on the market, most
of them providing some implementation of multidimen-
sional aggregation, and (3) query optimisation with aggre-
gated queries[Nutt et al., 1998; Cohenet al., 1999] is even
more crucial for data warehouses than it is for databases—
which makessemanticquery optimisation using a concep-
tual model even more important. As a consequence of
the absence of a such an extended modelling formalism,
a comparison of different systems or language extensions
for query optimisation is difficult: a common framework in
which to translate and compare these extensions is missing,
new query optimisation techniques developed for extended
schema and/or query languages cannot be compared appro-
priately.

In order to address these questions, a formal framework
must be developed that encompasses the abstract principles
of the data warehouse related extensions of traditional rep-
resentation formalisms. In this paper, we present some pre-
liminary outcome from the research done within the “Foun-
dations of Data Warehouse Quality” (DWQ) long term re-
search project, funded by the European Commission (n.
22469) under the ESPRIT Programme. With respect to
the global picture, the role of our research within DWQ
is to study a formal framework at theconceptual level(see
Figure 1). The conceptual data model we are investigat-
ing should be able to abstract and describe the entities and
relations which are relevant both in the whole enterprise,
and in the user analysis of such information. In the follow-
ing, we will refer to this formalism as the Data Warehouse
Conceptual Data Model (DWCDM).

1.1 A Data Warehouse Conceptual Data Model

A DWCDM must provide means for the representation of a
multidimensionalconceptual view of data. More precisely,
a DWCDM provides the language for defining multidimen-
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Figure 1: The role played by the Data Warehouse Concep-
tual Data Model with respect to the DWQ architecture.

sional information within a conceptual model in the data
warehouse global information base. As stated above, the
model is of support for the conceptual design of a data
warehouse, for query and view management, and for up-
date propagation: it serves as a reference meta-model for
deriving the inter-relations among entities, relations, aggre-
gations, and for providing the integrity constraints neces-
sary to reduce the design and maintenance costs of a data
warehouse. Hence a DWCDM must be expressive enough
to describe both the abstract business domain concerned
with the specific application (Enterprise model)—just like
a conceptual schema in the traditional database world—and
the possible views of the enterprise information a specific
user may want to analyse (Client model)—with particular
emphasis on the aggregated views, which are peculiar to a
data warehouse architecture (see Figure 1). A multidimen-
sional modelling object in the logical perspective—e.g., a
materialised view, a query, or a cube—should always be
related with some (possibly aggregated) entity in the con-
ceptual schema.

In the following, we will briefly introduce the ideas be-
hind a multidimensional data model (see, e.g.,[Agrawal
et al., 1995; Cabibbo and Torlone, 1998]) and compare
it with a traditional relational data model. A more com-
prehensive introduction has been done in the forthcoming
book “Fundamentals of Data Warehousing”[Baaderet al.,
1999], Chapter 4 onMultidimensional Aggregation.

Relational database tables contain records (or rows).
Each record consists of fields (or columns). In a normal re-
lational database, a number of fields in each record (keys)
may uniquely identify each record. In contrast, a multidi-
mensional database containsn-dimensional arrays (some-
times calledhypercubesor cubes), where each dimension
has an associated hierarchy of levels of consolidated data.
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Figure 2: Sales volume as a function of product, time, lo-
cation.

For instance, a spatial dimension might have a hierarchy
with levels such as country, region, city, office.

Measures (which are also known as variables or
metrics)—like Sales in the example, or budget, revenue,
inventory, etc.—in a multidimensional array correspond to
columns in a relational database table whose values func-
tionally depend on the values of other columns. Values
within a table column correspond to values for that mea-
sure in a multidimensional array: measures associate val-
ues with points in the multi-dimensional world. For ex-
ample, the measure of the sales of the product Cola, in
the northern region, in January, is 13,000. Thus, a dimen-
sion acts as an index for identifying values within a multi-
dimensional array. If one member of the dimension is se-
lected, then the remaining dimensions in which a range of
members (or all members) are selected defines a sub-cube.
If all but two dimensions have a single member selected,
the remaining two dimensions define a spreadsheet (or a
slice or a page). If all dimensions have a single member
selected, then a single cell is defined. Dimensions offer a
very concise, intuitive way of organising and selecting data
for retrieval, exploration and analysis. Usual pre-defined
or user-defined dimension levels (or Roll-Ups ) for aggre-
gating data in DW are: temporal (e.g., year vs. month),
geographical/spatial (e.g., Rome vs. Italy), organisational
(meaning the hierarchical breakdowns of your organisa-
tion, e.g., Institute vs. Department), and physical (e.g., Car
vs. Engine).

