
Tree Based Indexes vs. Bitmap Indexes: A Performance Study

Marcus Jürgens
Institute of Statistics and Econometrics

Institute of Computer Science
Freie Universität Berlin, Germany

juergens@inf.fu-berlin.de

Hans-J. Lenz
Institute of Statistics and Econometrics

Freie Universität Berlin, Germany
hjlenz@wiwiss.fu-berlin.de

Abstract

Data warehouses are used to store large amounts
of data. This data is often used for On-Line An-
alytical Processing (OLAP). Short response times
are essential for on-line decision support. Com-
mon approaches to reach this goal in read-mostly
environments are the precomputation of material-
ized views and the use of index structures. In this
paper, a framework is presented to evaluate dif-
ferent index structures analytically depending on
nine parameters for the use in a data warehouse
environment. The framework is applied to four
different index structures to evaluate which struc-
ture works best for range queries. We show that
all parameters influence the performance. Addi-
tionally, we show why bitmap index structures use
modern disks better than traditional tree structures
and why bitmaps will supplant the tree based in-
dex structures in the future.

1 Introduction

Data warehouse and OLAP applications differ very much
from the traditional database applications. Traditional
database systems are OLTP oriented and access few tuples
for read/write access at the same time. In data warehouse
environments the data is used for decision support and large
sets of data are read and usually not changed. Therefore, it
is possible to materialize views in advance [GHRU97] and
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use different access paths to support fast access to multi-
dimensional data [OQ97]. One of the most popular mul-
tidimensional index structures is theR-tree [Gut84]. Dur-
ing the last 15 years many scientists improved theR-tree
resulting in structures like theR�-tree [BKSS90], STR-
tree [GLE97], packed R-tree [RL85], Hilbert R-tree and
[IK94]. In case of range queries on aggregated data, the
R�

a-tree proved to be a promising structure [JL98]. How-
ever, tree structures have one drawback. It is a well-known
fact that tree structures degenerate when the number of
dimensions is increased. Usually in data warehouse and
OLAP applications many dimensions have to be consid-
ered. Another class of index structures, the bitmap indexes,
try to overcome the problem to generate when the number
of dimensions is increased by storing the data of each di-
mension separately and allowing fast access to the dimen-
sions that are needed to answer certain queries. Bitmap
indexing techniques are implemented in some commer-
cial available database management systems (e. g. from In-
formix [Inf97] and Sybase [Syb97]). The question arises as
to which structure is best suited for certain applications.

In this paper a new framework is described to support
the comparison of different index structures. Most inves-
tigations of index structures only consider one or two pa-
rameters. However, the performance of index structures
depends on many different parameters. Here, we concen-
trate on a set of nine different parameters to compare index
structures used for a database management system. The
framework is applied to investigate four different index
structures. Two tree based index structures and two bitmap
structures are used to evaluate which index structure works
best for given range queries. Our investigations show that
all presented parameters influence the performance of the
used index structures. We show that taking just one or
two dimensions into account is not sufficient for a thorough
comparison of different indexing techniques. Furthermore,
we show that bitmap index techniques will outperform the
tree based index structures in many cases with future disk
technology.

The rest of the paper is organized as follows: Section 2

M. Jürgens, H.J. Lenz 1-1



defines the used parameters that influence the performance
of index structures. Section 3 explains the framework and
defines the rules of how the high dimensional data is ag-
gregated to two-dimensional data. In Section 4, four dif-
ferent index structures are modeled, and it is shown how
these structures are applied in the framework. Section 5
describes the experiments and results of the application of
the framework. The last section summarizes the approach
and gives an outlook.

2 Input parameters

There are nine parameters which influence the performance
of index structures. We group them into four different cat-
egories: data specific, query specific, system specific, and
disk specific parameters. First we describe the different
groups with their parameters.

2.1 Data specific parameters

Data specific parameters describe the data that has to be
indexed. The three important parameters are:

Number of dimensions. The dimensionalityd 2 N of the
data denotes the number of attributes. This parame-
ter is important for the performance of a system. For
the task of indexing eight dimensional data a differ-
ent structure is better suited than for indexing one or
two-dimensional data.

