ISIM 2006 April 25 - 26, 2006, Czech Republic

Web Services Customization : A Composition Based Approach

Yacine Sam, Omar Boucelma *
{yacine.sam, omar.boucelma}@lsis.org

Mohand-Said Hacid **

mshacid@liris.cnrs.fr

Abstract In order to fulfill current customers requirements, companies and services providers
need to supply a large panel of their products and services. This situation has led recently to the
Mass Customizing Paradigm, meaning that products and services should be designed in such a
way that makes it possible to deliver and adapt different configurations. The increasing number of
services available on the Web, together with the heterogeneity of Web audiences, are among the
main reasons that motivate the adoption of this paradigm to Web services technology.

In this paper we describe a solution that allows automatic customization of Web services: a supplier
configuration, published in a services repository, is automatically translated into another configu-
ration that is better suitable for fulfilling customers’ needs.

Keywords: Web service, semantic Web, Web services composition, Mass Customizing Paradigm.

1 Introduction

The Web is not only an enormous warehouse of text and images, its evolution made it also a
services provider [13]. The Web service concept refers to an application advertised over the In-
ternet and made accessible to services requesters through standard Internet protocols. Currently
available examples of Web services are weather forecasting, online tickets reservation, bank-
ing services, etc. Globally, Web services are defined as well defined, loosely coupled software
components and constitute therefore a new paradigm for applications integration [4].

Web services are currently implemented through three standard technologies: WSDL [21],
UDDI [19] and SOAP [17]. These standards provide only syntactical interoperability that pre-
vents agents for automating services discovery, selection and composition tasks. The semantic
Web provides standards for representing and processing computer-interpretable information [5].
Semantic Web services are then a synthesis of these two standards and constitutes therefore a
good proposal for the automation of the various tasks of Web services life cycle.

Semantic Web services descriptions relay on Web services annotations with terms having
a formal description in structured dictionaries called ontologies. DAML+OIL [6] is a logic
based language intended to the description of the most known Web services. It is used directly
or through DAML-S [1]. DAML-S is a DAML+OIL concepts ontology describing technical
aspects of Web services (Inputs/Outputs parameters, data types, etc). OWL [14], an evolution
of DAML+OIL, was recently standardized by the W3C. OWL is now the main standard for
Web ontologies descriptions and OWL-S is the corresponding evolution of DAML-S.

Other languages represent interesting solutions for automatic Web services discovery, se-
lection and composition. One can quote GOLOG [9] and LARKS (Language for Advertising

* LSIS-CNRS Université Aix-Marseille 3. 13397 Marseille Cedex 20, France.
** LIRIS-CNRS Université Claude Bernard Lyon 1. 69622 Villeurbanne cedex, France.

157

and Requesting for Knowledge Sharing) [18]. The latter is a frame based language for semantic
Web services discovery and selection. The former is a Situation Calculus Language and was
adapted in [12] for Web services composition.

In this article, we will adapt LARKS in order to elaborate a Web services customization
framework. Mass Customization Paradigm [8] is a principle which considers that the products
must be conceived in such a way that make it possible to satisfy a maximum of different clients’
needs. Exponential proliferation of services provided through the Web and the cosmopolitan
aspect of the Web users justify the Mass Customization Paradigm for Web services.

We propose a framework that allows the automatic customization of Web services. The ba-
sic idea is to automatically transform services published in the services directories in order to
generate suitable configurations for answering client needs. The goal of the automatic transfor-
mation, based mainly on the dynamic composition of Web services, is twofold. On one hand,
the construction task of a given service becomes easier for the providers. On the other hand, the
requesters will be able to obtain services in the alternatives that can satisfy their preferences,
even if those are not explicitly present in the services directory. Thus, services providers publish
explicitly only one configuration of a given service, the others are deduced, from the services
directory, dynamically and in an automatic way at the requesting time.

The rest of this article is organized as follows: we provide, in Section 2, a motivating ex-
ample that illustrates customer requirements for customizable Web services. Section 3 presents
LARKS and its use for advertising and requesting for Web services. In Section 4, we develop our
approach to Web Services customization. We initially propose a new structure for semantic Web
services which allows, contrary to LARKS, to take account the services customization idea. We
describe then the Web Services matchmaking process, and finally the automatic Web services
customization algorithm. We conclude and give future directions in Section 5.