A value in a single cell may represent anaggre-
gatedmeasure computed from more specific data at some
lower level of the same dimensions. Aggregation in-
volves computingaggregation functions—according to
the attribute hierarchy within dimensions or to cross-
dimensional formulas—for one or more dimensions. For
example, the value 13,000 for the sales in January, may
have been consolidated as the sum of the disaggregated val-
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Figure 3: The cubes reporting the average duration of calls by dates in days and sources in point types, and by dates at the
level of week days and sources at the level of customer types.

ues of the weekly (or day-by-day) sales. Another example
introducing an aggregation grounded on a different dimen-
sion is the cost of a product—e.g., a car—as being the sum
of the costs of all of its components.

In order to provide an adequate conceptualisation of
multidimensional information, a DWCDM should provide
the possibility of explicitly modelling the relevantaggre-
gationsanddimensions. According to a conservative point
of view, a desirable DWCDM should extend some standard
modelling formalism (such as Entity-Relationship) to al-
low for the description of both aggregated entities of the
domain—together with their properties and their relation-
ships with other relevant entities—and the dimensions in-
volved. This document is about a proposal for a Data
Warehouse Conceptual Data Model based on the Entity-
Relationship model where aggregations and dimensions are
first class citizens. The data model it is based onDe-
scription Logics(DL), which have been proved useful for
a logical reconstruction of the most popular conceptual
data modelling formalisms, including the (enhanced) ER
model. Advantages of using Description Logics are their
high expressivity combined with desirable computational
properties—such as decidability, soundness and complete-
ness of deduction procedures. The devised logic has a de-
cidable reasoning problem, thus allowing for automated
reasoning over the whole conceptual representation. The
presented framework extends the ideas pursued in[Cal-
vaneseet al., 1998b] regarding conceptual modelling using
Description Logics as a data model, and the Information In-
tegration framework presented in[Calvaneseet al., 1998a;
1998c] based on an extended Description Logics data

model for both the conceptual and the logical levels; our
proposal is compatible with the DWCDM presented in
[Calvaneseet al., 1998c].

The paper is organised as follows. Section 2 infor-
mally introduces an extended ER formalism which allows
for the description of the explicitstructureof multidimen-
sional aggregations; the section briefly describes the se-
mantics of the conceptual data model in terms of a logi-
cal representation of multidimensional databases, as pro-
posed by[Cabibbo and Torlone, 1998]. Section 3 will
propose a basic modelling language—based on Description
Logics—which is expressive enough to capture the Entity-
Relationship Data Model. The core part of the paper (Sec-
tion 4) shows how it is possible to translate a schema ex-
pressed in the extended ER with aggregations in a suitable
Description Logics theory, allowing for reasoning services
such as satisfiability of a schema or the computation of a
logically implied statement, such as an implicit taxonomic
link between entities.

2 Modelling the Structure of Aggregation

We introduce in this section an extension of the Entity-
Relationship Conceptual Data Model for representing the
structureof aggregations. Thus, a conceptual schema will
be able to describe abstract properties of multidimensional
cubes, their interrelationships, and, most notably, their
components. A Data Warehouse Conceptual Schema may
contain detailed descriptions of the structure of aggregates,
but it may not explicitly include aggregation functions.

Aggregations are first class citizens of the representation
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Figure 4: The Conceptual Data Warehouse Schema for the base data considered in Figure 3.

language: it is possible to describe the components of ag-
gregations, and the relationships that the properties of the
components may have with the properties of the aggrega-
tion itself; it is possible to build aggregations out of other
aggregations, i.e., it is possible for an aggregation to be
explicitly composed by other aggregations. This approach
closely resembles the one pursued by[Catarciet al., 1995;
De Giacomo and Naggar, 1996], in the sense of proposing a
conceptual data model in which aggregations are first-class
entities intensionally described by means of their compo-
nents.

