ISIM 2006 April 25 - 26, 2006, Czech Republic

Software Quality Metamodel for Requirement, Evaluation and
Assessment

. . *
Iwona Dubielewicz
Iwona.Dubielewicz@pwr.wroc.pl

Bogumita Hnatkowska "
Bogumila.Hnatkowska@pwr.wroc.pl

Zbigniew Huzar’
Zbigniew.Huzar@pwr.wroc.pl

. % i *
Lech Tuzinkiewicz

Lech.Tuzinkiewicz@pwr.wroc.pl

Abstract: Adequate quality of software is often crucial. Quality assurance as inseparable
aspect of the software lifecycle demands for a precise quality model. The paper proposes a
quality metamodel, which may be used to derive specific quality models necessary in
different activities of software development. Quality requirement, evaluation and assess-
ment models are considered in the paper. The metamodel expressed in the UML is based on
ISO quality standards.

Key Words: Software quality, quality requirement, quality evaluation, quality assessment

1 Introduction

Developing high quality software is of prime importance. Comprehensive and possibly
precise software specification is the first necessary condition to ensure adequate quality. Next,
the quality should be controlled within the software development process, and eventually the
quality of final software product should be evaluated and assessed.

Software quality is a subject of many software engineering recommendations, e.g., [11], and
especially of ISO standard series [1] — [8].

The aim of the paper is to give precise quality metamodel for software product, called
SQMREA. Instances of this metamodel are quality models that are to be applied in different
stages of software development. The metamodel is based on ISO standards and is expressed
in UML.

The reason of SQMREA is to enable assessment of quality levels of different artifacts
produced during software development, i.e. code, models, specifications, and the resulting
software product. The assessment can be done from different perspectives, i.e. from end-user
point of view (external perspective), and from developer point of view (internal perspective)
and can be partial, e.g. a single characteristic of the software product can be evaluated.

* Institute of Applied Informatics, Wroctaw University of Technology,
Wybrzeze Wyspianiskiego 27, 50-370 Wroctaw, Poland

115

The paper is organized as follows. Section 2 gives an overview of ISO quality model. In
Section 3 the software quality metamodel SQMREA is presented. Section 4, on the base of
simple examples, explains how a concrete quality models may be derived from the SQMREA
metamodel, and how the models may be used for evaluation, and assessment of software
product. Finally, Section 5 discusses presented proposals and compares them to current
literature.

2 Overview of quality models

Plato (427-347 BC) explained the notion of quality as an extent of perfection. The notion may
relate to a product or to a production process. Now, the ISO standard [7] defines quality of a
product as a totality of characteristics of an entity that bear on its ability to satisfy stated and
implied needs. This definition is different from that given in [9], where quality refers to the
satisfaction of requirements.

In the paper, we concentrate on the quality of a software product. The product may be defined
as a set of different artifacts, e.g., computer programs, procedures, documentation, data etc.

Comprehensive specification of software product quality is a starting point to quality evalua-
tion. The specification is based on user needs, usually informally expressed. The needs serve
as the basis for the formulation of requirements. A requirement is defined as a condition or
feature required by user to solve a problem or to reach specific goal [11]. The requirements
are expressed quantitatively through referring to values of software attributes, i.e. measurable
physical or abstract properties of the product.

The quality is categorized into three interrelated perspectives reflecting different stages in the
software lifecycle:

- quality in use represents a user point of view, and is derived from user needs,

- external quality represents a software developer point of view, and is based on
properties of a whole software product,

- internal quality also represents a software developer point of view, but is based on
properties of software product components or intermediate software products.

According to the perspectives, there are three quality models. Quality in use model is used for
software product validation. External and internal quality models are used for software
product verification. Internal quality model is used in the software development process, to
assess intermediate products, while external quality model is used to assess a final product.

A quality model consists of characteristics and relationships between them. Standard [1]
defines the following characteristics for internal and external quality models: functionality,
reliability, usability, efficiency, maintainability and portability. These characteristics may be
subdivided into multiple levels of sub-characteristics. For example, for usability, there are the
following normative sub-characteristics: understandability, learnability, operability, efficien-
cy, attractiveness and usability compliance.

