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Abstract

Data warehouses are used to store large amounts
of data. This data is often used for On-Line An-
alytical Processing (OLAP). Short response times
are essential for on-line decision support. Com-
mon approaches to reach this goal in read-mostly
environments are the precomputation of material-
ized views and the use of index structures. In this
paper, a framework is presented to evaluate dif-
ferent index structures analytically depending on
nine parameters for the use in a data warehouse
environment. The framework is applied to four
different index structures to evaluate which struc-
ture works best for range queries. We show that
all parameters influence the performance. Addi-
tionally, we show why bitmap index structures use
modern disks better than traditional tree structures
and why bitmaps will supplant the tree based in-
dex structures in the future.
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use different access paths to support fast access to multi-
dimensional data [OQ97]. One of the most popular mul-
tidimensional index structures is thietree [Gut84]. Dur-
ing the last 15 years many scientists improved Hh&ree
resulting in structures like thé&*-tree [BKSS90], STR-
tree [GLE97], packed R-tree[RL85], Hilbert R-tree and
[IK94]. In case of range queries on aggregated data, the
R;-tree proved to be a promising structure [JL98]. How-
ever, tree structures have one drawback. It is a well-known
fact that tree structures degenerate when the number of
dimensions is increased. Usually in data warehouse and
OLAP applications many dimensions have to be consid-
ered. Another class of index structures, the bitmap indexes,
try to overcome the problem to generate when the number
of dimensions is increased by storing the data of each di-
mension separately and allowing fast access to the dimen-
sions that are needed to answer certain queries. Bitmap
indexing techniques are implemented in some commer-
cial available database management systems (e. g. from In-
formix [Inf97] and Sybase [Syb97]). The question arises as
to which structure is best suited for certain applications.

In this paper a new framework is described to support
the comparison of different index structures. Most inves-
tigations of index structures only consider one or two pa-
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I . rameters. However, the performance of index structures
Data warehou.s_e and OLAP apphca'gong differ Very.mUChdepends on many different parameters. Here, we concen-
from the traditional database applications. Traditional

datab tems are OLTP oriented and fow t Itrate on a set of nine different parameters to compare index
atabase systems are oriented and access Tew PGy v ,res used for a database management system. The
for read/write access at the same time. In data warehou

Yramework is applied to investigate four different index

ggfs'rg]? (;T;;t;‘r??e?g‘?: d“jgg;ﬁ; dnif'csl'qoar;]zl;z??rr;:rnedf(l)?égsiructures. Two tree based index structures and two bitmap
is possible to materialize views in advance [GHRU97] andé ructures_ are used to evqluate WhI.Ch md_ex §tructure works

best for given range queries. Our investigations show that
The copyright of this paper belongs to the paper’s authors. Permission toa” pre_sented parameters influence the per_fom_]ance of the
copy without fee all or part of this material is granted provided that the US€d index structures. We show that taking just one or
two dimensions into account is not sufficient for a thorough
comparison of different indexing techniques. Furthermore,
we show that bitmap index techniques will outperform the
tree based index structures in many cases with future disk
technology.

The rest of the paper is organized as follows: Section 2
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defines the used parameters that influence the performantzthe PISA model [JL99]. In the following, uniformly dis-

of index structures. Section 3 explains the framework andributed data is assumed. The models for the bitmaps are
defines the rules of how the high dimensional data is agnot affected by other distributions of data.

gregated to two-dimensional data. In Section 4, four dif-

ferent index structures are modeled, and it is shown how.2 Query specific parameters

these structures are applied in the framework. Section
describes the experiments and results of the application o
the framework. The last section summarizes the approac
and gives an outlook.

uery specific parameters hold information about the
ueries processed by the system. In our approach we con-
entrate on range queries. Point queries can be expressed as
range queries with query box sige = 0. In order to have

only scalar values as parameters, we assume range queries
2 Input parameters that can be described with the two scalar values:

There are nine parameters which influence the performance ] ] o

of index structures. We group them into four different cat- QUery box size. The size of the query box is given propor-
egories: data specific, query specific, system specific, and  tionate to the size of the data space and is denoted by

disk specific parameters. First we describe the different s (0 < ¢s < 1). Avalue ofg, = 0.04 means that the
groups with their parameters. query box fills 4 percent of the data space.