As we have pointed out, the description of an aggre-
gation is not going to include a specification ofhow val-
ues of its attributes are computed from attribute values of
its components using aggregation functions such as min,
average, or sum. While including such constructs in the
conceptual model is obviously important, if we restrict our
attention to data models which are computable (in a gen-
eral sense), then we should be very conservative. The rea-
son for this comes from an important result of the research
within the DWQ project which identifies the borders for the
possible extensions of a Data Warehouse Conceptual Data
Model towards the explicit inclusion of aggregation func-
tions[Baader and Sattler, 1998]. It has turned out that the
explicitpresence of aggregation functions, when viewed as
a means to define new attribute values for aggregated enti-
ties, and built-in predicates in a concrete domain increases
the expressive power of the basic conceptual model in such
a way that all interesting inference problems may easily
become undecidable. Moreover, this result is very tightly
bounded: extending a very weak Conceptual Data Model
allowing only basic constructs with a weak form of aggre-
gation already leads to the undecidability of reasoning –
i.e., no terminating procedure solving the reasoning prob-
lem may ever exist. On the other hand, recent research
has shown that appropriate restrictions of the allowed ag-
gregation functions yield decidability of these problems.
These results concern (1) the use of aggregation functions

in nested concepts, and (2) concrete domains like the inte-
gers, the non-negative integers, the rationals, and the reals.

2.1 An extended Entity-Relationship Model

As stated in[Agrawal et al., 1995], a “good” data ware-
house system should support user-definablemultiplehier-
archies alongarbitrary dimensions. In Section 1.1 we have
briefly defined a dimension as an index for identifyingmea-
sures within a multidimensional data model. In the concep-
tual data model, “dimension” is a synonym for a domain of
an attribute (or of attributes) that is structured by a hierar-
chy and/or an order. In order to support multiple hierar-
chies, the data model must provide means for defining and
structuring these hierarchies, and for arbitrary aggregation
along the hierarchies.

A conceptual data model where both multidimensional
aggregations and multiply hierarchically organised dimen-
sions can be abstracted and described can be used in query
languages and for semantic optimization in multidimen-
sional data bases. In fact, in the few attempts where acube
algebra introduces the notion of multiple dimensions and
of levels within dimensions (e.g.,[Cabibbo and Torlone,
1997; Vassiliadis, 1998]) the Data Warehouse Conceptual
Schema can serve as areference meta-modelfor deriving
the inter-relations among levels and dimensions.

Let us now consider a concrete example related to the
analysis of the average duration of telephone callsaccord-
ing to their dates and source types. The base data involved
in the analysis is represented at the conceptual level in Fig-
ure 4. In order to perform the analysis, the two tables of
Figure 3 are materialised by the OLAP tool. Each cell
in the bi-dimensional cube on top denotes the aggregation
composed by all the telephone calls issued at some date
(expressed as a day of the year) and originated by a partic-
ular source (expressed as the type of the calling telephone);
the date and the source are thedimensionsof the cube,
while the calls are thetarget. In particular, cellE1 is the ag-
gregation composed by all those calls issued on 3/1/99 and
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Figure 5: The Conceptual Data Warehouse Schema for the upper cube considered in Figure 3.

originating from a land line phone point. It is clear thatE1

may include more than one call, and it may itself have some
properties which depend on all of its components. For ex-
ample,E1 may have the propertyaverage(duration)
which denotes the average duration of all the calls issued
on 3/1/99 and originating from a land line phone point. Of
course, this property may be computed by an appropriate
aggregation function from the propertyduration of the
components.

An adequate basic conceptual schema for this simple
multidimensional information base should include the base
entities such asCall , Day, andPhone Point and rela-
tions such asdate andsource . Moreover, the schema
should also include an additionalaggregated entity, say
Ag-1 , namely the class denoting the aggregations of calls
by date and source; such an aggregated entity can also
have attributes such asaverage(duration) . We can
also say thatAg-1 aggregates telephone callsaccording
to the (basic) levelDay and the levelPoint Type of
the dimensionsdate andsource , respectively. The en-
tity Point Type is itself an aggregation, aggregating all
the specific telephone pointsaccording to their four basic
types. It is clear thatE1 is one of the aggregations denoted
by Ag-1 .

