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Abstract: Software development based on Domain-Specific Modeling Languages is one of
the most focused research fields. Metamodeling techniques can describe the topological
rules of the target domains and express the domain-specific constraints of visual languages,
but the presentation still cannot follow this flexibility. The aim of our research was to create
a flexible visualization method for metamodeling environments. The main concern of this
paper is to present the concepts of a domain-specific modeling language for specifying the
presentation of arbitrary DSLs and standard UML models. The introduced language can
fully describe the visualization and behavior of the linked model. The concrete syntax
definitions can be bound to the models of the target domain using model transformation.
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1 Introduction

Using Domain-Specific Modeling Languages (DSML) is a widely adopted way to create
customized models for special domains where generic modeling languages would fail.
DSMLs always need an abstract syntax definition. Metamodeling is a means to avoid coding
the language definitions manually and to create DSMLs. Metamodels act as the abstract
syntax definition for the model level: they define the available model elements, their
attributes, and the possible connections between them. Although metamodeling is flexible
enough to fulfill the topological requirements of domain specific modeling, it does not define
the presentation of the elements: the concrete syntax. The primary aim of this paper is to
introduce a solution that can automate the creation and handling of the concrete syntax.

The lack of the standardization in the concrete syntax definition process made custom
solutions necessary that are often ineffective and inflexible. The most popular solutions are:
(i) manual coding the presentation logic in the modeling framework (ii) extending the DSL
definitions with new properties focusing on the presentation, or (iii) using a DSL that defines
the presentation, and then binds the concrete syntax and the abstract syntax definitions.

Manual coding is flexible, it can be customized simply, but it also means a great amount of
additional work, and the standardization of the concrete syntax definitions is very hard to
manage. The presentation logic can be metamodel-dependent, or metamodel-independent.
The typical realization is the plugin-based architecture, where the presentation is coded in
plugins assigned to a metamodel.

Concrete syntax based on the metamodel properties is also a popular solution. The
presentation logic uses information extracted from the metamodel items to display a model
item, thus model items with a common metamodel can be treated uniformly. The presentation
can be customized using the presentation-focused properties of the metamodels. This solution
has also its limits: if the method is not combined with manual coding, then ecither the
customization facilities are strongly limited, or the core framework is extremely complex.
Another weakness of the solution is, that different models with the same metamodel cannot be
visualized differently. Finally, this solution does not clearly separate the content and the
presentation usually, which can cause problems of tangled code for the editing process.
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The third solution is more straightforward. The concrete syntax definitions are modeled using
a common Domain-Specific Language (referred to as Presentation DSL), thus, the concrete
syntax definitions are the models of the Presentation DSL. The ability to handle the concrete
syntax in the same way as normal DSL models means uniformity, flexibility, and makes
editing much easier. Another advantage of the solution is that it allows multiple concrete
syntax definitions for a single DSL. The method is even more effective if concrete syntax
models can be bound to the abstract syntax definitions automatically (e.g. the presentation
logic can be transformed to source code that is used to edit the abstract syntax).

Visual Modeling and Transformation System (VMTS) [1] is an n-layer metamodeling
environment that unifies the metamodeling techniques used by the common modeling tools,
and employs model transformation applying graph rewriting as the underlying mechanism.
Previous work [2] has presented the VMTS Presentation Framework (VPF). VPF offers many
features such as plugin-based architecture, support for multiple canvases on a single model,
and customizable event-handling for the model items. VPF promotes creating models for
UML 2.0 diagrams and other popular domains such as Mobile Resource Editor. VPF supports
metamodel-based validation of the models, for example the model topology is automatically
checked when editing the models, and the attributes are validated using OCL constraints. VPF
plugins must be customized for each DSML. VPF is based on the MVC architecture, therefore
each plugin requires three classes to be defined (a Model, a View, and a Controller). These
fundamental classes must be subclassed for each model element to provide the drawing code.
Earlier the concrete syntax used by the VPF plugins was defined by manual coding, which
meant a huge amount of additional work.

VMTS Presentation DSL (VPD) is a Presentation DSL realized in VMTS. VPD metamodel
definies a metamodel for this language; VPD models can describe the concrete syntax of a
domain. To edit the VPD Models, a plugin (the VPD Plugin) was implemented based on VPF,
To improve the effectiveness of the solution, there is a support for processing VPD models
automatically, using model transformation techniques [3]. The control flow of the
transformation describes the transformation steps converting the VPD Models to a CodeDOM
model. From the CodeDOM model, source code is generated with the .NET CodeDOM
technology [4]. This source code implements a plugin: the generated plugin that can be used
directly in VPF. Fig. 1 shows the main steps of the process. This approach made it possible to
avoid manual coding, and create plugins in a user-friendly, graphical way in the same
environment as common DSL models. The main goal of this paper is to introduce the VMTS
Presentation DSL, whereas the model transformation and the code generation are not
discussed. The transformation control flow and the transformation rules are to found in [1].
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Fig 1. Plugin generation steps
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2 Related work

Generic Modeling Environment (GME) [5] is a highly configurable metamodeling tool
supporting two layers: a metamodel-, and a modeling layer. The concrete syntax definitions
can be coded either manually, or set by properties both on the metamodel and on the model
level. GME supports a special type of property definitions: the registry entries. These entries
are assigned to model elements and they can also customize the appearance.