Eventually, characteristics or sub-characteristics refer to software quality attributes. Some
attributes may contribute to more than one characteristic or sub-characteristic. There are two
kinds of attributes: structural and behavioral ones. Structural attributes are mainly used for
internal quality model while behavioral attributes are mainly used for external quality model.
The correlation between attributes used for internal and external models is usually determined
by experience and depends on the particular context in which the software is used.

For an agreed sub-characteristic a set of metrics as functions on attributes is given. Accept-
able ranges of the metrics specify recommended values of attributes.

116

In initial phases of software development user quality needs are specified. On the base of
them characteristics and metrics for internal and external quality models are selected. It is
recommended that metrics for internal quality model should be selected in such a way that
they enable prediction of values of metrics selected for external quality model. The problem
how to select a set of quality characteristics, and especially metrics, is outside the scope of the
paper.

3 SQMREA Metamodel

Our proposal for software quality metamodel for requirement, evaluation, and assessment is
shown on Fig. 1. The metamodel is presented as a UML class diagram with a set of OCL
constraints. The elements of the metamodel are divided into three parts placing in the center,
and left and right sides of the diagram. The central part relates to a quality model, the right
side relates to software quality requirement, and the left side relates to a quality of software
product evaluation and assessment.

ArtifactQualityLevel | , Artifact

i 0..1 ——— . (_7_/_7_,,—-1-:'/."
' SoftwareProduct ' +scope P
S . . oty
/ SPQualityLevel ——— L 0. o

18 ¥ i /

/ TR _y’_/»""’ T i
| Quality 0. | Need | /
e description
o L priority // ‘
QualityLev o 4. y
——— “\dsub | 1. o/ !
jassessFun() /-~ Characteristic Characteristic /
‘._}'_ \/’\ QualltyLeveI '0716771 descrij
N, "\{,,i e - 0..‘ |- /D
<<enumeration>> e 1.* ., Requirement
AssType M Requirement 0.* |description
non-acceptable N p{iobr_llt‘y
minina N . =t +derived
exceeding | MetricQualityLevel | - /,/'o__- R I T
i — |required | Vo L
|obtained PR e
g 1
_ 1.
Attribute =~
1.2
N i
r quality ™

perspectives of

| Different
|quality assessment

[Quality Metamodel ™ |assessment
Elements |

Fig. 1. SQMREA Metamodel

The central part of the diagram consists of Quality, Characteristic, Metric, and Attribute
metaclasses. The metaclasses and respective associations represent notions described in
Section 2.

Metrics are defined only for leaves of characteristic’s tree, which is expressed by the OCL
expression no 1:

117

context Characteristic inv: // no 1
not self.sub->isEmpty() implies self.metric->isEmpty ()

There are two additional associations related to Metric metaclass presented in Fig. 2, but not
presented in Fig. 1. They say that one metric can be defined in terms of others (role: reffered
to), and that one metric can be traced from others (role: elicitated).

1 |
5 *§+reffered to
T gy PR
——" Metric | *base
\ —o.*

‘ -

"o+ elicited

Fig. 2. Relationships between metrics

The middle part of SQMREA metamodel may be instantiated for a given purpose. Once
instantiated may serve as the base for many projects.

The right side part of the diagram consists of SofiwareProduct, Artefact, Need, and
Requirement metaclasses. These elements are subjects for quality assessment, and at the same
time they select characteristics and metrics for a quality model. Their instances are specific
for a given software product.

Each requirement is associated to at least one artifact of the software product, and at least one
characteristic of quality model. A requirement can be decomposed into other requirements.
The leaves of the requirement’s tree are associated with metrics by MetricQualityLevel
association class. These metrics are chosen from among the metrics defining the characteristic
the requirement belongs to, which is expressed by the OCL expression no 2:

context Characteristic inwv: // no 2

self.requirement .metric->forAll(m | self.metric->includes (m))
The elements of the left side part of the metamodel are used for quality evaluation and
assessment. The root element of that part is abstract QualityLevel metaclass, which can be
specialized for different elements:

- arequirement (RequirementQualityLevel),

- a characteristic (CharacteristicQualityLevel),
- an artifact (ArtifactQualityLevel),

- a whole software product (SPQualityLevel).