2 Motivating Example

Each year, "La Féte de la lumiere” (Light Celebrates) is the most important traditional popular
demonstration in Lyon (a French town). Before traveling to Lyon, a Japanese tourist wants to
obtain information about the available Hotels there and their fees. Thus, he sends his request
to a Web directory which stores this information in a Web services form, expecting for Web
services that can satisfy his informational needs.

After the request processing, the services directory seems to be unable to satisfy the infor-
mation required by the japanese customer. Indeed, the services turned over describe Hotels in
French with their fees in Euro. This makes them useless for the customer, which understands
only the Japanese language and uses the local currency : Yen. The fundamental report through
this scenario is that the customer is not satisfied because the requested Web service exists in the
directory in an incompatible configuration compared to its needs.

The framework we propose allows transformation of Web services. The basic principle of
the Web service transformation consists in dynamically calling two intermediate Web services.
The first will translate the Hotels descriptions from French to Japanese and the second will
transform the fees from Euro to Yen. The answer to the Japanese customer request will then be
built by the coordination of these two intermediate services and the service initially available in
the directory. The following section introduces the LARKS language.

158

3 Larks Language

LARKS is an advertising and requesting language for Web services. In LARKS, services and
requests are both specified in the form of a frame. The frame’s attributes are described hereafter:

— Context : it represents a keyword describing what the service does.

— Types : definition of the abstract data types used in the specification.

— Input/Output : declaration of the Input/Output variables of the service.

Context and Input/Output attributes can be annotated by machine-interpretable concepts
stored in the attribute ConcDescription.

— InConstraints/OutConstraints : logical constraints on the Inputs/Outputs. These constraints
can be restrictions on the Inputs/Outputs values or logical constraints between the service
Inputs/Outputs.

— ConcDescripton : formal description of the concepts being used for the semantic annotation
of the context and the Inputs/Outputs of the services. The association of a concept C to a
word (Context or Input/Output) w is noted w*C, which means that the concept C is the for-
mal description of the word w. The use of formal ontologies in LARKS makes it possible to
semantically describe the Web services. Ontologies can be described formally with concept
languages like ITL [3], LOOM [11], or KIF [2].

— TextDescription : textual description of the service requester needs or what can offer a
service provider.

In LARKS, the constraints are used to restrict the values of an Input/Output. However, the
assignment of a measuring unit to an Input/Output can only be specified by semantic annotations
using extensional formal concepts. Extensional concepts are sets of instances (objects) used,
in this case, to capture the set of Input/Output’s measuring units. During the Web Services
matchmaking process in LARKS, the comparison of the two different concepts EURO and YEN
(See Figure 2) leads directly to failure. Indeed, no knowledge is available to capture that these
two concepts can be convertible. Consequently, no Web services transformation is possible in
this language. In what follows, we propose a new Web services structure which constitutes
the foundation of their customization process. It allows in particular the services directory to
detect, during the matchmaking process, that two concepts (measuring units) can be convertible
by another service. This fact avoids the immediate failure of the matchmaking process as it is
in LARKS. In the rest of this article, the term service if used solely means a service offered by a
service provider. The service requested by the customer is designed by the term request.

4 Our Approach to Web Services Customization

4.1 A New Structure for Web Services

The structure suggested in this article is used to specify both the services and the requests. It is
made up of two subsystems : the Structural System, and the Constraints System.

4.1.1 The Structural System (SS)

The SS is defined by the triplet (C, I, 0). C is the context of the specification, it is defined
by a keyword related to the specified service. I and O are respectively the description of the
Input/Output variables and their abstract data types in a service or in a request. In Figure 1,
the abstract data type of the attribute price, that represents the price of a book, is Real in the

159

Output of the service specification. The keywords of the triplet (C, I, O) can be annotated by
formal concepts defined in an ontology, which we consider to be shared between all the users
of a specific domain.

Exemple 1 Figure 1 illustrates the SS of a books-sale service. It is described by its context
"Book” and its Inputs/Outputs "your-book”/(" Price”, "presentation”). The Output parameters
"Price” and "Presentation” are annotated by the concepts Price and Description respectively.

C|Book
I |Your-Book:String
O|Price*Price:Real, Presentation*Description:String

Figure 1: A Structural System Example.

