
Brainlets: "instant" Semantic Web applications

Giovanni Tummarello, Christian Morbidoni, Michele Nucci, Onofrio Panzarino

SeMedia group, Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni,
Università Politecnica delle Marche, via Breccie Bianche, 60100 Ancona

g.tummrello@gmail.com, c.morbidoni@deit.univpm.it, mik.nuc-
ci@gmail.com

Abstract
In this paper we present the "Brainlet" paradigm, a way to create rich
Semantic Web user interfaces and interaction environments. Brainlets
are half way between configuration files and light scripts and are "exe-
cuted" by the DBin rich Semantic Web Platform. The main motivation
behind Brainlets is enabling domain experts, rather than programmers,
to create rich Semantic Web environments and communities. Brainlets
can in fact be created simply by XML configuration files and XML
based scripts along with the proper ontologies. Advanced Brainlets can
be created based on the internal DBin API and/or the Eclipse Rich
Client platform API. Brainlets are distributed as plug-ins and enable
user communities, providing a common 'vision' of the domain and tools,
to collectively create and exploit rich Semantic Web datasets.

1. Introduction
A fundamental design goal of the DBin rich Semantic Web platform [1] has been the
ability to enable domain experts, rather than Semantic Web programmers and hackers,
to independently start user communities about any topic of choice. We obtain this re-
sult with the definition of a scripting/configuration framework which enables the cre-
ation of rich Semantic Web interaction environments using tools such as XML and
OWL editors. Such environments, which an end user might even perceive as a full fea-
tured domain specific applications, are named Brainlet. This paper illustrates their cre-
ation process and features.

Brainlet are distributed to the users as plug-ins (e.g. posted on a web page), thus en-
abling communities to share a common vision of the domain and a set of tools to col-
lectively create and exploit rich Semantic Web datasets. In order to understand the
need for the features offered by the Brainlet paradigm, lets first address the question:
in which way one can create a 'community' of 'Semantic Web users' ?

Traditional Internet user aggregation channels such as IRC, newsgroups and web
forums make it rather straightforward to create user communities but interactions
among users are limited to textual messages. Finding information on such channels is,
in the best scenario, only possible trough textual search, structured data is not
tractable.

On the other hand, the goal of Semantic Web based user communities - supported
by the DBin platform - is to enable the cooperative creation and exploitation of se-

mailto:g.tummrello@gmail.com
mailto:mik.nucci@gmail.com
mailto:mik.nucci@gmail.com
mailto:c.morbidoni@deit.univpm.it

mantically structured knowledge bases. It is clear how a standard message board is a
very simple subset of the possibilities enabled by such Semantic Web communities.

In this paper we assume that issues such as metadata exchange algorithm and trust
based filtering are, among others, solved by the facilities which the DBin platform in-
cludes. These are the RDFGrowth [2] P2P algorithm, providing topic based metadata
exchange channels, and the RDF Digital Signature methodology [3].

In this condition, Semantic Web communities startup basically boils down to create
domain specific user interfaces which shields the users of the communities from com-
plexities and at the same time provides domain specific browsing, editing and query-
ing tools.

Providing a generic semantic web GUI is all but a trivial task; a lot of approaches
have been proposed recently, among which [4], [5], [6], [7], [8]. While pro and cons
can be argued for each specific solution, it is clear that user interface issues are com-
plex ones and that it will be very difficult to think about a single solution that can be
as usable as ad hoc ones for each specific domain. Aware of this, we propose an ap-
proach based on the aggregation of simple, generic components coordinated in a do-
main specific way by a mix of XML/OWL and scripting technologies.

2. DBin and background scenario

A typical use of DBin might be similar to that of popular file sharing programs, the
purpose however being completely different. While usual P2P applications “grow” the
local availability of data, DBin grows RDF knowledge. Once a user enters a metadata
exchange channel, RDF annotations just start flowing in and out “piece by piece”.

For example, a user who expresses interest in a particular topic (say “Beers” as in
DBin demo group) will keep a DBin open, possibly minimized, connected with a re-
lated P2P knowledge exchange channel where relevant information bits will be col-
lected from and exchanged with other participants. Such information bits might be
pure metadata annotations (e.g. “the alcoholic content of beer X is Y”) but also ad-
vanced annotations containing pointers to rich media (e.g. a picture of the glass, a
PDF document, a Wikipedia page etc..).