Query box dimensions. The query box dimension param-
eterg, denotes the number of attributes occurring in a
Data specific parameters describe the data that has to be given range query. Assume a five dimensional index

2.1 Data specific parameters

indexed. The three important parameters are: is built (d = 5), but the query is only restricted to two
dimensions. In this casg; is set to2. The size of
. . . . . L
Number of dimensions. The dimensionalityl € N of the the query box in the firsg; dimensions is; = g, i

data denotes the number of attributes. This parame- 5, a1 1 < ; < g4 The size of the query box in
ter is important for the performance of a system. For the remaﬁing_dimensions will be set @t = 1 for

the task of indexing eight dimensional data a differ- all g; < i < d. This means there are no restrictions
ent structure is better suited than for indexing one or or predicat_es in the remaining dimensions. Assum-
two-dimensional data. ing that the size of the query box is = 0.04 and
the query box dimensions ig; = 2 the shape of the
query box is calculated with the above given rule as
g =(0.2,0.2,1,1,1). This limits the model to certain
shapes of query boxes, but it allows the model to work
with scalar values as input parameters.

Number of stored tuples. The numbert of tuples influ-
ences the performance of different structures. In
[JL98] it is shown that theR”-tree improves in com-
parison with theR*-tree if the number of indexed tu-
ples is increased.

Cardinality of data space. The cardinality of the range of It is assumed that the positions of the query boxes are
an attributer is the number of different values an at- uniformly distributed over the data space.
tribute may have. It is obvious that for attributes like
gender, where there are at most three possible values3 System specific parameters

(male, female, NULL) different index structures are gystem specific parameters are parameters that can be cho-
better than for attributes like social security number orggp, by the database administrator (DBA) of a system. We
telephone number, where the attributes may have milyssyme that the DBMS has its own access to the disk sys-

lions of different values. In the following, we assume tem and does not use the 1/O functions of the operating
that each attribute can hawelifferent real numbers in system:

the range of0, 1). It is assumed that the attribute car-
dinality is the same in all dimensions. This assump-BJocksize. The blocksizé € N is the number of bytes that
tion makes the model simple and can be relaxed later s read with one disk access.
to make the experiments more realistic. The cardinal-
ity of the range of thg'th attribute is denoted hy;. Scale factor. Due to the fact that the access time, and not
the available disk space, is the limiting factor, redun-
Another parameter may be the distribution type of data dancy of stored data is accepted in order to be more
(e.g.normally distributed or uniformly distributed data). time efficient. This is especially true in the context of
To keep the framework simple, this parameter is not con- data warehouses where materialized views occupy a
sidered here, but the framework can easily be extended to large portion of disk space. The more data is materi-
take the actual distribution of data into account. Inthis case  alized the more queries can be answered without ac-
the models for the tree structures can be changed according cessing base data and the faster the systems are. Some
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index structures have the same property that they carandom block. In five years, this factor will probably be
trade space and time. In this approach we use bitmajncreased to 36 to 72. One could argue that by this time
indexes that aréime optimal under given space con- index structures will only be of limited use, because se-
straints Here, more space is added to the bitmap in-quential scans will be faster for most queries than the use
dexes than space is occupied by the investigated treef index structures. This is true if the amount of data is kept
structures. E. g. a scale factorgff= 2 means thatthe fixed. But the capacity of disks (and the amount of stored
bitmaps can occupy twice the space used by the treeslata) is increasing even faster than the bandwidth. There-
fore, the time for scanning a whole disk will increase, and
2.4 Disk specific parameters it will still be necessary to index the data. However, the
Index structures are usually not stored in main memoryindex structures in the future have to be better according

but in the secondary memory and have to be read frontuo the_changed parameters than s'gructur_es L_Jsed today._The
secondary memory and transfered into main memory. “gescnbed frame_work supports the mvestl_gatlon as t_o which
contrast to many approaches that compare index structuré'%dex structure is best suited for a certain application and
and only count the number of external 1/Os and neglect th@'Ven Parameters.

fact that blocks can be read sequentially much faster tha

reading blocks randomly, we take this fact into account ané% The Framework

model it. Here the behavior of disks are modeled by twoin the following section, a framework is described to com-
parameters: pare different index structures in respect to all parameters.