The formal concepts Price and Description — see Figure 2 — are used to assign types to the
Web service Inputs/Outputs Price and Presentation respectively. By the Inputs/Outputs’ types
we do not mean the abstract data types (Integer, Real, etc), but the measuring units used to
express the values of the Inputs/Outputs in the domain ontology. In Figure 1, the measuring unit
of the Output Price is defined by the concept Price which corresponds to a set of currencies :
Dollar(USD), Euro(EUR) and Yen(YEN) in the ontology.

Price = Money

Money = (and Real (all in-currency aset(USD, EUR, YEN)))

Euro = (and Real (all in-currency aset(EUR)))

Yen = (and Real (all in-currency aset(YEN)))

Dollar = (and Real (all in-currency aset(USD)))

Description = Language

Language = (and String (all in-currency aset(English, French, Japanese)))
Japanese = (and String (all in-currency aset(japanese)

French = (and String (all in-currency aset(French)

Figure 2: Examples of formal concepts defined in ITL language

Note that the fact that the concept Price contains several measuring units can seem inconsis-
tent since an attribute value can only have one measuring unit at time. However, the annotation
with this kind of concepts (sets of measuring units) is used only for one partial services match-
making that determinates the services likely able to satisfy the request. There is a second services
matchmaking stage where only services being effectively able to satisfy it will be selected.

4.1.2 The Constraints System (CS)

The CS§ allows the specification of two kinds of constraints : constraints on the values of the
Inputs/Outputs and constraints on their types in the domain ontology (typing constraints). The
CS is defined by the quadruplet (I;, Oy, I, O.,) where the elements are sets of constraints on
the Inputs types, Outputs types, Inputs values and Outputs values respectively.

160

Our main interest in this article is the Web services customization. Thus, we focus on the
typing constraints that make it possible to specify the measuring units of the services specifi-
cations Inputs/Outputs values. The typing constraints can be regarded as the specialization of
the concepts used at the time of semantic annotation level of the SS. The role of the typing
constraints is to specify by exactly one type (measuring unit) each Input/Output. The following
example illustrates this. According to Figure 2, the concept Price is equivalent to the con-
cept Money which is an extensional concept containing sets of currencies. If the user(service
provider) wants his service fees in a particular currency unit, an additional knowledge must be
added to the service specification. Thus, he must annotate his request (service) in the CS with
a more specialized concept than Price. It can be for example the concept Yen if the user wants
his service fees in Yen (or the concept Euro if the provider can offer his service in Euro).

Context|Hotel

I [Location : String

O |PricexPrice : Real,
Presentation«Description : String
Price=Euro

price = EURO Iy
Description = French fc;

O. |Description=French

Figure 3: Typing Constraints

Figure 4: Our Web services motivating ex-
ample

Figure 3 shows two typing constraints that a requester/provider can specify in the CS cor-
responding to the SS in Figure 1. With such constraints, the requester/provider can offer the
necessary details on the values of the service Inputs/Outputs, i.e., in only one measuring unit.
Figure 4 is an hotel-informational service corresponding to our motivating example. It is illus-
trated using our new structure for Web services.

4.2 Web Services Matchmaking Process

In our service structure, the Web services matchmaking process works in two steps and consists
in determining if the customer’s request can be satisfied by the services advertised in a services
directory. During the first step, the software module of the directory in charge of the matchmak-
ing process compares syntactically the keywords describing the request triplet (C, I, O) with
the triplets (C”, I’, O'), of each available service in the directory, and semantically the possibly
associated concepts.

A service is considered to be able to answer to a request if its context and Inputs/Outputs
are similar to those of the request with a similarity threshold that can be defined within the
directory. At the end of this step, a set of services likely to be able to satisfy the customer
request is selected.

The second step dependents on the success of the matchmaking process during the first
step, i.e., the first step must return at least one service in order to pass to the second step of the
matchmaking process. This second step consists in the comparison of the CS of the request and
the CS of the selected services in the first step. This step also comprises two stages : initially

161

the comparison of the Inputs/Outputs typing constraints, then the comparison of their values
constraints. We will illustrate in what follows the matchmaking process of Inputs/Outputs typ-
ing constraints. The matchmaking of Inputs/Outputs values constraints can be performed by
constraints satisfaction algorithms [10].

