Indexing and Compression in Data Warehouses

Kiran B. Goyal
Computer Science Dept.
Indian Institute of Technology, Bombay
kiran@cse.iitb.ernet.in
Anindya Datta

College of Computing.

Georgia Institute of Tech.
adatta@cc.gatech.edu

Krithi Ramamritham
Computer Science Dept.
Indian Institute of Technology, Bombay
krithiQcse.iitb.ernet.in
Helen Thomas
College of Computing.
Georgia Institute of Tech.
adatta@cc.gatech.edu

Indian Institute of Technology, Bombay

Abstract

Efficient query processing is critical in a data
warehouse environment because the ware-
house is very large, queries are often ad-
hoc and complex, and decision support appli-
cations typically require interactive response
times. Existing approaches often use indexes
to speed up such queries. However, the ad-
dition of index structures can significantly
increase storage costs. In this paper, we
consider the application of compression tech-
niques to data warehouses. In particular,
we examine a recently proposed access struc-
ture for warehouses known as Datalndezes,
and discuss the application of several well-
known compression methods to this approach.
We also include a brief performance analy-
sis, which indicates that the Datalndexing
approach is well-suited to compression tech-
niques in many cases.

The copyright of this paper belongs to the paper’s authors. Per-
mission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage.

Proceedings of the International Workshop on
Design and Management of Data Warehouses
(DMDW?’99), Heidelberg, Germany, 14. - 15.6. 1999

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

1 Introduction

Data warehouses are large, special-purpose databases
that contain historical data integrated from a number
of independent sources, supporting users who wish to
analyze the data for trends and anomalies. The pro-
cess of analysis is usually done by queries that aggre-
gate, select and group the data in a number of ways.
Efficient query processing is critical because the data
warehouse is very large, queries are often complex, and
decision support applications typically require interac-
tive response times.

A highly normalized schema offers superior perfor-
mance and efficient storage for OLTP where only a
few records are accessed by a particular transaction.
The star schema [KIM96] provides similar benefits for
data warehouses where most queries aggregate a large
amount of data. A star schema consists of a large cen-
tral fact table which has predominantly numeric data
and several smaller dimension tables which are all re-
lated to the fact table by a foreign key relationship.
The dimension tables have more descriptive attributes.
Such a schema is an intuitive way to represent the
multi-dimensional data so typical of business, in a re-
lational system. The queries usually filter rows based
on dimensional attributes and then group by some di-
mensional attributes and aggregate the attributes of
the fact table.

There has been some research on creating a set of
summary tables [GHQ95] to efficiently evaluate an ex-
pected set of queries. This approach of materializing
needed aggregates is possible only when the expected
set of queries is known in advance. But, when ad-hoc
queries must be issued that filter rows by selection cri-
teria that are not part of the dimensional scheme, sum-
mary tables that do not foresee such filtering are use-

less. Also, precomputing all necessary tables is often
infeasible, as this grows exponentially with the number
of dimensions. In such cases queries must be evaluated
using indexes to efficiently access base data.

Data warehouses are typically updated only peri-
odically, and during this time no queries are allowed.
This allows the batch update process to reorganize the
indexes to an optimal form, in a way that would not
have been possible otherwise. Since the problems of
maintaining indexes in the presence of concurrent up-
dates is no longer an issue, it is possible to use more
specialized indexes to speed up query evaluation. In
this paper we concentrate on this approach.

So far, indexes have generally been considered sep-
arate from the base data. Given the large size of
data warehouses, storage costs are very high and so
is the cost of storage due to index structures. Dataln-
dexes provide indexing at no extra cost apart from
that of storing the data, thus saving a lot of space. We
propose compressing the data in the form of Dataln-
dexes. Compression has several benefits. Apart from
reducing storage costs, it also could reduce query
processing time by reducing the number of disk ac-
cesses [RH95]. Although decompression adds to query
processing cost, the [RH95] paper showed that in
databases the reduced number of disk accesses more
than compensates for the increased processing time.
We believe that it should in fact be more efficient to
compress a data warehouse as most queries access a
large amount of data and most of the decompressed
data will actually be required to evaluate the query.
In this paper we explore how compression performs in
a data warehousing environment.

The remainder of this paper is organized as follows.
In Section 2 we describe several indexing approaches
used in data warehousing and in Section 3 we review
various compression techniques. In Section 4 we dis-
cuss how compression may be applied to certain types
of indexes and in Section 5 we conclude the paper.

2 Variant Indexes

In this chapter we describe some of the variant indexes
reported in previous work [PQ97], including the new
Datalndexes [KA98]. We also describe some of the
algorithms to use with these indices.

2.1 Bitmap Indexes

Most database systems today use B-trees as indexes.
This uses a tree ordering and has an entry for each key
value which references all rows in the table having that
key value. Each reference is a unique Row ID, which
specifies the disk position. Such a Row ID may occupy
4 to 6 bytes. In OLTP applications a particular entry
has very few references compared to the total number

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

of rows in the table. However, in OLAP each entry
may have several references. In such a case, it is more
efficient to represent the list as a bitmap. Consider a
bitmap of length equal to the number of rows in a par-
ticular table and a one at ordinal position 4 indicates
that the i*" row is present in the list. Thus, we have
just a new way of representing the list of RowIDs and
such an index is called a Bitmap Index. The following
example illustrates why these are more efficient in an
OLAP environment. Consider a column Gender hav-
ing only two possible values Male or Female. In this
case the entries for both key values will have about
half the total number of rows. A Row ID representa-
tion will occupy 4 *n bytes in all while a bitmap repre-
sentation will occupy only 2 % n/8 bytes where n is the
total number of rows in the table. This results in enor-
mous disk savings especially if n is large. There is disk
saving as long as average density of a bitmap is greater
than 1/No of bits in a RowID. Also Bitmaps are a lot
more CPU efficient than RowIDs. The common op-
erations of taking union and intersecting RowID lists
take several instructions, while most processors have
single instructions to directly AND, OR and NOT ma-
chine words. Thus, Bitmap operations are a lot faster.
When bitmaps are sparse one can compress them. The
simplest of compression methods is to convert it back
to a RID list.

A further optimization described in [PQ97] is to di-
vide the table into segments of a fixed number of rows
each. The bitmaps corresponding to each segment is a
fragment and each fragment can be stored as a bitmap
or an RID list. This not only saves space, but also
saves disk I/O in combining bitmaps. This is because
some fragments may not have any set bits at all and
hence while ANDing, the other bitmap may not be re-
trieved at all. This is particularly useful for clustered
data.

[CY98] draws a parallel between bitmap indexing
and number systems. The idea is that when you orient
bitmaps vertically and place them side by side you can
think of each entry being represented in base n where n
is the number of distinct attributes. They represent it
in different bases and discuss space time tradeoffs. In
particular, base 2 representation gives bitslice indexes.
[WB98] describes methods of efficiently coding Bitslice
indexes so that the least number of bitmaps have to
be accessed for range selections.

2.2 Projection Index

A projection index on a column C consists of stored
column values from C in the same order as they ap-
pear in the table T from which they are extracted. It
is easy to see that there is a simple arithmetic mapping
to get the value corresponding to a given ordinal num-

ber provided the column is fixed length. However, if
the column is variable length, we can either fix a max-
imum size for the column or use a B-Tree to access
values using the row number. The Projection index
is very useful when one has to retrieve column values
corresponding to a very dense FoundSet (A bitmap
having a set bit for every row to be retrieved). This
is because more values fit onto a page, and a single
read may bring in more than one value in the Found-
Set. OLAP queries have very low selectivity queries
and retrieve only a few of the columns. Thus, such an
index is extremely useful.