Figure 5 presents the schema in a variant of the Entity-
Relationship data model. The particular way of represent-
ing aggregated entities in the figure is inspired by[Catarci
et al., 1995; De Giacomo and Naggar, 1996].

If we also consider as part of the multidimensional infor-
mation base theaggregated viewrepresented by the second
cube of Figure 3—denoting the aggregation composed by
the telephone calls issued at some day of the week and orig-
inated from some source type of a different level as before
(aggregated now according to consumer and business type

points)—more conceptual entities come into play. Figure 6
presents the extensions required to the original schema.

CellE2 is the aggregation composed by all calls issued
on Friday from a consumer type phone. Similar toE1,
E2 may have the propertyaverage(duration) which
computesthe average duration of all those calls.

Thus, we need to add both a new aggregated entity and
the definitions of the newly introduced levels for the di-
mensionsdate and source . The new aggregated en-
tity, Ag-2 , aggregates calls according to the levelWeek
day and the levelCustomer Type of the dimensions
date and source respectively. ThenE2 is one of the
aggregations denoted byAg-2 . The levelWeek Day is
obtained by aggregating days from the partitioning of the
Day entity into seven sub-entities, namely the seven days
of the week. The levelCustomer Type is obtained
by aggregating phone points from the partitioning of the
Point entity into the two sub-entitiesConsumer and
Business . Customer Type is called simple aggrega-
tion, since there is no dimension involved in its definitions.
Customer Type andWeek Day are levelsin themul-
tiply hierarchically organisedsource and date dimensions.

We do not formally define in this paper the syntax of the
extended ER model.

2.2 Semantics of the extended ER Model

The semantics of an ER schema is given in terms of le-
gal multidimensional database states, i.e. multidimensional
databases which conform to the constraints imposed by the
schema. We consider as a starting point the ER semantics
introduced in[Calvaneseet al., 1998b], recasted to cope
with multidimensional information. For we have chosen
the multidimensional logical data modelMD introduced
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Figure 6: The Conceptual Data Warehouse Schema for the lower cube of Figure 3.

by [Cabibbo and Torlone, 1998]. MD is independent of
any specific implementation of multidimensional databases
(ROLAP or proprietary MOLAP), thus providing an ab-
stract and general framework for the logical representation
of multidimensional data. In[Cabibbo and Torlone, 1998]
it is shown how aMD logical schema can be translated
into a ROLAP logical representation in the form of a “star”
schema, and into a general MOLAP logical representation
in the form of sparse multidimensional arrays.
MD abstracts notions such as dimension hierarchies

and levels, fact tables, cubes, and measures. As expected,
dimensions are organised into hierarchies of levels, cor-
responding to the various granularity of the basic data.
Within a dimension, levels are related through roll-up func-
tions. The central element of aMD schema is thef-table,
representing factual data. Anf-tableis the abstract logical
representation of a multidimensional cube, and it is a func-
tion associating symbolic coordinates (one per involved di-
mension) to measures. According to the authors, a mul-
tidimensional database state is thus aninstanceof aMD
logical schema: it is the description of the specific f-tables
involved, in the form, for example, of tables describing the
mapping from coordinates to measures.

Thus, a particular ER diagram denotes a set of multidi-
mensional database states, i.e., the set of all possible mul-
tidimensional databases described asMD instances which
conform to the diagram itself – i.e., they are legal states. If a
diagram is inconsistent, then no multidimensional database
may conform to it.

3 The basic Modelling Language

In this section we give a brief introduction to a basic De-
scription Logic, which will serve as the basic representa-
tion language for our DWCDM proposal. With respect to
the formal apparatus, we will strictly follow the concept
language formalism introduced by[Schmidt-Schauß and

Smolka, 1991] whose extensions have been summarised in
[Donini et al., 1996; Calvaneseet al., 1999].

The basic types of a concept language areconcepts,
roles, and features. A concept is a description gathering
the common properties among a collection of individuals;
from a logical point of view it is a unary predicate. Inter-
relationships between these individuals are represented ei-
ther by means of roles (which are interpreted as binary rela-
tions) or by means of features (which are interpreted as par-
tial functions). Both roles and features can be used to indi-
viduals to certain properties. In the following, we will con-
sider the Description LogicALCFI [Horrocks and Sattler,
1999], extendingALC with features (i.e., functional roles),
inverse roles, role composition, and role restrictions.