Each specialization of QualityLevel metaclass should provide its own assessment function
(assessFun). The function yields values of AssType, i.e. non-acceptable, minimal, target or
exceeding.

The clementary assessment (MetricQualityLevel) results from comparison of required and
obtained values of a metric associated with a given requirement. The values of the
assessment function for MetricQualityLevel arc arguments for assessment functions of
RequirementQualityLevel.

The values of the assessment function for RequirementQualityLevel are arguments for others
assessment functions, i.e. CharacteristicQualityLevel, ArtifactQualityLevel, SPQualityLevel.

118

The non-elementary assessment functions may take for example a form of weighted sum of
their arguments. In this case the metamodel may be extended to model different weights of
importance for different requirements, characteristics, items, etc.

4 Exemplary Model

The SQMREA metamodel may be instantiated in many ways. The main part of it is a quality
model. As it was explained in Sections 2, and 3, such models, once instantiated, may be
reused for many projects.

In the presented example only external quality perspective is considered, and the appropriate
quality model it is the same as in [1].

Let a text editor be the considered software product. First, we should express some needs,
addressed to our product. We limits to two needs: N1: Easy fo use; N2: Effective.

The needs are further refined by requirements. Each requirement is associated with quality
model characteristics, and some metrics. For example, N1 need is specified by R1 require-
ment: User friendly interface. The interpretation of this requirement is given by two metrics,
defined in [2], M1: Ease of function learning, and M2: Help frequency. This requirement
belongs to usability characteristic — see Table 1 for details.

Table 1. Exemplary SQMREA metamodel instantiation

SP Artifact Need Requirement/ | Characte- Metric Requirement
Sub- ristic Quality Level
requirement
Text | Executable |N1: Easyto |R1: User Usability | M1: Ease of function | Required: x < 1.5 min
editor | program | use friendly learning Obtained: x = 1.5 min
interface
M2: Help frequency |Required: x <3
Obtained: x =4.2
R2: Build-in M3: Help Required: x = 80 %
help dpeassibility Obtained: x = 70 %
N2: Effective |R3: Fast Efficiency | Not a leaf
/R3.1: Fast M4: Response time | Required: x < 1 min
document Obtained: x = 0.5 min
loading

The last column in the table 1 contain instances of MetricQualityLevel metaclass. For each
pair: requirement — metric two attributes should be defined. The first attribute — called
required — specifies the required level of a given metric for a given requirement. The value of
this attribute is usually defined as specification stage. The second attribute — called obtained —
is the result of the measurement process. The value of this attribute shows the measure of the
metric in the context of considered requirement.

To assess the quality of R1 requirement, first the quality of pairs R1-M1, and R1-M2 should
be evaluated.

The exemplary definitions of quality assessment function for the pairs R1-M1, and R1-M2 are
given in Table 2.

119

Table 2. Definition of assessment function for R1- M1, and R1-M2

Assessment function for R1-M1 Assessment function for R1-M2

Range of obtained value (x) | Assessment result Range of obtained value (x) | Assessment result
0<x<1.0 exceeding 0<x<0.1 exceeding
Io<x%< 15 target Dl s%i=3 target
1.5<x<2.0 minimal 3<x<5 minimal

20<x non-acceptable 5Ex non-acceptable

On the base of Tables 1 and 2 it is easy to check that pair R1-M1 is assessed as target, while
R1-M2 — as minimal.

Table 3 introduces exemplary definition of assessFun() for R1 requirement. The definitions
refer to assessment results of metrics associated with R1 requirement. The quality of R1 is

evaluated as minimal.