2.3 Join Index

A join index by definition is an index on one table for a
quantity that involves a column value of another table
through a common join. Most Join Indexes represent
the fully precomputed join in different ways.

The Star Join Index concatenates column values
from different dimensional tables and lists RIDs in the
fact table for each concatenated value. The problem
with this index is that they are not efficiently recombi-
nant. Thus, an index has to be made for every combi-
nation of the columns of a table. Bitmapped Join In-
dexes solve this problem. It consists of using a bitmap
index that uses RIDs of a dimensional table instead
of search key values to index the records of the Fact
table. Thus, to compute a query one simply ORs all
bitmaps for selections on each table and then ANDs
all the resultant bitmaps for each of the Dimension ta-
bles. It is clear that only one index is necessary for
every dimension table.

2.4 GroupSet Index

This index improves the efficiency of grouping queries
by creating a special index and clustering the data.
First, the dimensional tables must be ordered accord-
ing to a primary key or a hierarchy which ever is more
appropriate depending on the queries a user would
want. The fact table rows are then clustered so that
rows with the same foreign keys on all dimensions are
clustered together on disk. Further, the successive
groups are in the same order as a nested loop on the
values in the dimension tables. In other words, the
fact table is sorted based on the ordinal position of
the rows in the dimension tables which join with the
particular fact table row. A B-Tree Index is then built
using the concatenation of the dimension key values
and using the same ordering among them as in the
groups of the fact tables. For each concatenated key
value the ordinal number of the starting of the corre-
sponding group in the fact table is stored. The end of
a group is simply one before the beginning of the next
group. It is easy to see that a group by can be per-

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

formed in a single pass of the fact table. Also groups
not having any representative rows in the fact table
are not stored in the index. Thus, the Groupset In-
dex is efficient for aggregation. Also, only an integer is
stored for each key value which is quite space efficient.

2.5 Datalndexes

Datalndexes [KA98] are a new way to represent the
data in a warehouse in which the Indexing is essen-
tially free in terms of storage. The rest of the paper
assumes we have the data in the form of Datalndexes.
An assumption made in Datalndexes is that referen-
tial integrity is strictly enforced on all star schemas.
In this section, we describe the two types of Dataln-
dexes and algorithms to evaluate queries using these
Indexes.

2.5.1 Basic Datalndex (BDI)

As we saw earlier projection indexes are particularly
suited for OLAP queries. Also notice that it is very
easy to form the original table if we have projection
indexes on each of the columns. Thus, if we force Pro-
jection Indexes on all columns, we need not store the
original tables at all. Hence, we get Projection Indexes
free of storage cost. This is the main idea behind the
BDI. The BDI generalizes projection indexes by al-
lowing any number of columns to be in a single BDI.
It would be useful to store two or more columns in a
single BDI if it is known that most queries will access
them together. Thus, the BDI is a vertical partition of
the table where each partition may have one or more
columns. Clearly, Projection indexing is free in terms
of storage. A graphical representation of the BDI is
shown in Figure 1. In this figure the original table of
four columns is stored as two BDIs, one of one column
and the other of 3 columns. The dotted lines show the
ordinal mapping between them.

2.5.2 Join DataIndex (JDI)

Consider storing all dimensional and fact tables as
BDIs. If the foreign key column is also stored as BDIs,
we must join it every time with the corresponding col-
umn of the dimension table. The BDIs rely on ordinal
mapping. Thus, it is a good idea to store the ordi-
nal number of the row it references in the foreign key
column. This is called a JDI. In a way this precom-
putes the join. Thus it is a join index. This too is free
in terms of storage as one does not need to store the
column value any more. In fact, we may take lesser
storage if the width of the key column is larger than
the maximum ordinal number. Such a JDI is shown
in Figure 2. The sales table is the fact table having
Timekey as foreign key referencing the Time Dimen-
sion Table. The figure uses dotted lines to show the

11-3

Record
Base Table o

‘S(alusl] [l Discount | Tax ! Refflag ' Staus| Discount ! Tax ! Retflag ' Status| Discount ' Tax ' Retflag ! Sausl] [l Discont__| (@

Conventional Relational Representation

Basic Datal ndex on RetFlag

Basic Datal ndex Representation

Basic Datal ndex on Discount, Tax and Status

——— ®

‘S{ausl] [l Discount | Tax ‘gatusl Discount | Tax ‘Satusl Discount | Tax ‘S{ausl Discount | Tax ! Status

| (=t

Figure 1: The Basic Datalndex

ordering according to row number, while solid lines are
used to show the rows to which different entries in the
JDI point to. Using JDIs for foreign key references
and BDIs for all other columns is called storing the
data in the form of Datalndexes. Using such a repre-
sentation, joins may be performed very efficiently (in
a single pass). There are two algorithms depending on
the amount of memory you have. The SJL (Star join
with large memory) and the SJS (Star Join with small
memory) are discussed next.

2.5.3 Star Join with Large Memory (SJL)

The SJL uses the JDI to do a star join in a single pass
of the relevant BDIs of the fact table. The algorithm
is shown in Algorithm 1.

Let D be the set of dimension tables participating in
the join, F be the fact table, Cp be the set of columns
of dimensional tables that contribute to the join result
and let C'r be the fact table columns that contribute
to the join result. To answer the query first we form
rowsets (a bitmap having the i*" bit checked to denote
that the it" row if the table is selected) Ry ... R|p| on
each of the dimension tables and Rr for the Fact table.
This can be done by a scan of the appropriate BDIs.
The SJL algorithm starts by loading all BDIs corre-
sponding to columns in Cp (Steps 1 to 4). If there is a
predicate in the query on any of these columns one may
load only the blocks that have some row in the corre-
sponding rowset. Now, for all records corresponding
to the rowset Rr we scan all JDIs on a table belonging
to D and check whether the row pointed to by the JDI
is there in the corresponding rowset. This is done by
steps 6 to 8. If this check succeeds for every JDI then
the output record is built by using the in memory di-
mensional BDIs and reading the corresponding row of
fact table BDIs having columns in C'r. This is done by
steps 9 to 12. Clearly, this algorithm is very efficient
and difficult to improve upon for the dense rowsets of
typical OLAP queries. However, it requires all BDIs
having columns in Cp to be stored in memory. Some
dimension tables may be huge and such large amounts
of memory need not be available. Thus, we discuss

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

another algorithm that needs very little memory next.
Algorithm 1: The SJL Algorithm

Note: Enough memory to hold all BDIs in the join
result
Input:
D: Set of dimensional tables involved in the join
Cp: Set of dimensional table columns that con-
tribute to join result
Cp: Set of fact-table columns that contribute to
the join result
R: Set of rowsets for each table in D and the fact
table F. These were computed before SJL starts
01: for each column ¢; € Cp do
02: for each row r € R; do

03: if the block of BDI on ¢; where r is located
is not loaded then
04: load this block in to memory array a;

05: for each row r € Rr do
06: for each JDI j on a table of D do

07: it j(r) ¢ R; then
08: goto 5

09: for each ¢; € Cp do
10: S[Cl] < Qg (jcz' (7'))
11: for each ¢; € Cr do
12: s[ci] « rcj]

13: Output s

2.5.4 Star Join with Small Memory (SJS)

The SJS does the star join in whatever little mem-
ory the system has. The algorithm is shown in Al-
gorithm 2. We use the same symbols as in SJL and
the algorithm assumes that rowsets on all tables for
all restrictions are already provided in memory.