Bandwidth. The bandwidthbw of a disk is the speed 3.1 Configuration
[MB/s] in which the disk can read data and transfer ) .
it into main memory. Due to the fact that the disks Grouping t'he above defined parameters together, we get a
are getting (physically) smaller and the data is stored’€Ctor Of nine scalar parameters
more densely on the disks, this speed increases by ap- e = (d,t,c,qs, qa, b, sf, bw, t) ©)
proximately 40 % per year [BG98], [PK98].
] ] ~ to characterize a certain experimental setup. We call a spe-
Latency time. The second parameter is the average tim&fic vectore a configuration There is one dependency
the read/write heads need to get to a certain positiofepyeen the parameters. The number of dimensions of the
and to start reading the desired data. This time is theja13 space must be greater than or equal to the number of
latency time/; of a disk system. On average, thisis the §imensions in that the query box is restricted. In the rest
SeekTime+RotationTime/2. This parameter dependgy ihe paper, we will consider only configurations in which
mainly on the rotation speed of the disk. The rota-qd < d
tion speed does not increase with the same rate as the or gach parameter a set of values is defined. E.g.for
bandwithbw. It increases only by approximately 8% o blocksize, a set of values is defined Bs =

per year [BG98], [PK98]. {2048,4096, 8192, 16384}. For the other parameters, sets

From the bandwidtlbw and the blocksizé, the time are defined S'm""?“'y af‘d d_enote_d by capitalized letters.
The set of all configurations is defined as

t, for one sequential access can be calculated as the time

for reading and transferring one block of data into main E ={(d,t,c,qs,qa,b, sf, bw, t;) €
memory DxTxCxQsxQqxBxSFxBW xTy|qq <d}
t, b (1) In the following experiments the parameteéts andt; are

Cbw assumed to be constant for one experiment. For each index

The timet, for a random block access is calculated as thedtructure that has to be investigated a function is needed, to
time for bringing the read/write head to a certain position€Stimate the time used for processing a given range query
plus the time to read one block of data and transferring ifOr & given configuration. Assumingndex structures have

into main memory to be investigateds different functionst; : E — R,i €
{1,---,s} have to be defined to estimate the time that is
b needed to process a query with a given configuration.

t;(e) = time for processing range query
The fact that the bandwidtbhw is increasing much faster
than the latency time, is decreasing, widens the gap be-
tween a sequential and a random access. With todaydaving defined thes functions, the framework works in
(1999) disks it is (with a reasonable large block size) terthe following way. The two parametebs) andt; are as-
to twenty times faster to read a sequential block than aumed to be fixed for one experiment and for each structure

in configuration e with index structure i
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The results of the two other approaches are just a little bit
different from thesumaggregation method. Therefore, and

7d| R-Tree 7d| Ra-tree 7| S 7d| oot because of space limitations, the other approaches are not
bitmap bitmap further presented here.
hl{ h{ h{ ”41 4 Application of the framework to compare
sum

four index structures

2d 2d| 2d 2d|

To show how the framework works, the framework is ap-

plied to compare different index structures. The space used
\\~, ‘% and the timet; used for processing a range query by each

index structure is computed.