With the support of the proper Brainlet, the user could then browse, reply or further
annotate such information bits either for personal use or to contribute to the group
knowledge. If such replies include attachment data (e.g. a picture), DBin automatically
takes care of the needed web publishing using services such as that offered at
http://public.dbin.org . At database level, the information is stored in DBin as RDF;
At the user level, however, the common operations and views are grouped in domain
specific user interfaces, the Brainlets. The installation of a specific Brainlet (e.g. tar-
geted to the Beer domain), is not necessary to connect to the group and receive infor-
mation but it enables users to visualize and edit such domain specific annotations,
which, without proper domain knowledge and settings, are only 'row' triples in the DB.

3. Brainlets: creation, configuration and scripting

Brainlets are plug-ins (technically Eclipse Rich Client Platform [9] compliant plug-
ins) that can be installed into the DBin platform simply copying a file in a proper di-

rectory. When a user selects a metadata exchange channel the remote server might
suggest the use of a specific Brainlet to best experience the information contained in
the group and participate in the annotation. Such suggestion is made by whoever creat-
ed the group, very likely but not necessarily, the same person who created the Brain-
let. Figure 1 shows an actual runtime screen-shot.

Brainlets are composed of XML, OWL ontologies and scripts. As an overview,
they contain:
• The ontologies to be used for annotations in the domain (e.g. The beer ontology);
• A general GUI layout: which components to visualize (e.g. A message board, an

ontology browser, a “detail” view) and how they are cascaded in terms of selec-
tion/reaction;

• Templates for domain specific “annotations”, e.g. a “Movie” Brainlet might have
a “review” template that users fill. This allow a “reviews” view to have useful or-
derings based on the known fields in the review. The GUI for the templates is gen-
erated automatically;

• Templates for readily available, “pre-cooked” domain queries, which are struc-
turally complex domain queries with only a few simple free parameters, e.g. “give
me the name of the cinema where the best movie of genre X is being shown
tonight”;

• A suggested trust model and information filtering rules for the domain. e.g. public
keys of well known “founding members” or authorities, preset “browsing levels”;

• A script for guiding the user in creating new URIs for domain resources, e.g. in-
serting a new "beer" in the DB.

• Scripts connected to Brainlet specific menus or buttons and that implement domain
specific functions;

• Support material, customized icons, help files etc..
• Supporting Java code and libraries;
• A basic RDF knowledge package, conforming to the information shared in a spe-

cific group.

Figure 1: Joining a metadata exchange channel (right window) offered by a RDF-
Growth server (left window) in the DBin platform. In this case the server suggests the
user to download a specific Brainlet to better interact with the knowledge exchanged.

Almost all of these elements are optional in a Brainlet. Figure 2 shows a typical
runtime view of the Beer2Beer Brainlet (http://www.dbin.org/brainlets/beer2beer). A
Semantic Web Research Brainlet, which demonstrates how the DBin platform can nat-
urally handle completely different domains of interest, is available at http://www.d-
bin.org/brainlets/swbrainlet. The following sections are concerned with how the spe-
cific features and aspects listed above can be configured.

3.1. From Eclipse plug-in to Brainlet
To create a Brainlet, it is necessary to fill a given empty template which configures an
eclipse plug-in. To append a new "Brainlet" to the list of those known by DBin, one
have to add the following XML in the standard eclipse plugin.xml file:
<extension point="org.dbin.gui.brainlet.core.xmlbrainlet">

<brainlet perspectiveID="org.dbin.gui.brainlet.beer" file="brainlet/beer.xml"/>
</extension>

Other configuration options in the plugin.xml will include the invocation and posi-
tioning of any desired DBin predefined basic views such as the Navigator (section
3.2), annotations, gallery etc..

3.2. Brainlet configuration in detail
Let's now see the content of the beer.xml file, the main Brainlet configuration which
has been specified in the previous section as an attribute of the org.dbin.gui.brain-
let.core.xmlbrainlet entry point.