The algorithm has four phases. The first phase
(steps 1 to 4) restricts Rr to only those rows which
will appear in the join result. The next phase (steps 5
to 7) writes only those parts of the relevant JDIs that
correspond to the restricted rowset Rp. These two
phases have basically reduced the amount of data we
have to handle so that we may make multiple passes
over the data. In the third phase(steps 8 to 19) the

Base TIME Table

G|] [| ooy | Alphe | e | onth | wWesk | ey | Timoey [Alphal vem [Niorn] wesk | by |
o -

] (==

Base SALES Table

—]] [| Stz | SnipDate | Gommiae || Situs | ShpDate | GommitDate || Stets | ShipDate | GommitDete | |] [| e

Conventional Relational Repr esentation

Base TIME Table

JDI Representation

Ne oo]] [| Timeey | Alpha| vear | Month| wesk | Day | Timeey | Alpha| vesr |Month| wesk | Doy |
— -

] (=

‘\/

JDI on shipDate

[| Fowo |

T]] [| oD [vt | rowd | movn | mowio |

Reduced SALES BDI

=) e

TEe==—

Figure 2: The Join Datalndex

actual join takes place. Since memory may be insuffi-
cient to load all BDIs needed in the result, we load as
many blocks of the BDIs as can be loaded. Then, we
scan the JDIs for ordinal numbers that correspond to
some row that is in memory. If we get a matching en-
try in memory it is stored into temporary BDIs along
with a rowset indicating which rows are being stored.
This is done till all BDIs have been loaded in memory
once. Thereafter, all the temporary BDIs are merged
using the rowsets stored along with them in step 19.
The fourth phase (steps 20 to 25) simply assembles the
output record using the temporary merged BDIs and
the fact table. It is clear that this is a lot more expen-
sive compared to SJL. In particular the dimensional
table columns may be wide and storing intermediate
results containing the join of such a column with the
fact table and then doing a merge may be quite expen-
sive. We have attempted to solve this problem under
some conditions in the Section 2.5.5.

Algorithm 2: The SJS Algorithm

Note: Negligible Memory requirements

Input: Same as in SJL

01: for each JDI j on a table of D do

02: for each row r € Rr do

03: it j(r) ¢ R; then

04: Ry + Rp — {T‘}

05: for each JDI j; on a table t € D do

06: for each row r € Rr do

07: write j(r) to temporary JDI j; temp On
disk

08: for each BDI b; on a column ¢; € Cp do

09: k1

10: while 3 unloaded blocks of b; do

11: Create temporary BDI b; 5, on disk

12: Create temporary rowset I; ;, on disk

13: Load as many blocks of b; as possible
into in-memory array a;

14: for each row r in jt temp do

15: if b;(r) € a; then

16: bi,k — b@k U bl(r)

17: Rip <+ R, Ur

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

18: k+—k+1
19: Merge all b} ;s (using rowsets)
20: for each row r € Rg do

21: for each column ¢; € Cp do
22: slei] < bi(r)
23: for each column ¢; € CF do
24: slej] « rlej]

25: Output s

2.5.5 Horizontal Partitioning

We now describe a scheme that will reduce the mem-
ory requirements of SJL and thus provide performance
advantages in many cases. The scheme is to divide
the larger dimension tables into horizontal partitions,
the size of which is such that it fits comfortably into
memory along with some of the partitions of the other
similar large dimension tables. The number of parti-
tions will depend on the size of the dimension tables
compared to the memory available and the number of
the large dimension tables that are accessed by most
queries. Next, the fact table is organized such that
records referencing rows of a particular combination
of partitions of the partitioned dimension tables are
stored contiguously in separate files. A similar tech-
nique is also done for caching in [ND97].

Now, one can do a join in a manner very similar to
the SJL, but requiring less memory. The algorithm is
to get a combination of partitions of the partitioned
dimensions into memory and then scan the JDIs in
the file corresponding to this particular combination
of partitions. Once this is done, we load a new combi-
nation and repeat the same procedure. The new com-
bination is chosen in a gray code order in the sense
that only one of the partitions is replaced. One such
order is a nested loop order in which we go forward
and backward alternately on each of the dimensions.
Clearly we have avoided repeated scans of the fact ta-
ble and also the merge of the intermediate results as
in case of SJS. However, we may scan some parts of
some BDIs several times. The number is multiplica-
tive in the number of partitions of the BDIs which
are higher than this one in the nested loop order. In

11-5

other words, if ni,ns,...,n; are the number of parti-
tions of BDIs By, By, ..., By then column of BDI B is
scanned once, By is scanned B; times, Bj, is scanned
By % By x...x Bp_1 times. Thus, if we have additional
memory, we may treat more than 1 partition of the
BDI By, as a single partition and gain in performance.
Given this, it might seem that making finer and finer
chunks would do no harm. This is not the case. As we
shall see later, compression using our schemes suffers
as you horizontally partition the data. The partitions
are indexed and as the number of partitions increase
in number, indexing overheads also increase. Also, if
memory is very small and the fact table is not much
bigger than these dimensional tables and the query
involves many of these large dimensional tables, then
SJS may even be better.

We may get several additional advantages out of
this scheme.

1. The partitioning of dimension tables may be done
after arranging them in order of either hierarchy
as is commonly observed in data warehouses or
ordered by a column on which range queries are
common. This way a query will usually involve
only one or few of the partitions of such a di-
mension table. The performance gain out of this
should be obvious as we have saved going through
a significant part of the fact table. Another mi-
nor benefit possible is that since now the parti-
tioned JDIs store ordinal numbers from a smaller
domain, we can store only the difference between
each value and the smallest value achieving some-
thing like prefix compression. However, this is not
going to be significant if the number of partitions
of the corresponding dimension table is small.

2. Also, data is clustered though only to a limited
extent. Thus, we have better chances of reading
more than one value that contributes to the join
result in one block.

3. There is a parallel version of the SJL[KP98]. This
algorithm requires (to be efficient) that processors
have enough memory to hold entire BDIs. Hor-
izontal partitioning would be invaluable in this
case.

3 Compression

As we saw in the introduction compression has benefits
apart from the obvious savings in disk space. Firstly,
query response time may improve, as fewer number
of blocks have to be retrieved. This is because more
rows now fit into a page and a single read may bring in
more tuples required for the query. Secondly, the ef-
fective memory size is increased since more tuples may

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

be stored in the compressed form. Also, network com-
munication costs decrease in the case of distributed
databases.

The main problems with compression include the
high decompression cost at CPU and the fact that at-
tributes become of variable length. Thus, we must
compress in a way that the overheads due to these are
more than compensated by the benefits discussed pre-
viously. To this end, let us first see what are the types
of redundancy that most compression algorithms use.