Number of stored tuples. The numbert of tuples influ-
ences the performance of different structures. In
[JL98] it is shown that theR�

a-tree improves in com-
parison with theR�-tree if the number of indexed tu-
ples is increased.

Cardinality of data space. The cardinality of the range of
an attributec is the number of different values an at-
tribute may have. It is obvious that for attributes like
gender, where there are at most three possible values
(male, female, NULL) different index structures are
better than for attributes like social security number or
telephone number, where the attributes may have mil-
lions of different values. In the following, we assume
that each attribute can havec different real numbers in
the range of[0; 1). It is assumed that the attribute car-
dinality is the same in all dimensions. This assump-
tion makes the model simple and can be relaxed later
to make the experiments more realistic. The cardinal-
ity of the range of thejth attribute is denoted bycj .

Another parameter may be the distribution type of data
(e. g. normally distributed or uniformly distributed data).
To keep the framework simple, this parameter is not con-
sidered here, but the framework can easily be extended to
take the actual distribution of data into account. In this case
the models for the tree structures can be changed according

to the PISA model [JL99]. In the following, uniformly dis-
tributed data is assumed. The models for the bitmaps are
not affected by other distributions of data.

2.2 Query specific parameters

Query specific parameters hold information about the
queries processed by the system. In our approach we con-
centrate on range queries. Point queries can be expressed as
range queries with query box sizeqs = 0. In order to have
only scalar values as parameters, we assume range queries
that can be described with the two scalar values:

Query box size. The size of the query box is given propor-
tionate to the size of the data space and is denoted by
qs (0 � qs � 1). A value ofqs = 0:04 means that the
query box fills 4 percent of the data space.

Query box dimensions. The query box dimension param-
eterqd denotes the number of attributes occurring in a
given range query. Assume a five dimensional index
is built (d = 5), but the query is only restricted to two
dimensions. In this caseqd is set to2. The size of

the query box in the firstqd dimensions isqi = qs
1

qd

for all 1 � i � qd. The size of the query box in
the remaining dimensions will be set atqi = 1 for
all qd < i � d. This means there are no restrictions
or predicates in the remaining dimensions. Assum-
ing that the size of the query box isqs = 0:04 and
the query box dimensions isqd = 2 the shape of the
query box is calculated with the above given rule as
q = (0:2; 0:2; 1; 1; 1). This limits the model to certain
shapes of query boxes, but it allows the model to work
with scalar values as input parameters.

It is assumed that the positions of the query boxes are
uniformly distributed over the data space.

2.3 System specific parameters

System specific parameters are parameters that can be cho-
sen by the database administrator (DBA) of a system. We
assume that the DBMS has its own access to the disk sys-
tem and does not use the I/O functions of the operating
system:

Blocksize. The blocksizeb 2 N is the number of bytes that
is read with one disk access.

Scale factor. Due to the fact that the access time, and not
the available disk space, is the limiting factor, redun-
dancy of stored data is accepted in order to be more
time efficient. This is especially true in the context of
data warehouses where materialized views occupy a
large portion of disk space. The more data is materi-
alized the more queries can be answered without ac-
cessing base data and the faster the systems are. Some
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index structures have the same property that they can
trade space and time. In this approach we use bitmap
indexes that aretime optimal under given space con-
straints. Here, more space is added to the bitmap in-
dexes than space is occupied by the investigated tree
structures. E. g. a scale factor ofsf = 2 means that the
bitmaps can occupy twice the space used by the trees.

2.4 Disk specific parameters

Index structures are usually not stored in main memory,
but in the secondary memory and have to be read from
secondary memory and transfered into main memory. In
contrast to many approaches that compare index structures
and only count the number of external I/Os and neglect the
fact that blocks can be read sequentially much faster than
reading blocks randomly, we take this fact into account and
model it. Here the behavior of disks are modeled by two
parameters:

Bandwidth. The bandwidthbw of a disk is the speed
[MB/s] in which the disk can read data and transfer
it into main memory. Due to the fact that the disks
are getting (physically) smaller and the data is stored
more densely on the disks, this speed increases by ap-
proximately 40 % per year [BG98], [PK98].