According to the syntax rules of Figure 7,ALCFI con-
cepts(denoted by the lettersC andD) are built out ofcon-
cept names(denoted by the letterA), roles(denoted by the
letterR;S), andfeatures(denoted by the lettersf; g); roles
are built out ofrole names(denoted by the letterP ) and
features are built out offeature names(denoted by the letter
p); it is worth noting that features are considered as special
cases of roles.

Let us now consider the formal semantics of the
ALCFI. We define themeaningof concepts as sets of
individuals—as for unary predicates—and the meaning of
roles as sets of pairs of individuals—as for binary predi-
cates. Formally, aninterpretationis a pairI = (�I; �I)
consisting of a set�I of individuals (thedomainof I) and
a function�I (theinterpretation functionof I) mapping ev-
ery conceptC to a subsetCI of �I, every roleR to a sub-
setRI of�I��I, and every featuref to a partial function
fI from�I to�I, such that the equations in Figure 8 are
satisfied.

A knowledge base, in this context, is a finite set� of ter-
minological axioms; it can also be called aterminologyor
TBox. For a concept nameA, and (possibly complex) con-
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C;D ! A j A (concept name)
> j top (top)
? j bottom (bottom)
:C j (notC) (complement)
C uD j (andC D : : : ) (conjunction)
C tD j (orC D : : : ) (disjunction)
8R.C j (allR C) (univ. quantifier)
9R.C j (someR C) (exist. quantifier)
f " j (undefinedf) (undefinedness)
f : C (in f C) (selection)

R; S ! P j P (role name)
f j f (feature)
R�1 j (inverseR) (inverse role)
RjC j (restrictR C) (range restriction)
R � S (composeR S : : : ) (role chain)

f; g ! p j p (feature name)
f � g (composef g : : : ) (feature chain)

Figure 7: Syntax rules for theALCFI Description Logic.

ceptsC;D, terminological axioms are of the formA
:
= C

(concept definition),A v C (primitive concept definition),
C v D (general inclusion statement). An interpretationI
satisfiesC v D if and only if the interpretation ofC is
included in the interpretation ofD, i.e.,CI � DI . It is
clear that the last kind of axiom is a generalisation of the
first two: concept definitions of the typeA

:
= C—where

A is a concept name—can be reduced to the pair of ax-
ioms (A v C) and(C v A). Another class of termino-
logical axioms—pertaining to rolesR;S—are of the form
R v S. Again, an interpretationI satisfiesR v S if and
only if the interpretation ofR—which is now a set ofpairs
of individuals—is included in the interpretation ofS, i.e.,
RI � SI . A non-empty interpretationI is a modelof a
knowledge base� iff every terminological axiom of� is
satisfied byI. If � has a model, then it issatisfiable; thus,
checking for KB satisfiability is deciding whether there is
at least one model for the knowledge base.� logically im-
pliesan axiom� (written� j= �) if � is satisfied by every
model of�. We say that a conceptC is subsumedby a
conceptD in a knowledge base� (written� j= C v D)
if CI � DI for every modelI of �. A conceptC is sat-
isfiable, given a knowledge base�, if there is at least one
modelI of � such thatCI 6= ;, i.e.� 6j= C

:
= ?. Con-

cept subsumption can be reduced to concept satisfiability
sinceC is subsumed byD in � if and only if (C u :D) is
unsatisfiable in�.

ALCFI was designed such that it is able to encode
database schemas expressed in the most interesting Seman-
tic Data Models and Object-Oriented Data Models[Hor-
rocks and Sattler, 1999; Calvaneseet al., 1998b]. Recently,
strictly more expressive conceptual data models based on
DLs have been considered, most notably theDLR concep-
tual data modelling formalism.DLR was first introduced
by [Calvaneseet al., 1998a] as a means for encoding con-

>I = �I

?I = ;

(:C)I = �I n CI

(C uD)I = CI \DI

(C tD)I = CI [DI

(8R.C)I = fi 2 �I j 8j.(i; j) 2 RI ) j 2 CIg

(9R.C)I = fi 2 �I j 9j. (i; j) 2 RI ^ j 2 CIg

(f ")I = �I n domfI

(f : C)I = fi 2 dom fI j fI(i) 2 CIg

(R�1)I = f(i; j) 2 �I � �I j (j; i) 2 RIg

(RjC)I = RI \ (�I � CI)