There are four commonly encountered types of re-
dundancy.

e Character Distribution: Some characters may
be used more frequently than the others. Specifi-
cally, in 8 bit ASCII representations nearly three
quarters of the 256 characters may never be used
in most text. Also the letter e and ’space’ are
most common in English text.

e Character repetition : Strings having repeti-
tions of a character or a set of characters may be
more compactly represented by giving the charac-
ter and the number of times it is repeated. Run
Length Encoding (RLE) does precisely this. Such
repetitions commonly occur in the form of spaces
in text or when a variable length column is rep-
resented as a fixed length column of maximum
width.

e High usage patterns : Certain sequences of
characters may occur more frequently than oth-
ers. For example, a period followed by a space is
much more common than any other pair of char-
acters. Also words like compression and index are
probably the most common words in this paper.

e Positional Redundancy : Certain characters
consistently appear at a predictable place in the
data. For example, some columns like ’special
handling’ may mostly contain a NULL value.

A discussion of the common techniques of compression
exploiting these types of redundancy follows.

3.1 Compression Techniques

Most, compression techniques are based on either the
dictionary model or on the statistical model. The
dictionary based schemes maintain a dictionary of
commonly used sequences and output shorter codes
for them whenever they are encountered. Statistical
schemes compress by assigning shorter codes to more
frequent characters. Another dimension of compres-
sion is that they may be adaptive or non-adaptive.
Adaptive schemes don’t assume anything about the
data but tune their model as they compress, while

11-6

non-adaptive schemes assume that the data will have
some properties. A short description of some popular
compression algorithms follows.

3.1.1 Huffman Coding

Huffman coding uses the fact that not all characters
in most meaningful data occur with the same fre-
quency. Some characters are more frequent than the
others. In Huffman coding [HD52], each character is
assigned a code of integral number of bits such that
the length of the code is closest to logs(probability of
symbol). Thus, frequently occurring characters are as-
signed shorter codes. Huffman was also able to prove
that his method cannot be improved upon by any in-
tegral bit width coding stream. Note that each code
has a unique prefix to enable correct decoding despite
the variable length of the codes.

Here is an illustration of how the codes are assigned
given the frequencies of each of the characters. Sup-
pose there are only 5 characters A, B, C, D and E with
the frequencies 15, 7, 6, 6 and 5 respectively. First, the
individual symbols are laid out as a string of leaf nodes
that are going to be connected by a binary tree. Each
node has a weight which is equal to the frequency of
the symbol. Then, the following steps are done to ob-
tain the tree in Figure 3.

e The two free nodes with the lowest weights are
located.

e A parent node for these two is created with weight
equal to the sum of the two child nodes.

e The parent node is added to the list of free nodes
and the two children are removed.

e One of the child nodes is designated as the path
taken from the parent node when decoding a 0
bit, while the other is set to 1.

e The previous steps are repeated until one free
node is left which is made the ROOT.

There are both adaptive and non-adaptive flavors of
Huffman coding. The non-adaptive flavor has two
passes. In the first pass it scans or samples the data
and gets the frequencies of the characters, while in the
second it actually compresses with the tree built stati-
cally. The adaptive flavor has only one pass. Initially,
it assumes that all characters are equally probable, but
it keeps updating its model as it learns more about the
data.

Another good feature of Huffman coding is that it
is efficiently implementable in hardware, i.e. it can
be implemented on a VLSI chip [RS91] that can en-
code and decode at speeds as fast as the disk transfer

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

speeds. The result is absolutely no compression over-
head. However, these chips are not yet manufactured
and would still be very expensive.

ROOT
ol 1
|
39
0| 1
ol1 24 ol 1
| 13 I 1 |
15 7 6 6 5
A B C D E

Figure 3: Huffman Coding

3.1.2 Arithmetic Coding

Arithmetic coding [WC87] improves on Huffman cod-
ing by removing the restriction that integral number
of bits be used. It actually represents each character
in a fractional number of bits. The compressed data is
represented as an interval between two reals. Initially,
that range is [0,1). Each character is assigned an inter-
val in the range [0,1) and the width of which is propor-
tional to its probability of occurrence. For example, if
there were only 4 characters a, e, i and u and they
occurred with frequencies in the ratio of 2:3:1:4 then
a possible assignment is shown in Figure 4. When a
character appears the range is narrowed to the fraction
assigned to that character. In the figure, when e is en-
countered the range is narrowed to [0.2,0.5) and then
similarly when a is encountered next. As the string
is encoded the range progressively decreases and the
number of bits needed to specify any number in that
interval increases. In the end, the number in the in-
terval requiring the least number of bits is output as
the compressed form. In the figure, the final range is
[0.2,0.26) and hence 0.25 requiring only 2 bits is out-
put.

There are adaptive and non-adaptive methods for
arithmetic encoding too, and the differences are very
similar to the Huffman coding described previously.
The implementation details are much more complex
as it involves doing infinite precision arithmetic in a
finite precision computer and also outputting incre-
mentally. One does not want to keep the entire com-
pressed number in memory and output it only at the
end. Another serious problem is that the implemen-
tation involves too many divisions and multiplications
which makes it slow.

11-7

e ea
1 05 0.26
u u
06 T T
| I
05 | T
e e
02 + T
a a a
0 0.2 0.2

Figure 4: Arithmetic Coding

3.1.3 LZW

The LZW [We84] compression method follows the dic-
tionary model. The scheme involves a finite string
translation table (usually having a size of around 8K to
32K) which has strings and their corresponding fixed
length code values. The table is initialized with all
possible characters. At each step, it searches for the
longest match of the current string in the table and
outputs the appropriate code for it. It then extends
the string by the next character in the text and adds
it to the dictionary. Thus, the table has a property
that if a particular string is in the table all its prefixes
are also present. Thus, the table is built adaptively
and does particularly well at text. Though it is meant
to be adaptive, there is an obvious non-adaptive ver-
sion that does not perform as well. Simply build a
full dictionary in a sampling phase and then compress
it in a second scan without updating the dictionary.
Commercial programs like “Compress” discard a full
dictionary as soon as the compression ratio begins to
decrease significantly.

Clearly, the compression and decompression algo-
rithms have to maintain the dictionary and do equal
amount of processing. Both maintain a tree. The

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

compression algorithm uses a hash function to locate
the child while the parents are explicitly maintained
in each node. Thus, compression and decompression
are equally fast.

3.1.4 LZ77

This is also a dictionary based technique [LZ77]. It
uses a window into the previously seen text as its dic-
tionary. The main data structure is a text window,
divided into two parts. The first consists of a large
block of recently decoded text. The second, which is
much smaller, is a look-ahead buffer having charac-
ters not yet encoded. The algorithm tries to match
the contents of the look-ahead buffer to a string in the
dictionary. At each step it tries to locate the longest
match in the dictionary and codes the position of the
match and the length of the match. If there is no
match the character is simply output as it is. To dif-
ferentiate between the two types of tokens, a single bit
prefix is added. An example of the window is shown in
Figure 5, where the next string will be coded as pointer
to the phrase < M AX” in the dictionary denoted by
a pointer in the figure and the length will be four.
An interesting feature of the algorithm is the way

11-8

for

(i=0;i<MAX;) if |

<MAX | ++;

DICTIONARY

LOOK-AHEAD

Figure 5: LZ77

it handles repetitions of sequences of characters. For
example consider the case of N repetitions of a single
character A’. It will add the first character as it is
and then encode the remaining as a pointer to the
previous 'A’ and the length of the match as N — 1,
provided the length is less than the look-ahead size. It
is easy to see how the decompresser can expand such
a code. It will simply keep copying the character at
the k" location to the (k+ 1) location. Clearly, this
method is inherently adaptive and the non-adaptive
version of the algorithm does not make sense.