A Brainlet has a name, a version, a URI identifying it, usually pointing at the Brain-
let download location (to be used in the dialog show in Figure 1), and other basic in-
formation, specified as attributes of the XML corresponding element. The following is
the declaration for the Beer-to-Beer Brainlet:

<Brainlet name="Beer2Beer" author="Onofrio Panzarino" version="1.0"
 uri="http://dbin.org/brainlets/beer2beer#" banner="Targeted to beer's fans.

Figure 2 A screen shot of the Beer2Beer Brainlet running. The principal “views”
are: an ontology (and instances) browsing Navigator, the Knowledge Agents view,
showing statistics about the currently running knowledge agents, and a set of “An-
notation” views.

Join to learn and share your knowledge about your favorite beers.">

Ontologies and base domain knowledge
First step in creating a new Brainlet is the choice of appropriate ontologies to capture
the concepts of the target domain. Once existing ontologies have been identified and,
if needed, new ones have been developed, the corresponding OWL files are usually in-
cluded and shipped in the Brainlet itself, although they could be placed on the Web.
Each of them will be declared in the XML file, specifying the location of the OWL
file, a unique name for the ontology and it's base namespace:
<Ontology file="brainlet/ontologies/beer.owl" name="beer"

base="http://www.purl.org/net/ontology/beer#"/>
<Ontology file="brainlet/ontologies/BeerAnnotations.owl"

name="beer_annotations" base="http://dbin.org/beer#"/>
A Brainlet might need some background RDF data, a starting knowledge base

shared by every client using the same Brainlet. The following line cause an RDF file
to be installed into DBin:
<Data file="brainlet/rdfdata/beer.rdf" base=""/>

Tree based navigation of domain resources: the main Navigator
The way concepts and instances are presented and browsed is crucial to the usability
of the interface and the effectiveness in finding relevant information. Graph based vi-
sualizers are notably problematic when dealing with a relevant number of resources.
For this reason, the solution that the main DBin Navigator provides is based on flexi-
ble and dynamic tree structures. Such approach can be seen to scale very well with re-
spect to the number of resources, e.g. in Brainlets such as the SW Research one
(http://www.dbin.org/brainlets/swbrainlet/).

The peculiarity of the approach is that every Brainlet creator can decide which is
the 'relation' between each tree item and its children by the use of scripts or semantic
web queries (in DBin these are currently expressed in SeRQL syntax [10], but support
for other query languages is likely to be provided in future versions). The basic use of
such facility is to provide an ontology based navigation. Creating a tree branch by
which a class hierarchy based navigation of Beers is as simple as:
<Topic name="Beers by Type" uri="http://www.purl.org/net/ontology/beer#Beer">

<Child query="SELECT X FROM {X} serql:directSubClassOf {$parent}
 WHERE X != $parent">

 <Child subjectBy="serql:directType” icon="/icons/beer.gif"/>
</Child>

 <Child subjectBy="serql:directType" icon="/icons/beer.gif"/>
</Topic>
Each Topic has an associated URI (in this case that of the base class "Beer"), that is
every tree conceptually starts from an RDF resource. Topic children are then recur-
sively defined by the results of queries involving the parent resource. In the case of a
first level Child, the parent resource will be the resource associated to the entailing
Topic. There can be multiple topic branches configured in the Navigator. For example
a "Beers by Brewery" branch is configured as follows:
<Topic name="Beers by Brewery" uri="http://www.purl.org/.../beer#Region">

<Child query="SELECT X FROM {X} rdf:type {$parent} WHERE X != $parent">
 <Child subjectBy="http://www.purl.org/net/ontology/beer#brewedBy"/>
</Child>

</Topic>

Note that, of course, different conceptual paths can lead to the very same resource.
Figure 3a shows a run time screen-shot of a Brainlet configured with the Navigator
Topics that have been just illustrated.

Selection flow across Brainlets parts
At user interface level, as shown in Figure 2, a Brainlet is composed by a set of 'view
parts' (as they're called in Eclipse parlor). Usually, each part takes a resource as a main
"focus" and shows distinct aspects of the same RDF knowledge 'around' this resource.
The Simple Annotations view, for example (Figure 3b), shows the outgoing and in-
coming RDF statements surrounding the selected RDF node.