(R � S)I = RI� SI

Figure 8: The semantics ofALCFI.

junctive queries over expressive semantic data models for
information systems such as extended Entity Relationship
in the context of schema integration. We have chosen to
limit the expressivity of the fullDLR since we are looking
for a language implementable with the current technology,
but still capable to encode an interesting enhancement of
the ER formalism. In particular, we have developed so-
phisticated reasoning algorithms for it[Horrocks and Sat-
tler, 1999] and experimented them using the current aca-
demic implementations of expressive DLs, namely the sys-
tems FaCT[Horrocks, 1998] and iFaCT. It has been re-
cently demonstrated[Horrocks and Patel-Schneider, 1999]
that the logic we are considering here allows for the imple-
mentation of sound and complete reasoning algorithms that
behave quite well both in realistic applications and system-
atic tests.

4 Encoding ER schemas with Aggregations

It is shown how a schema expressed in the conceptual data
model informally introduced in the previous section can be
expressed in anALCFI knowledge base—whose models
correspond with legal multidimensional database states of
the ER diagram—allowing for reasoning services such as
satisfiability of a schema or the computation of a logically
implied statement.

In the following, we describe the translation between an
ER diagram and anALCFI knowledge base.

Definition 1 (Translation)
An ER schemaD is translated into a corresponding knowl-

edge base� where for each domain, entity, aggregation, or
relationship symbol a concept name is introduced, and for
each attribute or ER-role symbol1 symbol a feature name
is introduced. The terminology� is defined to contain the
following axioms:

1ER-roles are the names given to the arguments of relationships; we
assume that a unique name is given within a relationship to each ER-role,
representing a specific participation of an entity in the relationship.
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� For eachISA link between two entitiesE;F (resp. two
relationshipsR;S) in D,� contains:
E v F (resp.R v S)

� For eachPARTITION of an entityE into sub entities
F1 : : : Fn in D, � contains:
E v F1 t : : :t Fn
Fi v :Fj for all i 6= j

Fi v E for all i

� For each attributeA in D with domainD of an entity
E (resp. of a relationshipR),� contains:
E v A : D (resp.R v A : D)

� For each relationshipR in D relating n entities
E1 : : :En by means of the ER-rolesPR

E1
: : :PR

En
, �

contains:
R v (PR

E1
: E1) u : : :u (PR

En
: En)

� For each minimum cardinality constraintn = 1 in an
ER-rolePR

E in D relating a relationshipR with and
entity E (total or mandatory participation),� con-
tains:
E v 9(PR

E )
�1.R

� For each aggregationAg in D with targetsT1 : : : Tn,
� contains:
Agv (9target.>)u 8target.T1 t : : :t Tn

� For each aggregationAg in D involving a targetT , n
dimensionsDi (each one being a relationship inD)
and correspondingn levelsLi (each one being either
an entityEi or a simple aggregationAgi in D), �
contains:
Agv 8target.

((9(PD1

T )�1 jD1
�PD1

L1
.>) u

((8(PD1

T )�1 jD1
�PD1

L1
.L1

1
) t � � � t

(8(PD1

T
)�1 jD1

�PD1

L1

.Lm1

1
)) u

� � � u
(9(PDn

T )�1 jDn �P
Dn
Ln

.>) u
((8(PDn

T )�1 jDn �P
Dn
Ln

.L1

n) t � � � t

(8(PDn
T )�1 jDn �P

Dn
Ln

.Lmnn )))

whereLji = Ei if the level i is described by an
entity Ei; otherwise, if the level is described by a
simple aggregationAgi, we use its targetsLji = T

j
i .

Extending the results of[Calvaneseet al., 1994] to the
case of multidimensional databases, it can be proved that
the translation is correct, in the sense that whenever a rea-
soning problem has a specific solution in the ER model,
then the corresponding reasoning problem in the DL has a
corresponding solution, and vice-versa. This is grounded
on the fact that there is a precise correspondence between
legal multidimensional databases ofD and models of�.
Thus, it is possible to exploit DL reasoning procedures for

solving reasoning problems in the ER model. The reason-
ing problems we are mostly interested in areconsistencyof
a ER schema—which is mapped to a satisfiability problem
in the corresponding DL knowledge base—andlogical im-
plicationwithin a ER schema—which is mapped to a log-
ical implication problem in the corresponding DL knowl-
edge base.