3.1.5 Block Sorting

This is a very recent compression technique [BW94]
and performs extremely well on textual files. It ex-
ploits the fact that characters immediately following
a particular character in English text are from a re-
duced domain. Even if several characters are there in
that domain some characters are much more frequent
than the others. For example, ’e’ will often follow 'h’
as in 'the’ which is a very frequent word. However, 'z’
will almost never follow any consonant.

What it does is to first transform the data to a form
in which it is compressible by other algorithms. The
transformation is as follows. First, all cyclic permu-
tations of the text string are sorted. The position of
the original string is noted along with the last charac-
ters of the sorted permutations in that order. It might
not be very obvious so as to how this can be reversed
efficiently but you can look into the references given
above. Now the characters are clustered, and a lo-
cally adaptive technique such as move-to-front coding
is applied. This starts with the character set in a list
in some fixed order. Then, as a character comes, we
output its current position in the list and move it to
the front of the list. Clearly, since the characters are
clustered together, the lower numbers like 0,1,2 will
dominate. This is a perfect opportunity for arithmetic
coding. This is only a conceptual overview and there
is a lot more in implementing it. This scheme achieves
compression comparable to the best statistical com-
pressors for English text in much lesser time.

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

4 Compression of Datalndexes

We now turn our attention to applying some of the in-
dexing and compression concepts to the data in a data
warehouse. Data stored in the form of Datalndexes is
expected to be compressed to a smaller size than data
stored as tuples in a table. This is mainly because
different columns have different distributions and dif-
ferent methods could be applied to different columns.
In the following sections, we show schemes for com-
pression of fact table BDIs, JDIs and the Dimension
tables.

4.1 Compressing Text Columns of the Fact ta-
ble

In this section, we shall figure out which algorithm to
use for compressing the text columns of the fact table.
Note that apart from the algorithm compressing well,
it should also do it at a good speed. Another aspect of
compression is the granularity at which it is done. We
can do it at the attribute level or at the block level. By
compressing at the block level, we mean to compress
as much as possible in to a single disk block, and then
restart compressing in a new block. This ensures that
each block can be decompressed independently of all
the others. Care should be taken so that no attribute
is between blocks, so that no attribute causes more
than a single I/0.

To begin with, let us see how various algorithms
perform relatively at an average in terms of com-
pression size, compression speed, as well as expansion
speed on normal English text. To measure how well
an algorithm compresses data we define Compression
Ratio (CR) to be 1—(Compressed size/original size).
The numbers for Compression and Expansion speed
are proportional to the amount of data they can han-
dle in unit time.

From Table 1, a number of things may be concluded:

1. Clearly, Arithmetic Coding is too slow in terms
of compression and expansion speed compared to
Huffman Coding and provides little gain in com-
pression. Thus, Arithmetic Coding should not be
done in a database where performance is an issue.

11-9

Table 1: Comparison of Compression Algorithms

| Algorithm | Compression Ratio | Compression Speed | Expansion Speed |

Huffman 40 14 12
Arithmetic 41 4.5 2
LZ77 60 3.5 17
LZW 56 13 13

2. For text files, the dictionary based techniques
perform substantially better than statistical tech-
niques.

3. Expansion Speed is particularly critical in a Data
Warehouse, as data will be queried and hence ex-
panded several times while it will be compressed
very few times when data is added or reorganized.
Therefore, the LZ77 method seems to have an
edge over LZW.

It should be clear that LZ77 and LZW are the only
choices we have. Let us consider them one by one
at the attribute level as well as the block level. At
the block level, both the algorithms perform similarly,
though there is some loss in compression ratio for both;
however the difference between their compression ra-
tios is not really significant. Thus, we must choose
LZ77 unless updates are huge and very frequent. If
there are very frequent updates or reorganizations,
compression speed may become an issue and then it
is better to use LZW as it compresses also at a good
speed.

At the attribute level, things are quite different. We
do not expect long sequences of characters being re-
peated within a single column value which itself is of
a few tens of bytes. Thus, after going through the
LZ77 algorithm it is clear that it will not do well at
the attribute level. It might even result in a slight
expansion. The adaptive flavor of LZW will also do
equally badly for the same reason. One cannot ex-
pect to have built a tree that results in substantial
compression by going through such a small amount of
text. Now, consider the non-adaptive version of LZW.
For the non-adaptive version of LZW at the attribute
level, nothing much has changed as compared to the
file level. In both cases we sample data and the dic-
tionary used in both cases will be very similar. The
only difference is that at the attribute level we can-
not over-step attribute boundaries while compressing
the data. Also, as pointed out in [IW94], non-adaptive
LZW at the record level performs better than Huffman
coding for their datasets. However, one has to sample
carefully and this does well only when most values will
consist of words from a very selective range. Long En-
glish documents are not compressed by much using

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

non-adaptive LZW. Thus, non-adaptive LZW appears
to be the best choice for the attribute level.

4.2 Compressing Numerical columns

The most often queried columns in the fact table are
the measures which are mostly numerical. These are
the ones which are mostly aggregated in warehouse
queries.

First, consider compressing them at the attribute
level. It is reasonable to assume that most fields
will occupy 4 bytes(capable of representing more than
4 % 10%%) or less. Such numbers, represented in binary
do not compress by as much as text, and most good
compressors compress it to around 50% of the original
size. This means that a column value will be repre-
sented in 2 to 3 bytes, rounding to the next higher
number. Add another byte to store a pointer to the
attribute as the data will become variable length and
then each compressed attribute occupies 3 to 4 bytes.
This would result in compression ratio of 0% to 25%.
Clearly, compressing these at the attribute level does
not make sense. Thus, if many of the queries require
few attributes from each block, it is not a good idea
to compress the numerical columns.

Let us now concentrate on compressing at the block
level. First, we must find out what we can make use
of in compressing numerical data. If the numbers are
totally random uniformly distributed over the range
that can be represented in that width, then there is
no redundancy and no algorithm will compress it. It
will be best to store such data without compressing
it. However, in real life warehouses, some columns
by their very nature will be expected to have most
values in the lower and middle range or be multiples
of 5, 10 or 100. To illustrate what we mean, we have
constructed an example column in Table 2. A column
of balances in a bank is likely to be such a column.
The width of the column will be large, as there can
be very large balances, though rarely. In other words,
if such a column is actually 8 bytes in width, most
values will use only 4 bytes. Statistical techniques like
arithmetic coding look appropriate for such data.

Note that the major skew in the frequency of digits,
which is exploited by statistical coding techniques, is
in the higher order bits and the lower order bits. Be-

11-10

Table 2: Redundancy in Numeric Columns

| A Sample Column |

0070000
0080595
0168700
0043290
0001355
0087795
0009995

sides, they have different kinds of skews. Thus, instead
of having one common frequency table, it will be bet-
ter to have a different frequency table for every byte of
the width of the column at the price of a small decrease
in speed. Since the width is small, overhead of storing
the frequency distributions is not much and compres-
sion efficiency should improve by quite a lot. Here is an
example to show how having different frequency tables
may be beneficial. In this example we will use statis-
tics at the bit level since computing for ten sets is too
much and the simple case is sufficient to illustrate the
concept. Assume a 32 bit attribute. Let 90% of the
bits in the most significant 8 bits be 0’s. Assume an
equal distribution in the lower 24 bits. Arithmetic cod-
ing compresses to a maximum of Y —p;logap; [WC87]
where ¢ denotes the character. For this example the
bits are the characters. Therefore, it can be com-
pressed to —0.910g20.9 — 0.1l0g20.1 = .461. Also, the
other bits are not compressed so effective compres-
sion is (0.461 = 8 + 1 % 24)/32 = .867. However, if
we have common statistics for all bit positions, then
the frequencies become 60% ones and 40% zeroes.
With this frequency table it can be compressed to
—0.6l0g20.6 — 0.4l0g20.4 = .971. Thus, we may com-
press to 86.7% instead of 97.1% of the total size. Huff-
man coding does slightly worse than this and this is
the algorithm that should be used due to its greater
speed of compression and expansion.