As mentioned, the Brainlet creator decides the configurations of the standard view
so to have a personalized title, icon, position and so on. Selection flows are also
scripted at this point; it is possible to establish the precise cause effect chain by which
selecting an icon on a view will cause other views to change. This is a powerful way to
customize the flow of information within the user interface. Let's consider the follow-
ing XML code:
<View id="GUEDNavigator" title="Beers Navigator"

icon="icons/nav.gif" selectorFor="main" listenTo="main" />
<View id="Annotations" listenTo="main" selectorFor="annotation" />
<View id="Content" title="Details"

listenTo="annotation" selectorFor="annotationContent,main" />
<View id="SimpleAnnotationsView"

listenTo="main" selectorFor="annotationContent" />
Using the attributes 'listenTo' and 'selectorFor', views act both as listeners or as no-

tifiers of "Selection Managers". A view is listener of a selection manager when it will
change its content when the manager notifies the change of URI and is a "selector" for
a manager when some user action within the view itself will cause the manager to
change its selected URI. Many "selection manager" can be created to support the in-
formation flow logic within the Brainlet.

Assisted querying tools
Within a specific domain there are often some queries that are frequently used to ful-
fill relevant use cases. Continuing our "Beer" example, such a query could be “find
beers [stronger|lighter] than X degrees”. The "precooked queries" facility gives the
Brainlet creators the ability to provide such "fill in the blanks" queries to end users.

Figure 3: a) The simple annotation view shows the properties of the selected re-
source (left figure). b) A navigator view generated by the configuration shown above.
The instance of a beer can be reached following different paths, by type or by brew-
ery(right figure).

Precooked queries can also be scripts stored in Java classes methods or executed via
an interpreter. Here is an example of a Precooked Query:
<PrecookedQuery label="Beer Strength"

 message="All beer with alcoholic content greater or lesser than $degree"
 query="SELECT * FROM {X} rdf:type {beer:Beer}; beer:hasAlcoholicStrength {Y}

 WHERE Y $operator $degree" USING NAMESPACES
 beer = http://www.purl.org/net/ontology/beer#
 clipboardQuery="CONSTRUCT {X} rdf:type {dbin:SemClipBoardUri}
 FROM {X} rdf:type {beer:Beer}; beer:hasAlcoholicStrength {Y}

 WHERE Y $operator $degree USING NAMESPACS
 dbin = http://dbin.org/dbinont.owl#,

 beer = http://www.purl.org/net/ontology/beer#" >
<Variable name="$operator" legalValues="<,>" defaultValue=">" />
<Variable name="$degree" />

</PrecookedQuery>
In this configuration fragment, a precooked query named "Beer Strength" will show

the user a human readable query and allow to chose the operator (< or > , default val-
ue >) and a variable value. Such inputs will be used both in a select query, used to find
the elements and display them as a table, and in a construct query, used to construct a
Semantic Clipboard content.

The Semantic Clipboard is another element that a Brainlet creator might chose to
make visible and serves as a temporary graph where the user can put content which
can be then passed to other visualizers (e.g. the map viewer as shown below) or exter-
nal applications by serializing its content to the system clipboard.

Note that a precooked query might link concepts from different domains, and dif-
ferent Brainlets. Suppose to have a Beer Brainlet and a Pub Brainlet. A precooked
query as 'Find all the pubs serving beer X which does not contain ingredient Y' is a
cross domain query and obviously would only work once sufficient knowledge has
been extracted from the two groups.

Domain specific annotations
Brainlets assist the users in creating simple annotations, that is in linking resources
with properties. Ontology based wizards suggest both the properties that are applica-
ble to the given resource and instances that are currently known to the database and
that are of a kind appropriate for a selected property.

A Brainlet creator can however also chose to create "complex annotation types" us-
ing a specially defined OWL ontology. An example of such complex annotations is
the "Beer Comparison" annotations, which directly compare beers stating which one is
better or worse and why. Upon selecting "Add advanced annotation" in DBin the sys-

Figure 4: Advanced annotations are defined in OWL and auto generate property
visualization and editing interfaces.

tem determines which advanced annotations can be applied to the specified resource
and provides a wizard as shown in Figure 4.