2d

4.1 Estimators for the tree based index structures

Here, we calculate the space needed for building up a tree
Figure 1: Framework for sum aggregation based index structure. Due to the fact that there are many

a seven dimensional cube is built using the above definethore leaf nodes than inner nodes (inner nodes occupy less
functionst,. In each cell, the time that is needed to procesghan 2 % in our experiments) we consider only leaf nodes.
arange query for a given configuration is stored. Seven diThe number of leaf nodes is the same for structures that use
mensional data is difficult to visualize. Therefore, the severfggregated data and for structures that neglect aggregates in
dimensional data is mapped to two-dimensional data by ughe inner node_s.
ing aggregation functions. The aggregate functicswum The space (in bytes) used by one entry of a leaf node de-
min, max count andmediancan be used. Due to space pends on the cardinality of the attributgsand the number
limitations only thesumaggregation is discussed here. of dimensions! that have to be stored. In addition, there

has to be a pointer (TID) to the data itself.

3.2 Sum aggregation
Y1 log, ¢ N

Figure 1 shows how the sum aggregation works. For each Sdata = 4 (5)
of the s different seven dimensional data cubes, a two- pointer

dimensional data cube is generated by applying the aggre- )
gation functiorsum Two dimensions have to be selected in 1"€ maximum fanout of data pages depends on the chosen

which the data should be projected. Assume that the nunf2/0cksizeb and on the size of the data entri€s... The
ber of dimensionsl and blocksize are kept fixed. The bigger the blocksize, the more data entries can be stored on

aggregation is done by functions, i € {1, -- , s} each block. The exact quantity .., is calculated by
b
hi(d',b") = ti(d,t,c,qs,q4,b, sf, bw, t M :{ J 6
( ) ) Z ( s 0, Cy (s, 4d, 75f, w, l) data Sdata ()

(eeE)A(d=d")A(b=b")
The number of data nod@é (leaf nodes) that are necessary

to store all data entries can be calculated as the quotient

The sumfunction calculates the average case, because thg the number of tuples that have to be indexed and the
number of cases is equal for all index structures. From the,umber of data entries that fit into one block

s two-dimensional data cubes one two-dimensional cube

Smin 1S computed which gives the number of the index N = [ ¢ -‘ @)
structure with the smallest value. Functiep;, : D x Mata
B — {1,---,s} has to satisfy the following condition:

Here we assume that all nodes are filled with the maximum
, fanout. This can be achieved if a bottom-up structure like
Vie{l,--+ s}:hy . g (d,b) < hi(d,V 4 :
ied s} min (@) ) < hil ) @ the STR-tree [GLE97] or packed R-tree [RL85] is used.
Functions likemin or maxcan be used similarly. If the Under the assumption that the points are uniformly dis-
user is very optimistic, she may use then function. If  tributed over the data space, the average length of a data
the user is very pessimistic, tneaxfunction should be ap- rectangler is given by (cf. [JL99])

plied. 1
Two other aggregation approaches are investigated. In T= d—\/ﬁ’ 8

one approach, the data is aggregated by counting the num-
ber of cases in which each index structure is the besin the rest of the paper, the GRID Model with uniformly
(fastest) one. Another approach is to calculate the mediamlistributed data as described in [JL99] is used. The number
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query box query box

2
1 1
\ \ :
s 4
54 \4 3
(4,18) N 36) W)
36 2 5 4
0 0 54 1 3 4°5
0 1 0 1
a) Without use of aggregatetd) With use of aggregated (count, sum)
data data
Figure 2:d = 2, N = 64, andr = % Figure 3: Aggregated data in index structure
of pages that have to be accessed on leaf node level can é‘tOf. leaf n(;JQes that have to be accessed wiggregated
calculated as atais usedis
d ) 1 Ea - Ew - Ec (12)
Ew:Hmin{qT]—l—l,:} (9) _ o _
i r r The time estimation for the tree with useagfgregatediata
is the product of the number of accessed pages and the time
where the query box is expressed as a tuple= for each random block access
(¢1,¢2,- - ,qq) @s described before.
In Figure 2a), there are 64 data nodes assumed to be t2(e) = Eqtr (13)

uniformly distributed over the two-dimensional data space . . .
1 The two time estimators; andt¢, are used in the frame-