There are a couple of things to be noted about the
format of the uncompressed data as well. It is not
a good idea to store numbers in a pure binary format
because redundancies in the bytes of lower significance
will be lost. For example, the fact that most numbers
are multiples of 5 may not be evident from seeing the
lower order bytes when represented in binary. Thus,
BCD (Binary coded decimal) appears to be a good
format as it does not waste too much space and at the
same time compressibility is not lost.

To provide the ordinal mapping, we will have to
build an index to store for each block the row ordi-
nal number of the starting value that is compressed in
that block. The decompression may appear quite ex-

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

Table 3: Another Redundancy in Numeric Columns

| Original Column | In index | Differenced data |

7240 7000 240
7582 982
6995 -
20000 20000 0
22050 2050
21075 1075
4095 4000 95
4172 172
3947 -93

pensive. However, when clustering is done like that in
GroupSet Indexes, there is a good chance that several
close by values may actually contribute to the result
and then the expense is not so much. This holds for
all block level compression methods.

4.2.1 Another Redundancy

Values of some metric columns may have a strong rela-
tionship with the values of the dimensional tuples they
join with. For example, the total sales at a particular
shop will usually be of the same order. It cannot be a
million one day and a hundred the next day. However,
it may be quite different from other shops which may
be smaller or bigger shops. Such a column is illus-
trated in Table 3. To compress such a BDI, we cluster
these similar values by grouping by the dimensions on
which the metric attribute depends. Now, the values
of this column within a particular group will vary only
in the lesser significant bits. To exploit the large num-
ber of similar values in the higher order bits, we store
the difference of each value with the average value of
all the values in that group. Now, most higher order
bits are turned to zeroes. Thus, we can use the same
strategy as above of Huffman coding using a different
frequency table for each byte. The average value can
be stored in the index which maps ordinal numbers to
disk locations.

4.3 The JDIs

In this section, we explore how the Join Datalndex
may be compressed. Suppose no organization is done.
Also assume that the cardinality of the referenced BDI
is almost the same as 2™ where m is the width of the
JDI column in bits. Then the JDI is a string from the
m bit alphabet. No redundancy can be expected. It
does not make sense for one to use too many bits for
a JDI, though some bits may be kept extra for future
growth of the warehouse. If for some reason this is the
case then we can use the Huffman coding technique
mentioned above for metric columns.

11-11

Table 4: JDIs After Organization

ENESRAE

1 1 1 8
1 1 4 6
1 1 7 | 14
1 2 2 7
1 2 3 | 10
1 2 5)
2 1 1 8
2 1 3 1
2 1 4 | 15
2 1) 12
2 3 2 8
2 3 4 9
2 3 4 7

Thus, we must do some kind of organization of data.
Consider a warehouse having a fact table F and 4 di-
mensional tables A, B, C, D. The fact table will have
4 JDIs J4,JB,Jo,Jp on A, B, C and D respectively.
Let us sort the data on JDIs in ascending order by
Ja,JB,Jo, Jp . Also, the dimensional tables must be
sorted using the hierarchy in their attributes (as de-
scribed in the Section 4.4) so that related values are
close together and the differences between successive
JDI entries after sorting is small. When this is done,
at least the JDIs J4, Jp look extremely compressible.
They will have groups of the same number repeated
several times. Table 4 illustrates this.

Run Length Encoding looks ideal for such data. An-
other important observation is that the repeats are
in sorted order. In other words if we store the Run-
lengths and the literal which is repeating separately,
the literals will be in sorted groups. This sorted group
can be converted to a bitmap if it is dense resulting
in greater compression. This is illustrated in Figure 6.
An additional advantage is that the bitmap may be
anded with the rowset in memory while doing SJL, and
if the resultant bitmap is empty, one may not read the
run-lengths. Another possible way is to take succes-
sive differences modulo the size of the corresponding
dimension table between the literals and then Huffman
code them. It should be clear that this results in great
compression of J4, Jp and compressing them more is
of no interest.

If we observe J¢o carefully, we find that the differ-
ences between successive values is much smaller than
the actual values and it is not difficult to visualize that
this will be the case in a large warehouse. Assume that
the size of the dimensional table C is 7. Then, if we
take successive differences modulo 7 we get the column
as shown in Table 5.

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

Table 5: JDI Jo After Successive Differences

Differences

1

O | NN DN W|w

All the values are now small, and we can use Huff-
man coding as we did in Section 4.2 to compress the
JDI. Note that the next JDI, Jp is simply a random
string with no characteristics and we cannot compress
it.

There are two problems with these techniques. The
first is that only the first two or three JDIs by which
you sort get compressed. The best we can do is to
first group by the lower cardinality dimensional ta-
bles so that the runs are of the maximum size. An-
other problem is the high overhead of organization.
Whenever new records are added, the whole fact ta-
ble must be merge sorted with the data being added.
This would involve reading and rewriting the entire
warehouse data every time you update. A compro-
mise would be to first group by the Time dimension.
Then, all new tuples will be inserted towards the end
and we have to merge sort only a small part of the
entire data. An additional benefit of this is that all
the other references to the date dimension table also
get clustered. An example of this is the order-date,
ship-date and commit-date in the lineitem table which
is a fact table in the warehouse generated by TPC-D.
This should be fairly obvious since two objects ordered
on the same day will be shipped at nearly the same
day (at least the difference will not be large). Such a
relationship could be expected among all time JDIs.
So, if all the date columns are stored in a single JDI,
the other columns can actually be represented by sim-
ply storing the signed difference between themselves
and the sorted column. Obviously, since the differ-
enced values will be much smaller they can be com-
pressed using Huffman coding as we did for the nu-
merical columns of the fact table in Section 4.2. Also,
if we intend to store them in different JDIs, then we
can apply the technique of differencing with an aver-

11-12

Example :
Let the Domain of the JDI be 1 to 10

The Original JDI sequence : 4444445577779999 22222444
The Run-Lengths in the compresses version: 6244 53

The Bitmaps will be : 0001101010 0101000000

Figure 6: Run Length Coding

age value described in Section 4.2.1 on a disk block
basis.

4.4 Dimensional BDIs

The dimensional tables usually consist of text and
have a hierarchy among their columns. The values
in columns that are higher in the hierarchy are likely
to occur several times in that column. Thus, one
may consider dictionary based methods to be the best.
However, we may order the dimensional table accord-
ing to the hierarchy, just as we did in the case of hori-
zontal partitioning and groupset indexes (i.e. a group
by on attributes Ay, As ... A, where A; is highest in
the hierarchy while Ay is the lowest). This will re-
sult in all repetitions getting clustered. Now, we may
apply RLE. A perfect example is the time dimension
table having a hierarchy of date, month, year, etc. If
long runs are not always expected but there is a good
possibility, it is better to do block level LZ77 as it sub-
sumes Run Length Encoding and does well otherwise,
too.