If all the Inputs/Outputs types of the request and those of a service have similar measuring
units, then there is no conflict and the matchmaking process continuous with their Input/Output
values constraints. If at least an Input/Output has two different measuring units in the request
and in a service, then a typing conflict appears. The typing conflict between a request’s In-
put/Output and a service’s Input/Output means that the service cannot answer directly to the
request of the customer. However, that does not draw aside definitively this service, because it
may happen that the conflict can be solved. We introduce in what follows the definition of a
typing conflict after the definition of the Cover Axiom notion.

Définition 1 (Cover axiom) Let A, A,, ..., A, be a set of formal concepts. A cover axiom is an
assertion of the form A := A1 V Ay V ...V A,,, which means that the concepts Ay, Ay, ..., A,
are the all sub-concepts of the concept A.

The cover axiom represents knowledge allowing the distinction between the concepts being
able to cause typing conflicts and the other ones. An axiom is associated with each extensional
concept being able to cause a conflict in the domain ontology. In the example of Figure 1, the
concept Price (equivalent to the concept Money) can constitute the head of one cover axiom,
because the price of a product can be specified in several different currencies. Thus, we will
have the axiom Money := FUROV YENV ... V DOLLAR.

Définition 2 (Typing conflict) Let C be a set of concepts described in an ontology, x,vy, z three
extensional concepts defined in C, and the two constraints:

x = Yy (Request typing constraint)

T = z (Service typing constraint)

Ify#zAN(3ceC | yCcAzLC¢) and ifthere is a cover axiomc :=yV ... V z then there
is a conflict due to the difference between the measuring units of the Input/Output x in the
request and in the service.

When conflicts between a request and a service are detected, the process of retrieving some
services able to solve them starts. The semantics of a conflict resolution is the transformation
of the Web service configuration available in the directory toward that required by the service
requester. It is what we will discuss in the following Section.

4.3 Web Services Customization Process

The matchmaking process between a request and a service can reveal several typing conflicts
between their Inputs/Outputs. We use the Web services composition as a mean for conflicts
resolution. In other words, we propose a mechanism for the transformation of the advertised
services in order to be compatible with the requirements of the services requesters.

To fulfill the services customization, our approach exploits services able to solve only one
conflict. In order to obtain the context (keyword) for the conflict resolution service, we define
a set of rules called Context Association Rules. Thus, for each domain ontology, a set of rules
is defined and stored in the services directory — one rule for each concept that can generate a
typing conflict between the various users in the domain.

162

Définition 3 (Context Association Rule) A Context Association Rule is a two arguments pred-
icate symbol ConflictResolution(Concept, Context). "Concept” is a variable representing ex-
tensional concepis defined in a domain ontology and belong to the head of one cover axiom.
"Context” is a variable intended to receive the context of the conflict resolution service.

A typing conflict is induced by the difference between two concepts both subsumed by the
same concept appearing in the first argument of one ConflictResolution predicate. The two
concepts in conflict are recovered from the annotation concepts of the same Input/Output in a
request and in a service.

Exemple 2 Figure 5 illustrates two context association rules in relation to the ontology of Fig-
ure 2. The first rule associates the concept Money to the keyword (context) of the currency
conflict resolution service : ConversionMoney. The second associates the concept Language to
the keyword of presentation-language conflict resolution service: Translation.

ConflictResolution(Money, ConversionMoney)
ConflictResolution(Language, Translation)

Figure 5: Context Association rules

The context of the service to call in order to solve an Input/Output typing conflict is extracted
by exploring the context association rules. Indeed, the predicate ”ConflictResolution” having
as first argument the concept causing the conflict and as second argument a variable indicating
the name of the conflict resolution service, will be sent to the set of context association rules.
The context of the conflict resolution service is determined by the substitution of the variable
Context by a keyword (context) appearing in one of the context association rules (see Figure 5).
This is done through the terms unification algorithm [15]. The Inputs/Outputs of the conflicts
resolution services, are obtained following two cases, whether the conflict relates to an Input or
to an Output. When a conflict occurs between the Input of a request and the one of a service s,
the Input of the conflict resolution service is the Inputs of the service s, and its Output is the
Inputs of the request. If the conflict is caused by the Output of a request and that of a service s,
the Input of the service to be called takes the Outputs of the service s, and its Output takes the
Outputs of the request.