Table 3. Definition of assessment function for R1

Assessment result for R1-M1

Assessment result for R1-M2

Assessment result for R1

Non-acceptable

any

non-acceptable

any non-acceptable non-acceptable
minimal > minimal minimal

2 minimal minimal minimal

2 target target target

target 2 target target
exceeding exceeding exceeding

The assessment process may be continued for other elements, i.e. characteristics, artifacts and
SO on.

5 Conclusions and related works

Several models of software quality have been suggested over the years [10]. All of them are
based on a quality factor notion. The quality factors are recognized as those software
attributes, which deal with fulfillment of software requirements.

The first quality model proposed by McCall from 1977 [10] consisted of 11 quality factors
grouped into three categories: product operation (which deals with daily operation of the
software), product revision (which deals with software maintenance) and product transition
(which refers to the capability of software adaptation to other environments).

Subsequent models consisting of 12 to 15 factors were suggested in 1988 by Deutsch &Willis
and in 1987 by Evans & Marciniak [10]. These models differ from McCall model in removing
one factor and different categorization of other quality factors.

These three models contributed to quality models which were elaborated by ISO. The ISO
standards are the base for construction of quality metamodel SQMREA presented in the
paper. This metamodel grasps not only quality aspects but also its requirements, evaluation,
and assessment. The SQMREA metamodel enables:

- tracing requirements from needs, and requirements from other requirements,

120

- disciplined association of requirements with sub-characteristics and metrics during
software requirements specification,
- assessment of quality for separate artifacts as well for a whole software product.
Instances of SQMRE metamodel — quality models — may be reused for many projects. They

also may be a convenient form for the experience gathering within different software life-
cycles.

The following quality levels are taking into account when we consider software quality [14]:

1) data quality,

2) code quality,

3) model/architecture quality,

4) process quality,

5) management quality,

6) the quality environment.
In the paper we concentrated on models for product evaluation (levels 1-3 from the
classification given above). There are many other standards, e.g. the Capability Maturity
Model [13], which provide accepted guidelines for improving the software (development)
process itself (levels 4-6). Our considerations relate to Quality Control process which deals

with ensuring the quality of whatever is produced within the process, while CMM relates to
Quality Assurance process which deals with the quality of process that produces artifacts [14].

According to our knowledge, there are no programming tools supporting requirements,
evaluation and assessment of quality in the sense of [6]. A project of such a tool based on
SQMRE is under elaboration.

There are not many papers presenting quality metamodels. The only one found by us is [12].
The metamodel described in this work is partially similar with our — it includes such elements
as QualityModel (Quality in our metamodel), QualityAttribute (Characteristic), Metric,
BusinessGoal (Need). But that metamodel can’t be used for requirements (quality) assessment
and evaluation.

References

ISO/IEC 9621-1:2000, Software engineering — Product quality - Part 1: Quality model

ISO/IEC TR 9621-2:2002, Software engineering — Product quality - Part 2: External metrics
ISO/IEC TR 9621-3:2002, Software engineering — Product quality - Part 3: Internal metrics
ISO/IEC TR 9621-4:2002, Software engineering — Product quality - Part 4: Quality in use metrics

ISO/IEC 14598-3:2000, Software engineering — Product cvaluation — Part 3; Process for
developers

ISO/IEC TR 15904:2000, Information technology — Software process assessment
7. ISO/IEC 15939:2002, Software engineering — Software measurement process

8. ISO/IEC 25000:2005, Software engineering — Software product Quality Requirements and
Evaluation (SQuaRE) — Guide for SQuaRE

9. ISO/IEC 9000:2000,Quality management system —Fundamentals and Vocabulary,
10. Galin D., Software Quality Assurance, Pearson Education Limit, 2004
11. SWEBOK, Guide to the Software Engineering Body of Knowledge, 2002

12. Bayer J., Design for Quality, IESE-Report No. 084.03/E, September 2003, available at:
www.iesc.fraunhofer.de/pdf files/iese-084 03.pdf

Yo W —

&

121

13. Jalote P., CMM in Practice: Process for Executing Software Projects at Infosys, Boston, Addison-
Wesley, 2000

14. Unhelkar B., Process Quality Assurance for UML-Based Projects, Addison-Wesley, 2002

122