Another major issue is the representation of such
a compressible BDI in memory. By representing the
BDI in lesser memory we will effectively be reducing
memory requirements of SJL. Thus, we may be able to
use SJL, where otherwise we may have to use SJS. We
can store such a BDI in memory using the same idea
as the JDI. We can store all the distinct values in an in
memory table and then instead of storing each value
in the BDI, store pointers to the corresponding entry
in the in memory table. This may save a lot of space if
there are lot of repetitions and the width of the table is
much more than that of a pointer. This clearly results
in SJL having to perform an extra pointer dereference.

One may consider run length encoding the column
of pointers stored too. But then, the ordinal mapping
is destroyed and an index must be provided or a binary
search must be done. It may be noted that this kind of
organization has several benefits like that in Groupset
Indexes and horizontal partitioning. Besides, the or-
ganization may not be done every time you load new
data. Its just that the new data will not be compressed
as efficiently until a holiday when you can reorganize
the entire database.

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

4.5 Making the Decisions

As we may observe, all these compression schemes may
be simultaneously applied in the same star schema.
The kind of organization involved in all of them is sim-
ilar. This section gives the characteristics expected by
the compression algorithm and when a particular algo-
rithm does particularly well or particularly badly. The
DBA must use his knowledge of the data, and the con-
ditions stated in this paper under which each scheme
performs best to decide his organization. Some of the
factors that influence the decisions and our recommen-
dations are enumerated below.

e Size of the Dimension Tables: If a dimension table
has columns that are quite large and may not fit
in memory along with some other columns, one
must consider horizontal partitioning. This may
enable us to use SJL where SJS would have been
necessary otherwise. Also, we recommend sorting
first by smaller dimension tables.

e Expected Entropy: If a column is expected to
have a very high entropy with respect to the model
used for compressing that column, one may be
better off not compressing it at all. As an exam-
ple of a column that is not worth compressing, a
column of width 1 byte having values uniformly
distributed in the range 0 to 255.

o Columns accessed together: If most queries in the
workload access some columns together, it is a
wise choice to store these in a single BDI. Fur-
ther, if their values are related, as they are usu-
ally very close to each other or even equal, then
we may just store one value and the difference be-
tween them. Now, the difference values may be
compressed using Huffman coding as suggested in
Section 4.2 as they will usually be small.

e Fixed/Variable length columns: Fixed length
columns become variable length as a result of
compression. As a result, we lose the efficiency
associated with fixed length columns. Thus, the
cost of compressing (in terms of query processing
time) fixed length columns is more than that of
compressing variable length columns.

11-13

Table 6: The Tables in the Warehouse Data

| Table | Type | No. of Rows |
Main | Fact Table 26685
D1 Dim. Table 5
D2 Dim. Table 5
D3 Dim. Table 8
D4 Dim. Table 3443
D5 Dim. Table 20086

e Cost of Disk Space: If compression is adding over-
head, the user will compromise on query perfor-
mance if disk is precious to him.

e Frequency of updates: If the frequency of updates
is very high and reorganization cost has to be kept
at a minimum, then we must sort first by the time
dimension.

e Workload: One must consider the queries that are
usually going to be processed, while making de-
cisions regarding the organization. For instance,
the sort order may be determined as the order of
the group-bys in most queries.

These decisions are very important as any compression
scheme applied on data that was not expected by the
compression method will result in lesser compression
(or even expansion) and hence inefficiency in query
processing.

An important benefit due to the isolation of
columns provided by the Datalndexes is that columns
that are not compressed do not suffer from any kind of
inefficiency due to the compression of other columns
of the same table. If the tables were not vertically
partitioned, compressing one column would have an
adverse effect on even queries involving only the un-
compressed columns of the table. This is mainly be-
cause the records become variable length.

4.6 Performance On Sample Data

We have implemented these techniques, and this sec-
tion gives a summary of how various techniques per-
formed on real data. The data has some of charac-
teristics of an actual warehouse. The data is from a
popular paint company. It has recipes of 26,685 shades
in terms of amounts of some primary dyes. The cen-
tral fact table has 5 JDIs. Table 6 gives a description
of the tables.

D4 contains only one attribute which is the name
of the shade. The largest dimension table, D5, has
around 3 to 4 records for every referenced key from
the fact table describing which are the basic dyes to
be used and in what quantity. The quantity column
in this table is the only real numeric data we have.

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

Main, D4, D5 are the only tables large enough to
be compressed. Let us begin with D4. It has only one
column, called ’Name’ which consists of text. Note
that the data is represented in variable length format
(not fixed length by padding with blanks) before com-
pressing it. Each attribute is terminated by a newline
to denote its end. The result of compressing this using
Block level LZW is in Table 7.

Table D5 has four columns- C1, C2, C3, C4. Cl1 is
the key which is referenced and has values from 1 to
5815. The table has 3 to 4 rows with the same value of
C1. These are differentiated by their C2 value. Thus
C1, C2 forms a candidate key. C3 is a JDI referencing
a table with 16 rows. C4 is a float column denoting
quantity of the referenced item. C4 was pre-processed
and converted into an integer by multiplying by 10 and
then the value was stored in BCD with no separators
between them. The table was sorted by C1, C2. It
so happens that since this is data created by the com-
pany, the table is also sorted by C1, C3. Thus, we can
compress Cl, C2, C3 by successive differencing and
Huffman Coding it. C4 was directly Huffman coded
as most of the values were very low. C1 has runs of
single values and C2 has sequences such as 1,2,.... In
such a case, after differencing we will have long runs
of 0’s and 1’s respectively, which is a perfect opportu-
nity for dictionary based techniques. Thus, dictionary
techniques after differencing do slightly better com-
pressing to less than 2K. Otherwise, Huffman Coding
does better for the other columns. The results are
summarized in Table 8.

Now we consider compressing the fact table, ’Main’.
It only has 5 JDIs-J1 to J5 referencing the 5 dimension
tables respectively. The table is sorted by the JDIs
on J2, J3, J4 in that order. Again, since the data is
created by the company, it so happens that J5 is also
almost sorted. In fact, J5 is equal to J4 in several
rows. Due to the very low cardinality of D2 and D3,
J2 and J3 will have very long runs. As a result they
are compressed to almost nothing as a result of run
length encoding. The same experiments were done on
the other JDIs-J1, J4, J5 as for the case of D5 and the
results are summarized in Table 9.

However, an important observation while compress-
ing J4 and J5 was that it was mostly populated with
long sequences of successive numbers like 1,2,3....
And due to the same reason as above we expect dic-
tionary techniques to perform better on them. In-
deed, the table above shows that block level LZW com-
pressed the same to much lesser. Thus, when patterns
like runs and sequences are expected to occur in the
JDI, LZW should be used after taking successive dif-
ferences. Otherwise, one should use Huffman Coding.