Latency time. The second parameter is the average time
the read/write heads need to get to a certain position
and to start reading the desired data. This time is the
latency timetl of a disk system. On average, this is the
SeekTime+RotationTime/2. This parameter depends
mainly on the rotation speed of the disk. The rota-
tion speed does not increase with the same rate as the
bandwithbw. It increases only by approximately 8 %
per year [BG98], [PK98].

From the bandwidthbw and the blocksizeb, the time
ts for one sequential access can be calculated as the time
for reading and transferring one block of data into main
memory

ts =
b

bw
(1)

The timetr for a random block access is calculated as the
time for bringing the read/write head to a certain position
plus the time to read one block of data and transferring it
into main memory

tr = tl +
b

bw
(2)

The fact that the bandwidthbw is increasing much faster
than the latency timetl is decreasing, widens the gap be-
tween a sequential and a random access. With todays
(1999) disks it is (with a reasonable large block size) ten
to twenty times faster to read a sequential block than a

random block. In five years, this factor will probably be
increased to 36 to 72. One could argue that by this time
index structures will only be of limited use, because se-
quential scans will be faster for most queries than the use
of index structures. This is true if the amount of data is kept
fixed. But the capacity of disks (and the amount of stored
data) is increasing even faster than the bandwidth. There-
fore, the time for scanning a whole disk will increase, and
it will still be necessary to index the data. However, the
index structures in the future have to be better according
to the changed parameters than structures used today. The
described framework supports the investigation as to which
index structure is best suited for a certain application and
given parameters.

3 The Framework

In the following section, a framework is described to com-
pare different index structures in respect to all parameters.

3.1 Configuration

Grouping the above defined parameters together, we get a
vector of nine scalar parameters

e = (d; t; c; qs; qd; b; sf ; bw ; tl) (3)

to characterize a certain experimental setup. We call a spe-
cific vector e a configuration. There is one dependency
between the parameters. The number of dimensions of the
data space must be greater than or equal to the number of
dimensions in that the query box is restricted. In the rest
of the paper, we will consider only configurations in which
qd � d.

For each parameter a set of values is defined. E. g. for
the blocksize, a set of values is defined asB =
f2048; 4096; 8192; 16384g. For the other parameters, sets
are defined similarly and denoted by capitalized letters.
The set of all configurations is defined as

E = f(d; t; c; qs; qd; b; sf ; bw ; tl ) 2
D � T � C �Qs �Qd �B � SF �BW � Tljqd � dg
In the following experiments the parametersbw andtl are
assumed to be constant for one experiment. For each index
structure that has to be investigated a function is needed, to
estimate the time used for processing a given range query
for a given configuration. Assumings index structures have
to be investigated,s different functionsti : E ! R; i 2
f1; � � � ; sg have to be defined to estimate the time that is
needed to process a query with a given configuration.

ti(e) = time for processing range query

in con�guration e with index structure i

Having defined thes functions, the framework works in
the following way. The two parametersbw andtl are as-
sumed to be fixed for one experiment and for each structure
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Figure 1: Framework for sum aggregation
a seven dimensional cube is built using the above defined
functionsti. In each cell, the time that is needed to process
a range query for a given configuration is stored. Seven di-
mensional data is difficult to visualize. Therefore, the seven
dimensional data is mapped to two-dimensional data by us-
ing aggregation functions. The aggregate functions:sum,
min, max, count, andmediancan be used. Due to space
limitations only thesumaggregation is discussed here.