[0,1)%. Therefore, the length of one rectangleis:= & _ ) : _ .
The rectangle; represents the query bax= (0.5,0.5). work to estimate the time for a given configuration to pro-

All gray shaded rectangles in Figure 2a) represent leaf€Ss a query if uniformly distributed data is assumed.
nodes that have to be accessed when an index structure like ) , , , .

the STR-tree is used. In Figure 2a), these are 16 blocké-2 Estimators for bitmap indexing techniques

The pages on the leaf node level are stored in random ordéfirst we present the general idea of bitmap indexing and
on the disk. In the best case, they are stored according tshow how space and time can be traded. Assume there is
one dimension or according to a space filling curve [IK94].a columnz in a relational DBMS with 6 different values
These savings decrease dramatically when the number &fom 0 to 5. The traditional bitmaps generate one bitmap
dimensions increases. We assume that the blocks are ngéctor (B, — B;) for each of the 6 different values as shown
ordered. For each page access to disk, one random accegsTable 1. If the value of: is set to 3, the corresponding

is necessary. The time estimationfor the treewithout  bit in vector B; is set to 1. Otherwise the bit is set to 0.
aggregated data is the number of necessary page accesJess index structure has the great disadvantage, that one

multiplied by the time used for one random access bitmap vector is necessary for each valuecofTherefore,
this structure can only be used for attributes that have only
ti(e) = Eyt, (10)  few different extensions.

The next two index structures that are used for the ap-

The idea of aggregated data in the inner nodes of an indexjication of the framework are equality and range encoded
structure is described in detail in [JL98]. The inner ”Odesoitmap indexes. In this example equality encoded bitmap
store in addition to the reference to its successors some agyqexes convert the value ofin a number system with base
gregated data about their successors (count and sum in thisyf the first and base 2 of the second digit= 2 x y + 2,
example, cf. Figure 3). If aggregated data is used, there iﬁ/herey is represented bjgl, B!, Bt andz is represented

no access necessary to rectangles completely contained WB? andBY (cf. Table 1). Range encoded bitmaps are op-

the query box. This number is calculated by timized for range queries. They can be calculated from the
p equality encoded indexes B, = B;_, A B!. In [CI98],
E, = H max {QTJ _ 1,0} (11)  the authors show h0\_/v time anq space are traded_ in detail.
i They focus on four different points of this trade: time op-

timal, space optimal, “knee”, and time optimal under given
All pages that contain data that is completely contained irspace constraint. Here we concentratetiome optimal
the query box do not have to be accessed. In the exampldtmap indexes under a given space constraiotcompare
in Figure 2b), access to four blocks is saved. The numbethe bitmap structures with tree structures, we assume that
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value traditional bitmap equality encoded range encoded
Bs B, By B, Bl B, | B B BY|B® BY|B, B |B
1 0 O 0 O 1 of O 0 1] 1 0 1 1] 0
3 0 O 1 0O 0O oY O 1 0| 1 0 1 0] 0
0 0O O 0O 0 0 1 0 0 110 1 1 1|1
5 1 0 0 0 0 0 1 0 0 1 0 0 0 0
4 0 1 0 0 0 0 1 0 0 0 1 0 0 1
2 0 O 0 1 0 0} 0 1 0| O 1 1 0] 1
. . . . .
Yy z
Table 1: Different bitmap indexing techniques
the space constraint depends on the space the tree struc-
ture needs to store the data multiplied by scale fagfor (1) n;=0
First the size of each bitmap vector (e.By.) is calculated. (2) repeat
The number of blocks needed to store one bitmap vectoris | (3) nj =mn;+1
given by (4) bj = [M;/n;] +1
(5) rj = (M; +nj)mod n;
v = %W (14) (6) until b (b; 1) > ¢y