Overall, the entire data got compressed to around
30% to 35% of its original size. This implies a com-

11-14

Table 7: Results for Dimension Table: D4

| Column | Type | Table | Technique | Original Size | Compressed Size | CR |
[Name [Text [D4 [LZW | 350K] 12.0K | 65% |

Table &: Results for Dimension Table: D5

| Column | Type | Table | Technique | Original Size | Compressed Size | CR |
C1 JDI D5 Diff/Huff 10.0K 2.5K 5%
C1 JDI D5 Diff/LZW 10.0K 1.6K 84%
C2 JDI D5 Diff/Huff 10.0K 2.5K 75%
C2 JDI D5 Diff/LZW 10.0K 1.8K 82%
C3 JDI D5 Diff/Huff 20.0K 11.0K 45%
C3 JDI D5 Diff/LZW 20.0K 12.5K 38%
C4 Numeric | D5 Huffman 40.0K 22.0K 45%
C4 Numeric | D5 LZW 40.0K 26.0K 35%

Table 9: Results for Fact Table: Main

Column | Type | Table | Technique | Original Size | Compressed Size | CR |

J1 JDI Main | Diff/Huff 13K 5.0K 61%
J1 JDI Main | Diff/LZW 13K 5.0K 61%
J4 JDI Main | Diff/Huff 53K 14.5K 73%
J4 JDI Main | Diff/LZW 53K 5.5K 90%
Jb JDI Main | Diff/Huff 53K 20.0K 62%
J5 JDI Main | Diff/LZW 53K 17.5K 67%

K. Goyal, K. Ramamritham, A. Datta, H. Thomas 11-15

pression ratio of 65% to 70%, which is quite impressive.
As stated previously this data has been synthetically
created and is a lot more ordered than one can expect
a warehouse to be. However, a 50% compression ratio
would not be surprising for most warehouses.

5 Conclusion and Future Work

The contribution of this work is twofold. First, In
Section 2.5.5 we proposed a horizontal partitioning
scheme in order to reduce the memory requirements
of SJL enabling us to avoid using SJS as much as
possible. Secondly, we described several compression
algorithms that could be used to compress data ware-
houses stored as Datalndexes and discussed when each
of them should be used. It might have appeared then
that partitioning finely is a good idea. However, the
more partitioning that is done, the more compression
suffers. This is because the groups get split across
several partitions and have to be coded separately in
each partition. Thus, we must partition only to the
extent that we don’t have to do SJS for most queries,
so that we get the efficient joining of SJL along with
good compression.

We found that representing data as Datalndexes is
very efficient, both in terms of space as well as query
processing. It was only because of the Datalndex rep-
resentation that things like run length coding on a col-
umn are possible. Secondly, different types of columns,
with different semantics, could be compressed indepen-
dently using different techniques which work best for
that particular type of data to occupy lesser space than
any general technique would otherwise result in. An-
other feature is that compressing some columns does
not distribute their overhead to the other columns. In
other words, we can compress some columns which we
don’t need very often and get the same performance
as before on queries involving columns that are not
compressed. Also, a large amount of data displays
similarities (in the sense of compressibility) down a
column and therefore we expect compression ratios of
most compression techniques (even techniques of the
future) to improve substantially when used on verti-
cally partitioned data.

In the recent past, both processing power and I/0
speeds have increased rapidly. Today, we cannot ig-
nore the compression overhead in comparison to sav-
ing of I/O. A lot of research has to be done to de-
sign fast compression and decompression algorithms
which give good compression ratios even at the block
level. We were particularly impressed by the hardware
implementation of Huffman coding. However, their
schemes had several drawbacks in the sense that the
tree seemed to be hard coded into the chip. Also, no
one uses Huffman coding to compress all their data

K. Goyal, K. Ramamritham, A. Datta, H. Thomas

today! It would be an interesting venture to figure out
what makes the other techniques difficult to imple-
ment efficiently in hardware (at speeds as fast as Data
Transfer Speeds of disks). More importantly, tech-
niques must be designed which are implementable in
hardware at high speeds and are good at compressing
data that Huffman coding is not. In this way, they
could complement each other and result in a system
which stores data in little space with absolutely no
extra time overhead.

Before designing a compression technique, one
needs to determine what kind of redundancy to ex-
pect in the data, for no single compression method
can do well at all kinds of data. We did not have
the opportunity to analyze data in actual warehouses.
A good area for future research is to determine what
other redundancies typically occur in warehouses, so
that algorithms can then be designed to exploit these
properties.

Acknowledgements

The research reported here was supported in part by
the National Science Foundation grant number IRI-
9619588.

References

[BW98] A. Buchmann and Ming-Chuan Wu. Encoded
Bitmap Indexing for Data Warehouses. Proc.
ICDE, Orlando, February 1998.

[CY98] Chee-Yong Chan, Yannis E. Ioannidis.

Bitmap Index Design and Fvaluation. Proc.
of SIGMOD 1998.

[GHQY95] A. Gupta, V. Harinarayan, and D. Quass.
Aggregate-Query Processing in Data Ware-
housing. Proc. of the VLDB 1995.

[HD52] Huffman D. A. A Method for Construction
of Minimum Redundancy Codes. Proc. Inst.

Electr. Radio Engg. 40.9 September 1952.

[IW94] B. Iyer, D. Wilhite Data Compression Sup-
port in Databases. Proc. of 20th VLDB Con-

ference, 1994.

[KA98] Anindya Datta, Bongki Moon, Krithi Ra-
mamritham, Helen Thomas, Igor Viguier.
"Have Your Data and Index It Too”: Effi-
cient Storage and Indexing for Data Ware-

houses. Technical Report, 1998.

[KIM96] Ralph Kimball. The Data Warehousing

ToolKit. John Wiley and Sons, 1996.

11-16

[KP98] Anindya Datta, Debra VanderMeer, Krithi
Ramamritham, Bongki Moon. Applying Par-
allel Processing Techniques in Data Ware-
housing and OLAP. Submitted for Publica-
tion, 1998.

[LZ77) J. Ziv and A. Lempel. A Universal Al-
gorithm for Sequential Data Compression.
IEEE Trans. Information Theory, Vol 1T-23,
No. 3, May 1977.

[ND97] Prasad Deshpande, Jeffrey Naughton, Amit
Shukla, K. Ramasamy. Caching Multidimen-
sional Queries Using Chunks. Proc. of SIG-
MOD, 1998.

[0G95] Patrick O’Neil, Goetz Graefe. Multi-Table
Joins Through Bitmapped Join Indices. SIG-
MOD Record, September 1995.

[PQI97] Patrick O’Neil, Dallan Quass. Improved
Query Performance with Variant Indexes.
Proc. of SIGMOD, 1997.

[RH95] Gautam Ray, Jayant Haritsa, S Seshadri.
Database Compression: A Performance En-
hancemant Tool. Proc. of COMAD, 1995.

[RS91] N. Ranganathan and H. Srinidhi. A Sugges-
tion for Performance Improvement in a Re-
lational Database Machine. Computers Elec-
trical Engineering, 17(4), 1991, p 245

[WB94] M. Burrows, D. J. Wheeler. A Block
Sorting Lossless Data Compression Al-
gorithm. SRC research report 124,
gatekeeper.dec.com/pub/DEC/SRC/research-
reports/SRC-124.ps.Z

[WC87] Ian Witten, Radford Neal, John Cleary.
Arithmetic Coding for Data Compression.
Communications of the ACM June 1987.

[We84] Terry A. Welch. A Technique for High Per-
formance Data Compression. IEEE Com-
puter 17.6 June 1984.

K. Goyal, K. Ramamritham, A. Datta, H. Thomas 11-17