3.2 Sum aggregation

Figure 1 shows how the sum aggregation works. For each
of the s different seven dimensional data cubes, a two-
dimensional data cube is generated by applying the aggre-
gation functionsum. Two dimensions have to be selected in
which the data should be projected. Assume that the num-
ber of dimensionsd and blocksizeb are kept fixed. The
aggregation is done by functionshi, i 2 f1; � � � ; sg

hi(d
0; b0) =

X
(e2E)^(d=d0)^(b=b0)

ti(d; t; c; qs; qd; b; sf ; bw ; tl)

Thesumfunction calculates the average case, because the
number of cases is equal for all index structures. From the
s two-dimensional data cubes one two-dimensional cube
smin is computed which gives the number of the index
structure with the smallest value. Functionsmin : D �
B ! f1; � � � ; sg has to satisfy the following condition:

8i 2 f1; � � � ; sg : hsmin(d0;b0)(d
0; b0) � hi(d

0; b0) (4)

Functions likemin or maxcan be used similarly. If the
user is very optimistic, she may use themin function. If
the user is very pessimistic, themaxfunction should be ap-
plied.

Two other aggregation approaches are investigated. In
one approach, the data is aggregated by counting the num-
ber of cases in which each index structure is the best
(fastest) one. Another approach is to calculate the median.

The results of the two other approaches are just a little bit
different from thesum-aggregation method. Therefore, and
because of space limitations, the other approaches are not
further presented here.

4 Application of the framework to compare
four index structures

To show how the framework works, the framework is ap-
plied to compare different index structures. The space used
and the timeti used for processing a range query by each
index structure is computed.

4.1 Estimators for the tree based index structures

Here, we calculate the space needed for building up a tree
based index structure. Due to the fact that there are many
more leaf nodes than inner nodes (inner nodes occupy less
than 2 % in our experiments) we consider only leaf nodes.
The number of leaf nodes is the same for structures that use
aggregated data and for structures that neglect aggregates in
the inner nodes.

The space (in bytes) used by one entry of a leaf node de-
pends on the cardinality of the attributescj and the number
of dimensionsd that have to be stored. In addition, there
has to be a pointer (TID) to the data itself.

sdata =

Pd

j=1dlog2 cje
8

+ 4|{z}
pointer

(5)

The maximum fanout of data pages depends on the chosen
blocksizeb and on the size of the data entriessdata. The
bigger the blocksize, the more data entries can be stored on
each block. The exact quantityMdata is calculated by

Mdata =

�
b

sdata

�
(6)

The number of data nodesN (leaf nodes) that are necessary
to store all data entries can be calculated as the quotient
of the number of tuples that have to be indexed and the
number of data entries that fit into one block

N =

�
t

Mdata

�
(7)

Here we assume that all nodes are filled with the maximum
fanout. This can be achieved if a bottom-up structure like
the STR-tree [GLE97] or packed R-tree [RL85] is used.

Under the assumption that the points are uniformly dis-
tributed over the data space, the average length of a data
rectangler is given by (cf. [JL99])

r =
1
d
p
N
; (8)

In the rest of the paper, the GRID Model with uniformly
distributed data as described in [JL99] is used. The number
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8

of pages that have to be accessed on leaf node level can be
calculated as

Ew =

dY
j=1

min

�
qj
r

+ 1;
1

r

�
(9)

where the query box is expressed as a tupleq =
(q1; q2; � � � ; qd) as described before.

In Figure 2a), there are 64 data nodes assumed to be
uniformly distributed over the two-dimensional data space
[0; 1)2. Therefore, the length of one rectangle is:r = 1

8 :
The rectangleq represents the query boxq = (0:5; 0:5).
All gray shaded rectangles in Figure 2a) represent leaf
nodes that have to be accessed when an index structure like
the STR-tree is used. In Figure 2a), these are 16 blocks.
The pages on the leaf node level are stored in random order
on the disk. In the best case, they are stored according to
one dimension or according to a space filling curve [IK94].
These savings decrease dramatically when the number of
dimensions increases. We assume that the blocks are not
ordered. For each page access to disk, one random access
is necessary. The time estimationt1 for the treewithout
aggregated data is the number of necessary page accesses
multiplied by the time used for one random access

t1(e) = Ewtr (10)