Figure 4: Equality encoded Calculation of base for bitmap
Let M denote the number of bitmap vectors that can bendexes for given\/; andc;
stored by the system. In this model it is assumed, that the
space for bitmap vectors is proportional to the space needed
by tree structures. Thereforg/ will be set dependent on

the blocks allocated by the tree structure and a scale factor (1) n;=0
sf, which is one of the input parameters of our model. (2) repeat
(3) n; =n; + 1
N (4) bj = [M;/n;] +1
M = | —sf (15) (5) r; = (M; +nj)mod n;
v . AP
(6) until (bj +1)79b;" 7" > ¢

The space constraint/ is given for all dimensions to-
gether. We have now to split thigobal M down into sep-
arate)M; for each dimension with_7_, M; < M. This

Figure 5: Range encoded calculation of base for bitmap
indexes for givenl/; andc;

split is done weighted by the differeat. each dimension is given by
log c; L b — 1 bas e bus
My = | M2 (16) <bji =L b m Lbie b > (A7)
> j=1log ¢ nji =T rji

The M;’s can be used to calculate the base of the encodelih the rest of the paper, the base is denoted as
bitmap indexes in each dimension. Note that in our exam-

ples thec; will all have the same value, but this can not be < bj1, b2, s bjn,; >
assumed in general. For equality and range encoded bitma )
indexing techniques we get different structures. Thereforef O €xampleb,; denotes the base of the third component
we have to distinguish between the two bitmap indexing®f the second attribute.

techniques. Having thaf; andc; at hand, the bases of the  If range encoded bitmap indexing techniques are used,
index can be calculated as shown in Figure 4. the base of the index is calculated by the algorithm in Fig-

For an equality encoded bitmap index, the algorithm toUré 5- The algorithmin Figure 5 has to be executed for each
calculate the base is sketched in Figure 4. This algorithrd» 1 < J < d. The base in each dimension is given by

has to be performed for eaghte {1,--- ,d}. An additional
optimization step (not shown here), improves the perfor- < M’M > (19)

mance of the bitmap index structures[CI98]. The base in ni—ri ri

(18)
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With the given bases for the equality and range encoded The parameters for the disk are chosen, as using a Sea-
bitmap indexes it is possible to estimate the time neededate Cheetah 18. The latency timeis set to 6 ms and
by both structures. The number of bitmaps that have to béhe bandwithhw is set to 11 MB/sec [PK98]. In Figure 6a)
scanned for a specific configuration according to [C198] isthe number of dimensiong and the attribute cardinality
¢ are compared. It can be seen that for more than 2 to 3
4 nj dimensions the bitmaps are better than the tree structures.
E. = Z Z B, If the attribute cardinality is increased, it is faster to take
j=1i=1 the equality encoded bitmap index than the range encoded
L B R A UL bkt
i 1 . otherwise quety S1013 are compared. ffonly
one or two attributes occur in the range query, the bitmap
indexes outperform the trees. If the query box is very small
The details can be found in [CI198]. From the number of(nearly a point query) aggregated data in inner nodes of the
bitmap vectors that have to be scanned and the size of tHeees can not be used and the tree without aggregated data
bitmap vectors in blocks the time estimate for the equalworks most efficient. When the query box size is increased,
ity encoded bitmap index is calculated. The first block of athe tree with aggregated data becomes superior. For very
vector needs a random block access, the remainingac-  large query boxes, the range encoded bitmap works best.
cesses can be read sequentially if the blocks of each bitmap

vector are stored sequentially In Figure 6e) the blocksiziand the number of dimen-
. sionsd are compared. As expected, the trees have some
ts(e) = (tr + (v = 1)ts) Ee (20) advantages when the blocksizés increased because big-

If range encoded bitmap indexing technique is used, thger blocks yield in a higher fanout and therefore in less ran-

number of bitmap vectors that have to be scanned is givefilOM block accesses. In Figure 6f) the scale fagfoand
by the number of dimensionéis varied. As in the Figure 6e),

the bitmaps become faster with an increasing number of di-
(nj —r;)(b; — 1) rib; mensions. A large scale factgf favors the range encoded
! )