Meta-CASE editors (e.g. JKOGGE [6] or MetaEdit+ [7]) are environments capable of
generating CASE tools. They allow creating the CASE tool definitions in a high-level
graphical environment, but they supply manually coded user interface. These environments
store concrete syntax in the properties of the metamodel elements.

Another framework is the Diagram Editor Generator (DiaGen) [8] that is an efficient solution
to create visual editors for DSLs. DiaGen uses its own specification language for defining
diagrams (i.c. the abstract syntax). DiaGen supports editing the concrete syntax in a graphical
context, but in a tree control-based form only, where there is no support to define the shape of
the eclements graphically. DiaGen can generate an editor based on the specification using
hypergraph grammars and transformations. Concrete syntax in DiaGen is based on properties.

AToM? (A Tool for Multi-formalism and Meta-Modelling) [9] is a flexible modeling tool. It
employs an appearance editor to define the shape of the model elements graphically. AToM’
can generate plugins that use the defined syntax, but it uses properties of the model for storing
the concrete syntax.

Eclipse [10] is a flexible, open source modeling platform that supports metamodeling. Eclipse
Modeling Framework (EMF) can generate source code from models defined by the class
diagram definition of UML, but it does not contain concrete syntax definitions. Graphical
Editing Framework (GEF) is also a part of the Eclipse project. GEF provides methods for
creating visual editors. EMF does not support code generation for GEF, therefore GEF
plugins require manual coding to support the concrete syntax.

GenGed [11] generates visualization code with graph transformation. It is rather presentation
oriented: instead of domain specific modeling, it specifies graphical symbols, constraints and
their connections; from this information graph rewriting rules (Alphabet Rules) are generated,
which serve as the graph grammar used to parse the visual language. For the editing features,
a graphical editor is also generated to support the newly created visual languages.

GenGed has been replaced by a new project Transformation-Based Generation of Modeling
Environments (TIGER) [12] that uses precise visual language (VL) definitions and offers a
graphical environment based on GEF. TIGER can generate source code from the visual
language definitions that implements a plugin based on GEF. VL specifications can be created
graphically. At the moment TIGER can generate editors for Activity Diagram and Petri nets.

Graphical Modeling Framework (GMF) is also an Eclipse project [13]. The goal of GMF is to
form a generative bridge between EMF and GEF, whereby a diagram definition is linked to a
domain model as input to the generation of a visual editor. GMF uses a Presentation DSL to
define the concrete syntax. The result (the linked concrete-, and abstract syntax definitions)
arc processed further to produce source code. The mapping between the domain model and
the model items of the concrete syntax is also supported in GMF. The generated source code
relies on the features of GEF and EMF. Although the concept of GMF is straightforward, it
has some weaknesses: (i) the generation is not based on model transformation. Consequently
the compilation steps are coded manually, and constraints on the compilation steps are hard to
define. (ii) There is no built-in editor to change the appearance of the model items graphically.
(i11) GMF is a new project, thus not all features are documented enough to use the framework.
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Table 1 summarizes the comparison of the related work.

GME | MetaEdit+ | DiaGen | AToM’ | GEF+ | GenGed | TIGER | GMF
EMF
Coding Yes No No No Yes No No No
Properties Yes Yes Yes Yes No No No No
Presentation DSL No No No No No Yes Yes Yes

Table 1. Related applications

3 The VMTS Presentation DSL

In VMTS, the Presentation DSL is named VMTS Presentation DSL (VPD). Concrete Syntax
Models are created by instantiating VPD, they define concrete syntax for an arbitrary Domain
Specific Model (for the Subject Domain Model). Thus, Concrete Syntax Models define how
the model items of the Subject Model are visualized, and how they behave. The complete
specification of the VMTS Presentation DSL can be found in [1]. Fig. 2 shows the metamodel
— model, and the abstract syntax — concrete syntax relationships: (i) The Concrete Syntax
Models are created by instantiating the Presentation DSL. (ii) The abstract syntax of the
domain, namely the Subject Domain Model is created, and the concrete syntax is bound to the
abstract syntax. From the Concrete Syntax Definition, a plugin is generated that is used to
display the models of the target domain. (iii) Subject Models are created by instantiating the
Subject Domain Model. (iv) The framework displays the model using the generated plugin.
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Fig 2. Abstract and concrete syntax definitons