The proof is based by establishing the existence of two
mappings from legal multidimensional database states ofD
to models of� and vice-versa. Informally speaking, the ex-
istence of the mappings ensures that, whenever an aggrega-
tion is satisfiable in�, then a non-empty mapping describ-
ing the corresponding f-table inD exists, and vice-versa.
The same applies for level orderings and roll-up functions
in D. A more detailed sketch of the proof will be given in
the full paper.

As a final remark, it should be noted that the high ex-
pressivity of DL constructs can capture an extended version
of the basic ER model, which includes not only taxonomic
relationships, but also arbitrary boolean constructs to repre-
sent so called generalized hierarchies with disjoint unions;
entity definitions by means of either necessary or sufficient
conditions or both, and integrity constraints expressed by
means of generalised axioms[Calvaneseet al., 1998b].

Let us now consider the example introduced in Sec-
tion 2. We start to (partially) formalise the schema of Fig-
ure 4, i.e., the base data. Please recall that every role name
which appears in the translation of an ER schema in a De-
scription Logic knowledge base—with the exception of the
aggregation roles—is a functional role name.

DATE v what : Callu when : Day

SOURCE v what : Callu where : Point

DEST v what : Callu where : Point

Point v Consumert Business

Consumer v Pointu :Business

Business v Pointu :Consumer

The partitioning of days into the seven day of the week is
translated in a similar way.
The aggregated entity Customer Type is the simple aggre-
gation of telephone points into two categories:

Point-Type v
(9target.>)u
8target.(Consumert Business)

The Week Day simple aggregation is obtained in a similar
way.
The aggregated entityAg-2 is defined as being an aggre-
gation composed by those calls issued in some day of the
week and originated by either a consumer telephone point
or a business telephone point:
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Figure 9: A Conceptual Data Warehouse Schema introducing the entityMobile Call.

Ag-2 v (9target.>)u 8target.Call
Ag-2 v 8target. (9(what�1 jSOURCE �where).>u

(8(what�1 jSOURCE �where).Consumert
8(what�1 jSOURCE �where).Business) u
9(what�1 jDATE �when).>u
(8(what�1 jDATE �when).Mon t
� � � t
8(what�1 jDATE �when).Sun))

Recall thatAg-2 is the class of all aggregations such that
each one of them aggregates calls issued at the same day of
the week and originated from the same telephone point.

Each aggregation of calls belonging to the class denoted
by Ag-2 includes either only consumer originated calls or
only business originated calls. In a similar way, each aggre-
gation ofAg-2 includes either only calls issued on Mon-
day, or only calls issued on Tuesday, etc. Thus, aggrega-
tions denoted byAg-2 may be of fourteen possible types:
Monday consumer, Monday business, Tuesday consumer,
Tuesday business, etc.

As an example of reasoning, let us see a case with an
inconsistent aggregation. If we introduce the entity Mo-
bile Call as in Figure 9, it turns out that the aggregated en-
tity having Mobile Call as target (instead of its super entity
Call) and Business as level for the dimension Source is in-
consistent, i.e., the materialised cube is necessarily empty.
In fact, the translated theory in Description Logics turns out
to be unsatisfiable, since mobile calls are originated only
from cell points, which are disjoint from any kind of busi-
ness phone point.

5 Conclusions

We have introduced aData Warehouse Conceptual Data
Model, extending the most interesting traditional Semantic
Data Models and Object-Oriented Data Models, which al-
lows the representation of a multidimensional conceptual
view of data. We have seen how the proposed conceptual
data model is able to introduce complex descriptions of the

structure of aggregated entities and multiply hierarchically
organised dimensions. In order to support multiple hier-
archies, the data model provides means for defining and
structuring these hierarchies, and for arbitrary aggregation
along the hierarchies. Our future work will be devoted to a
further development of the data model in order to explicitly
consider temporal and spatial dimensions, and a study of
the expressivity in relation with decidability and complex-
ity of the refinementreasoning task.

.
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