The service to be called will convert the values of the Inputs/Outputs of the original service
in order to make them comparable with those of the request. The values of the Inputs/Outputs
to convert will be transmitted to the conflicts resolution services in the service invocation phase.
From there, the values of the Inputs/Outputs of the request and that of the service will be com-
parable (in the same measuring unit). This unables the continuation of the matchmaking process
with the verification of the non-contradiction of the Inputs/Outputs values constraints of the re-
quest and the service initially in conflict. The Inputs/Outputs values constraints matchmaking
makes it possible to select the services, effectively, able to answer the customer request. Because
of space constraint, we can’t give our Web services customization algorithm in this article. It is
detailed in [16] where all its steps are illustrated with the motivating example of Section 2.

5 Conclusion and Future Work

In order to be able to provide products in a more and more global market, companies must vary
their products according to the customers requirements. To achieve this, they must change their

163

providing paradigm from products intended for the great mass of customers [20] to customiz-
able products. This new paradigm is called Mass Customizing Paradigm [7].

We adopted this paradigm to Web services in order to be able to automatically satisfy the
customer requirements in terms of customizable Web services, while avoiding to the services
providers the heavy task consisting to build for each customer his own configuration. Our ap-
proach, currently under development, will be used for Web services customization in a services
directory. Also, it can play the role of a substitution services system if within a combination of
services, the Outputs of a service 7 are not compatible with the Inputs of a service ¢ + 1. Thus
the services composition will not fail because of a simple incompatibility between two services
when one follow the other in a composition.

Bibliography

1. M. H. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, D. V. McDermott, S. A. Mcllraith,
S. Narayanan, M. Paolucci, T. R. Payne, and K. P. Sycara. Daml-s: Web service description for
the semantic web. In Horrocks and Hendler [5], pages 348-363.
M. R. Genesereth. Knowledge interchange format. In KR, pages 599-600, 1991.
N. Guarino. A concise presentation of itl. In PDK, pages 141-160, 1991.
G. Hohpe. Web services: Pathway to a Service Oriented Architecture. Thought Works, Inc., 2002.
I. Horrocks and J. A. Hendler, editors. The Semantic Web - ISWC 2002, First International Semantic
Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings, volume 2342 of Lecture Notes in
Computer Science. Springer, 2002.
6. I. Horrocks, P. E Patel-Schneider, and F. van Harmelen. Reviewing the design of daml+oil: An
ontology language for the semantic web. In AAAI/IAAI, pages 792-797, 2002.
7. B. 1. P. Il and S. Davis. Mass Customization: The New Frontier in Business Competition. Harvard
Business School Press.
8. J. Kovse, T. Harder, and N. Ritter. Supporting mass customomization by generating adjusted repos-
itories for product configuration. In CAD, pages 17-26, 2002.
9. H. J. Levesque, R. Reiter, Y. Lespérance, E Lin, and R. B. Scherl. Golog: A logic programming
language for dynamic domains. J. Log. Program., 31(1-3):59-83, 1997.
10. C. Liu and I. T. Foster. A constraint language approach to matchmaking. In RIDE, pages 7-14,
2004.
11. R. M. MacGregor. Inside the loom description classifier. SIGART Bulletin, 2(3):88-92, 1991.
12. S. A. Mcllraith and T. C. Son. Adapting golog for composition of semantic web services. In KR,
pages 482-496, 2002.
13. S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems, 16(2):46—
53, 2001.
14. OWL. http://www.w3.org/TR/owl-features/.
15. J. A. Robinson. A machine oriented logic based on the resolution principle. J.ACM, 12(1):23-41,
1965.
16. Y. SAM. [’Incohérence dans I'Appariement de Services Web : Détection et Résolution. Master 2
Recherche. http://www.lsis.org/~samy/master.pdf, 2005.
17. SOAP. http://www.w3.org/TR/soap/.
18. K. P. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among heterogeneous
software agents in cyberspace. Autonomous Agents and Multi-Agent Systems, 5(2):173-203, 2002.
19. UDDIL. http://uddi.org/pubs/uddi_v3.htm.
20. Y. Umeda, A. Nonomura, and T. Tomiyama. Study on life-cycle design for the post mass production
paradigm. Al EDAM, 14(2):149-161, 2000.
21. WSDL. http://www.w3.org/TR/wsdl/.

I PN

164