The idea of aggregated data in the inner nodes of an index
structure is described in detail in [JL98]. The inner nodes
store in addition to the reference to its successors some ag-
gregated data about their successors (count and sum in this
example, cf. Figure 3). If aggregated data is used, there is
no access necessary to rectangles completely contained in
the query box. This number is calculated by

Ec =
dY

j=1

max
nqj
r
� 1; 0

o
(11)

All pages that contain data that is completely contained in
the query box do not have to be accessed. In the example
in Figure 2b), access to four blocks is saved. The number

6
5 4

3

6
5 4

3

1
2

3

3 4
54

3

2
1

4
54

3

(3,6)(4,18) (4,16)

(count, sum)

Figure 3: Aggregated data in index structure
Ea of leaf nodes that have to be accessed whenaggregated
data is used is

Ea = Ew �Ec (12)

The time estimation for the tree with use ofaggregateddata
is the product of the number of accessed pages and the time
for each random block access

t2(e) = Eatr (13)

The two time estimatorst1 and t2 are used in the frame-
work to estimate the time for a given configuration to pro-
cess a query if uniformly distributed data is assumed.

4.2 Estimators for bitmap indexing techniques

First we present the general idea of bitmap indexing and
show how space and time can be traded. Assume there is
a columnx in a relational DBMS with 6 different values
from 0 to 5. The traditional bitmaps generate one bitmap
vector (B0�B5) for each of the 6 different values as shown
in Table 1. If the value ofx is set to 3, the corresponding
bit in vectorB3 is set to 1. Otherwise the bit is set to 0.
This index structure has the great disadvantage, that one
bitmap vector is necessary for each value ofx. Therefore,
this structure can only be used for attributes that have only
few different extensions.

The next two index structures that are used for the ap-
plication of the framework are equality and range encoded
bitmap indexes. In this example equality encoded bitmap
indexes convert the value ofx in a number system with base
3 of the first and base 2 of the second digit:x = 2 � y + z,
wherey is represented byB1

2 ; B
1
1 ; B

1
0 andz is represented

byB0
1 andB0

0 (cf. Table 1). Range encoded bitmaps are op-
timized for range queries. They can be calculated from the

equality encoded indexes byB
j

i = B
j

i�1 ^ Bj
i . In [CI98],

the authors show how time and space are traded in detail.
They focus on four different points of this trade: time op-
timal, space optimal, “knee”, and time optimal under given
space constraint. Here we concentrate ontime optimal
bitmap indexes under a given space constraint. To compare
the bitmap structures with tree structures, we assume that
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value traditional bitmap equality encoded range encoded

B5 B4 B3 B2 B1 B0 B1
2 B1

1 B1
0 B0

1 B0
0 B

1
1 B

1
0 B

0
0

1 0 0 0 0 1 0 0 0 1 1 0 1 1 0
3 0 0 1 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0 1 1 1 1
5 1 0 0 0 0 0 1 0 0 1 0 0 0 0
4 0 1 0 0 0 0 1 0 0 0 1 0 0 1
2 0 0 0 1 0 0 0 1 0 0 1 1 0 1
...

...
...

...
...

...
...

...
...

...| {z }
y

...
...| {z }

z

...
...

...

Table 1: Different bitmap indexing techniques

the space constraint depends on the space the tree struc-
ture needs to store the data multiplied by scale factorsf .
First the size of each bitmap vector (e. g.B1) is calculated.
The number of blocks needed to store one bitmap vector is
given by

v =

�
t

8b

�
(14)

Let M denote the number of bitmap vectors that can be
stored by the system. In this model it is assumed, that the
space for bitmap vectors is proportional to the space needed
by tree structures. Therefore,M will be set dependent on
the blocks allocated by the tree structure and a scale factor
sf, which is one of the input parameters of our model.

M =

&
N

v
sf

'
(15)

The space constraintM is given for all dimensions to-
gether. We have now to split theglobalM down into sep-
arateMj for each dimension with

Pd

j=1Mj � M . This
split is done weighted by the differentcj .