(21)  bitmap index in comparison to the equality encoded bitmap
index. Generally speaking, the range encoded index seems
. . to be better than the equality encoded index. In[CI98]
The time to execute one range query with range encodeé: T
. S e authors came to the same results with different exper-
bitmap vectors is given by . . .
iments. This shows that our results are really meaningful.
ta(e) = (t + (v — )t E (22) However, our method is more general and considers more
parameters.
The estimatorgs andt¢, are used to estimate the time the

different bitmap indexing techniques need to access the |n the field of new computer technology it is very diffi-
data. Together with the functions andt, this setof func- ¢yt and risky to make any predictions for the future. But

Er:ZQ<

= j bj +1

tions provides the base data for the framework. if we assume that the bandwidkhy is increasing by 40 %
. each year and the latency tityds decreasing by only 8 %
5 Experiments and Results per year (like they did during the last years), the presented

In this section results of experiments where the framewor#nodels can be used to predict the performance of index
has been applied are presented. In the following experiStructures in the future. Here we give some results for disk
ments the bandwidthw and the latency time; are set ~SyStems expected to be available in five years and compare
to fixed values. The remaining seven parameters are vafbem with results of todays disk systems.

ied and all possible combinations of the sets in Table 2 are

considered (under the constraipt < d). This yields in In Figure 6a) and in Figure 6b) the results of experiments
475.200 different combinations for each index structureare shown where only the latency tieand bandwittbw

For each of these combinations the four functionare  is changed. By comparing the two figures it can be seen
evaluated. Then the framework is applied as described ithat bitmaps will get superior in comparison to trees for
Chapter 4. There ar@(’g;l) = 21 different possibilities more than 2 dimensions. Figure 6b) and Figure 6d) show
how to aggregate the seven dimensional space into a twdhe results for query box dimensions and query box size for
dimensional space. Due to space limitations only four twotodays disk systems and for disks available in 5 years. In
dimensional results are presented here for todays disk sy$his example, it can be seen that the bitmaps gain advan-
tems and two results for disk system as expected in fivéages over the tree based indexing techniques with the use
years are shown. of future disks, too. Other results show the same tendency.
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Dimensions Dimensions

A A

Ol x| *|*|*x]|*x|X|Xx]|X Ol x| *|*|*x|*x|X|X]|X

Bl x| *|*|*x]|*x|X|X]|X Bl x| x| *|*x|*x|X|X]|X
TIx|*|*x|*x]|*x|X|X]|X TlIx|*| x| x| x| X|X]|X

Bl x| *|*|*x]|*x|*x|X]|X Bl x| *|*|*x|*x|*x|X]|X
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Figure 6: Results of experiments
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Table 2: Parameter sets for experiments

Query box

dimensions
Block size [KB] B {2,4,8,16}

Scale factor SF {1,2,3}

Name Set name| Set of different values
Dimensions D {1,2,3,4,5,6,7,8,9}

Tuples T {10%,3 % 105,107, --- ,3 % 10'°}
Cardinality C {3,10,100,10%,10%,10°,10%,107}

Query box size Qs {107%,3%1078,1077,--- , 1073}
Qa {1,2,3,4,5,6,7,8,9}

Latency time BW today: 6 ms, in 5 years: 4 ms
Bandwidth T; today: 11 MB/sec, in 5 years: 60 MB/sec
6 Summary & Outlook [GHRU97] Himanshu Gupta, Venky Harinaryan, Anand

In the field of data warehouses fast access to large amounts

of data is crucial. Many index structures support fast access

to OLTP data, but perform poorly in read-mostly environ-

ments when aggregated data over large sets of data has to

be calculated. We have presented a framework to compar LE97]
different index structures for the use in a data warehous
environment. The framework has been applied to compare

four different index structures depending on nine param-

eters. We have shown that all parameters influence the re-

sults and therefore should be taken into account when com-
paring index structures. In addition, we have shown that

due to changes in disk technology, bitmap indexing teCh[Gut84]
niques will probably outperform the traditional tree based

index structures in the future.
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