Identifier assignment facilities
In our scenario each user is entitled to add new concepts into a knowledge base that is
shared within a P2P group. A methodology is needed to make so that different per-
sons, independently adding the same concept (e.g. a particular beer: Peroni Light) into
the system, will choose, with a reasonable probability, the same URI to identify it. It is
evident that this is necessary for the annotations about Peroni Light to be exchanged
among peers, as well as to avoid duplication of concepts. A possible solution might be
that of suggesting the user to visit a web site (e.g. RateBeer.com), chosen from the
Brainlet creator, where a web page referring to Peroni Light can be found, and to use
the relative URL to identify the concept.

Depending on the type of instance one is adding (a beer, a book, a movie...), differ-
ent methodologies could be thought to create (or find) a proper URI. In the case of a
well known concept in a particular domain, for example, we can assume that every-
body would reasonably refer to it using the same word, and we can build a new URI
with this word as fragment identifier. Note that such procedures does not ensure that
different users will end up with the same URI, but still can work in a lot of cases.
Within a Brainlet it is possible to define a set of URIWizards, basically scripts that im-
plement a given procedure and guide the user in creating a URI, and to assign them to
a class. Once instance of this class is being inserted these scripts are activated provid-
ing the user with a graphic wizard, as shown in Figure 5 .

An XML example configuration is given:
<Class uri="http://www.purl.org/net/ontology/beer#Beer">

<FromUrlWizard label="Create a new beer from RateBeer.com (recommended)">
 <Message content="Click below, search for your beer

Then copy its URL in the URL field."/>
 <Website>http://www.ratebeer.com/Search.asp</Website>
 <UrlPrefix>http://www.ratebeer.com/Beer/</UrlPrefix>
</FromUrlWizard>

 <FromPropertiesWizard label="Create a new homemade beer instance">
<Property label="Label" prefix="$useruri:HomemadeBeer:"

uri="http://www.w3.org/2000/01/rdf-schema#label"/>
 </FromPropertiesWizard>
</Class>

Domain specific script inclusion
In developing DBin we encountered the need to implement some actions which, in a
sense, are outside of the scope of the platform itself but yet are needed in order to pro-

Figure 5: Choosing to insert a new instance of beer the user is prompted with a
wizard and can choose different procedures to create a URI.

vide functionalities for the user to experience the power of underlaying semantic
knowledge.

For example we wanted the user to be able to organize a pubs tour, choosing a list
of pubs (e.g. using precooked queries to find the pubs that serve a particular beer) and
automatically calculating the optimal order of pubs to be visited. This is a very specif-
ic task and we didn't want to modify the platform architecture in order to solve this
kind of problems. On the other hand, the solution imply solving a traveling salesman
problem, so a simple graph query it is not enough, a real algorithm is needed. Our
'light' approach is to address these kind of requirements using scripts, the execution of
which, thanks to the flexibility of Eclipse RCP, can be easily integrated into the user
interface, e.g. pressing a button. DBin accommodate a module supporting BeanShell
[11] scripting language. In Figure 6, one sees a button that has been added by a Brain-
let specific configuration of the Map View (a view supporting geo-tagging based on
the Google-Earth [12] service). Such button is connected to a BeanShell script that
performs the evaluation of the optimal pub tour based on an implementation of a (sim-
ple) traveling salesman heuristic.

4. Conclusions

In this paper we introduced the concept of domain specific Semantic Web applications
created using a combination of ontologies, and XML configuration and scripting.
Brainlets are a key concept in enabling the creation of Semantic Web Communities in
DBin, a full round semantic web platform. We think however that the Brainlet
paradigm could be applied to any other semantic web application based on the avail-
ability of an underlying SW Database. This could include, in the future, web based
Brainlets players capable of providing similarly rich user interfaces over the Web.