Mj =

$
M

log cjPd

j=1 log cj

%
(16)

TheMj ’s can be used to calculate the base of the encoded
bitmap indexes in each dimension. Note that in our exam-
ples thecj will all have the same value, but this can not be
assumed in general. For equality and range encoded bitmap
indexing techniques we get different structures. Therefore,
we have to distinguish between the two bitmap indexing
techniques. Having theMj andcj at hand, the bases of the
index can be calculated as shown in Figure 4.

For an equality encoded bitmap index, the algorithm to
calculate the base is sketched in Figure 4. This algorithm
has to be performed for eachj 2 f1; � � � ; dg. An additional
optimization step (not shown here), improves the perfor-
mance of the bitmap index structures [CI98]. The base in

(1) nj = 0
(2) repeat
(3) nj = nj + 1
(4) bj = bMj=njc+ 1
(5) rj = (Mj + nj)mod nj
(6) until bj

rj (bj � 1)nj�rj � cj

Figure 4: Equality encoded Calculation of base for bitmap
indexes for givenMj andcj

(1) nj = 0
(2) repeat
(3) nj = nj + 1
(4) bj = bMj=njc+ 1
(5) rj = (Mj + nj)mod nj
(6) until (bj + 1)rj bj

nj�rj � cj

Figure 5: Range encoded calculation of base for bitmap
indexes for givenMj andcj

each dimension is given by

< bji � 1; � � � ; bji � 1| {z }
nji�rji

; bji; � � � ; bji| {z }
rji

> (17)

In the rest of the paper, the base is denoted as

< bj1; bj2; � � � ; bjnj > (18)

For example:b23 denotes the base of the third component
of the second attribute.

If range encoded bitmap indexing techniques are used,
the base of the index is calculated by the algorithm in Fig-
ure 5. The algorithm in Figure 5 has to be executed for each
j, 1 � j � d. The base in each dimension is given by

< bi; � � � ; bi| {z }
ni�ri

; bi + 1; � � � ; bi + 1| {z }
ri

> (19)
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With the given bases for the equality and range encoded
bitmap indexes it is possible to estimate the time needed
by both structures. The number of bitmaps that have to be
scanned for a specific configuration according to [CI98] is

Ee =

dX
j=1

njX
i=1

Erj ;i

Erj ;i =

(
1

bji

�j
bji
2

k2
+
�
bi � 1

��l bji
2

m
�

bji
2

��
: bji > 2

1 : otherwise

The details can be found in [CI98]. From the number of
bitmap vectors that have to be scanned and the size of the
bitmap vectors in blocks the time estimate for the equal-
ity encoded bitmap index is calculated. The first block of a
vector needs a random block access, the remainingv�1 ac-
cesses can be read sequentially if the blocks of each bitmap
vector are stored sequentially

t3(e) = (tr + (v � 1)ts)Ee (20)

If range encoded bitmap indexing technique is used, the
number of bitmap vectors that have to be scanned is given
by

Er =
dX

j=1

2

�
(nj � rj)(bj � 1)

bj
+

rjbj
bj + 1

�
(21)

The time to execute one range query with range encoded
bitmap vectors is given by

t4(e) = (tr + (v � 1)ts)Er (22)

The estimatorst3 andt4 are used to estimate the time the
different bitmap indexing techniques need to access the
data. Together with the functionst1 andt2 this set of func-
tions provides the base data for the framework.

5 Experiments and Results

In this section results of experiments where the framework
has been applied are presented. In the following experi-
ments the bandwidthbw and the latency timetl are set
to fixed values. The remaining seven parameters are var-
ied and all possible combinations of the sets in Table 2 are
considered (under the constraintqd � d). This yields in
475.200 different combinations for each index structure.
For each of these combinations the four functionsti are
evaluated. Then the framework is applied as described in
Chapter 4. There aren(n�1)

2 = 21 different possibilities
how to aggregate the seven dimensional space into a two-
dimensional space. Due to space limitations only four two-
dimensional results are presented here for todays disk sys-
tems and two results for disk system as expected in five
years are shown.

The parameters for the disk are chosen, as using a Sea-
gate Cheetah 18. The latency timetl is set to 6 ms and
the bandwithbw is set to 11 MB/sec [PK98]. In Figure 6a)
the number of dimensionsd and the attribute cardinality
c are compared. It can be seen that for more than 2 to 3
dimensions the bitmaps are better than the tree structures.
If the attribute cardinality is increased, it is faster to take
the equality encoded bitmap index than the range encoded
bitmap index. In Figure 6c) the query box sizeqs and the
number of query box dimensionsqd are compared. If only
one or two attributes occur in the range query, the bitmap
indexes outperform the trees. If the query box is very small
(nearly a point query) aggregated data in inner nodes of the
trees can not be used and the tree without aggregated data
works most efficient. When the query box size is increased,
the tree with aggregated data becomes superior. For very
large query boxes, the range encoded bitmap works best.

In Figure 6e) the blocksizeb and the number of dimen-
sionsd are compared. As expected, the trees have some
advantages when the blocksizeb is increased because big-
ger blocks yield in a higher fanout and therefore in less ran-
dom block accesses. In Figure 6f) the scale factorsf and
the number of dimensionsd is varied. As in the Figure 6e),
the bitmaps become faster with an increasing number of di-
mensions. A large scale factorsf favors the range encoded
bitmap index in comparison to the equality encoded bitmap
index. Generally speaking, the range encoded index seems
to be better than the equality encoded index. In [CI98]
the authors came to the same results with different exper-
iments. This shows that our results are really meaningful.
However, our method is more general and considers more
parameters.

In the field of new computer technology it is very diffi-
cult and risky to make any predictions for the future. But
if we assume that the bandwidthbw is increasing by 40 %
each year and the latency timetl is decreasing by only 8 %
per year (like they did during the last years), the presented
models can be used to predict the performance of index
structures in the future. Here we give some results for disk
systems expected to be available in five years and compare
them with results of todays disk systems.

In Figure 6a) and in Figure 6b) the results of experiments
are shown where only the latency timetl and bandwithbw
is changed. By comparing the two figures it can be seen
that bitmaps will get superior in comparison to trees for
more than 2 dimensions. Figure 6b) and Figure 6d) show
the results for query box dimensions and query box size for
todays disk systems and for disks available in 5 years. In
this example, it can be seen that the bitmaps gain advan-
tages over the tree based indexing techniques with the use
of future disks, too. Other results show the same tendency.
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Figure 6: Results of experiments
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Table 2: Parameter sets for experiments
Name Set name Set of different values

Dimensions D f1; 2; 3; 4; 5; 6; 7; 8; 9g
Tuples T f106; 3 � 106; 107; � � � ; 3 � 1010g

Cardinality C f3; 10; 100; 103; 104; 105; 106; 107g
Query box size Qs f10�8; 3 � 10�8; 10�7; � � � ; 10�3g

Query box
dimensions

Qd f1; 2; 3; 4; 5; 6; 7; 8; 9g
Block size [KB] B f2; 4; 8; 16g

Scale factor SF f1; 2; 3g
Latency time BW today: 6 ms, in 5 years: 4 ms
Bandwidth Tl today: 11 MB/sec, in 5 years: 60 MB/sec

6 Summary & Outlook

In the field of data warehouses fast access to large amounts
of data is crucial. Many index structures support fast access
to OLTP data, but perform poorly in read-mostly environ-
ments when aggregated data over large sets of data has to
be calculated. We have presented a framework to compare
different index structures for the use in a data warehouse
environment. The framework has been applied to compare
four different index structures depending on nine param-
eters. We have shown that all parameters influence the re-
sults and therefore should be taken into account when com-
paring index structures. In addition, we have shown that
due to changes in disk technology, bitmap indexing tech-
niques will probably outperform the traditional tree based
index structures in the future.
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