While starting a "Semantic Web community" by creating a Brainlet is certainly
much more complex than creating a IRC channel or installing a web forum, in our ex-
perience domain experts with knowledge of the OWL language have consistently man-
aged to learn all the basic principles, create and deploy their first Brainlets within
hours or less. To the best of our knowledge there are no projects directly related to the

Figure 6: Optimal pub tour around the WWW2006 conference site. A "precooked
query" is executed so that certain pubs are selected. The Traveling Pubman script is
then invoked to highlight the optimal tour.

ability to create Semantic Web access environments which can be compared to the
Brainlet paradigm. The idea of a rich client for the Semantic Web has been developed
in the Haystack project [13] resulting in a general purpose, monolithic interface.
Differently, Brainlets are intended to be powerful user interfaces which can be script-
ed and 'shaped' on a particular domain. The Piggy Bank project [14] enables light
HTML scraping scripts to be installed with ease, so it has, in some sense, a similar
philosophy. Also from the MIT Simile initiative, the Fresnel [15] ontology can be
used to create "data views" called "lenses" which facilitate the automatic creation of
presentation and editing data forms. As such feature are in fact likely to be beneficial
to better allow customizations of data presentation, a Fresnel aware Brainlet engine is
among the future works.

Brainlets as fostering of social aggregation around Ontologies and data
representation practices
When a Brainlet is plugged into DBin, the ontologies that it requires will be installed
and used. This simple mechanism, seems to induce a pragmatic, socially based model
for ontological agreement, a notably tough problem in Semantic Web research. In
fact, as users gather around popular Brainlets for their topic of choice, the respective
suggested ontologies and data representation practices will form an increasingly im-
portant reality. If someone decided to create a new Brainlet or, in general, a Semantic
Web application targeting the same user group as the said popular Brainlet, it is clear
that there would be incentive in using identical or somehow compatible data structures
and ontologies.

While this is probably the case for the use of ontologies on the Semantic Web in
general, such effect is expected to be easy to spot in the real of Brainlets, given how
such paradigm immensely lower the barrier by which a domain expert can turn an idea
into a full featured domain specific cooperative Semantic Web application.

References
[1] "DBin project" http://www.dbin.org
[2] G. Tummarello, C. Morbidoni, J. Petersson, P. Puliti, F. Piazza , "RDFGrowth, a P2P annotation ex-
change algorithm for scalable Semantic Web applications" 2004 First P2PKM Workshop, Boston
[3] G. Tummarello, C. Morbidoni, P. Puliti, F. Piazza , "Signing individual fragments of an RDF graph"
2005 WWW2005, poster track
[4] R. Albertoni, A. Bertone, M. De Martino , "Semantic Web and Information Visualization" 2004 Pro-
ceedings of the First Italian Workshop on Semantic Web Applications and Perspectives, Ancona (ITALY)
[5] "RDF Gravity - RDF Graph Visualization Tool" Technical Report: HPL-2004-57
[6] E Pietriga , "Isaviz: a visual environment for browsing and authoring rdf models " 2002 11th Interna-
tional World Wide Web Conference
[7] "RDFX" Technical Report: HPL-2004-57
[8] Welkin, a graph-based RDF visualizer, , 2004, http://simile.mit.edu/welkin/
[9] Eclipse Rich Client Platform, , , http://www.eclipse.org/rcp/
[10] Jeen Broekstra, Arjohn Kampman , "SeRQL: An RDF Query and Transformation Language" 2004
ISWC 2004, Hiroshima, Japan
[11] BeanShel: Lightweight Scripting for Java, , , http://www.beanshell.org/
[12] Google Earth, , , http://earth.google.com/
[13] Quan, Dennis and Karger, David R , "How to Make a Semantic Web Browser" 2004 In Proceedings
International WWW Conference, New York, USA
[14] D. Huynh, S. Mazzocchi, D. Karger, "Piggy Bank: Experience the Semantic Web Inside Your Web
Browser" 2005 proceedings of the ISWC 2005
[15] "Fresnel - Display Vocabulary for RDF" 2005

	1. Introduction
	2. DBin and background scenario
	3. Brainlets: creation, configuration and scripting
	3.1. From Eclipse plug-in to Brainlet
	3.2. Brainlet configuration in detail

	4. Conclusions