3.1 Mapping

Modeling environments often distinguish between different kinds of fundamental modeling
types, for example, model nodes and connections between the model nodes are handled
differently. Handling different fundamental types is the basis of the mapping between the
concrete and the abstract syntax definition, because different fundamental types have different
attributes. Thus each fundamental type has an appropriate model item in the Presentation
DSL. In VMTS, there are three fundamental types: Nodes (e.g. Activity), Edges (relations
between nodes, e.g. ObjectFlow), and AssociationNodes (e.g. AssociationClass in a class
diagram). VMTS Presentation DSL contains a Node (VPDNode) and an Edge (VPDEdge)
only (Fig. 2), support for AssociationNode is the subject of future work.
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The second step of the mapping is to bind the model items of the Subject Domain Model and
the syntax definitions available in the Concrete Syntax Model. The structure of the mapping
information depends on the data structure used by the modeler application, but the placement
of the mapping information is a general problem: it can be stored either (i) in the abstract
syntax definition (in the Subject Domain Model), or (ii) in the concrete syntax definition (in
the Concrete Syntax Models), or (iii) in an external data source. Storing the mapping in
external sources is used for example in GMF. This solution allows many-to-many
relationships between the concrete syntax and the abstract syntax definitions, but it means a
large synchronization overhead between the models and the external resource when binding
the concrete and the abstract syntax. If the mapping information is stored in the Subject
Domain Model then the metamodels can have one representation only. This is a problem,
because many Domain-Specific Languages can have more then one representation, for
cxample resource editors for mobile phones can have different visualization (Fig. 3.). To
summarize, it is useful to store this mapping information in the Concrete Syntax Models, thus
the information can be reached easily if it is required. This means also that no many-to-many
relations are allowed between Subject Domain Models and Concrete Syntax Models, but this
is not a common need. In VMTS Presentation DSL, the mapping is represented by a reference
to the Subject Domain Model, and another reference to the specific metamodel element. The
mapping information is stored in the Concrete Syntax Model.

Fig 3. Different visualization for the same abstract syntax

3.2 Extending the behavior

There are many attributes that can make the syntax definitions more appropriate, and more
customizable, but they usually rely on system-specific features:

(i) Naming the model items in the Concrete Syntax Model, and naming the Concrete Syntax
Modlel itself can be useful to identify the model items. In plugin-based architectures similar to
GMF, these names can be used as a base class name for the plugin items. In VPD, the naming
is also supported: the name of the plugin item (e.g. Decision) is used as the base class name;
the name of the model (e.g. ActivityDiagram) is transformed into the name of the project.

(ii) Extending the fundamental types is usually supported in modeling frameworks by
specialized subtypes that are inherited from the fundamental types. For example, a rectangular
shape that can handle docking is based on the common shape definition. This extension
makes it possible to handle more specialized behavior in the DSL realizations in a simple

71




way. A typical example is the plugin-based architecture of Eclipse, where the plugin items
can use either the base classes, or their specialized classes. In VPF, Nodes can be customized
to Shape or to DockShape. VPD supports the specification of the sub-types for VPDNodes.

(iii) Positioning constraints are a common need in modeling when handling containment or
attaching relationships. For example, /nput pins should be aligned to one side of its container
in Activity Diagram. Another example is specifying connection points on a rectangular shape
to define where connected lines can be bound. Since these constraints specify the behavior of
the model items, they are handled in concrete syntax definitions. In VPF, the connection
points are managed by the framework, therefore VPD supports only aligning constraints.

(iv) Resizing constraints are similar to positioning constraints, but they specify how the model
items react to resizing events. Typical example is the default size of the model item, or the
maximum/minimum size of the item. This is useful to avoid too small or too large model
elements. In VPD, the size constraints are fully supported.

(v) System-specific attributes are efficient, but they rely on the features of the modeling
framework. For example there are models, for example object diagrams in UML, where the
metamodel contains many model elements with the same appearance definitions, but different
attribute values. This problem was described in detail in [2].

3.3 Visualization attributes

Since each Domain Specific Language has its own notation, the visualization is definitely the
most often customized and most important part of the concrete syntax definitions. Building
the visualization information using primitives, i.c. simple geometric shapes, is a
straightforward solution. In this way the framework has to support only handling the primitve
shapes, and not the complex notations defined in the DSL. Complex figures can be divided
into primitives in general only if the primitives are flexible enough and can describe any
possible shape, thus, the list of the supported primitives is important. Another important
requirement is to be able to express location constraints for the primitives within a figure, for
example the subtitle (text primitive) in a box (rectangle primitive) should be centered, or
aligned to one side of the box.

In VPD, the visual representation is based on Regions. A Region is a graphical unit that is
independent from the other Regions. A Region is responsible for visualizing a part of the
model item, or the whole model item. Region definitions consist of primitives and extended
primitives. Primitives are lines, Bézier splines, triangles, rectangles, rounded rectangles,
diamonds, ellipses, crossed circles, and static texts. Extended primitives are dynamic texts to
display the properties of the model items, and docking regions to define rectangles for the
docked elements. Certain shapes contain only one primitive, others are more complex. For
example, Actions are visualized using a rounded rectangle and a text label. Location
constraints are handled by extending the primitive objects with alignment information. This
alignment information shows how the appropriate primitve is positioned in the Region.

The relation between the model items in the Concrete Syntax Models and the Regions is one-
to-many, because model items can have any number of Regions, but a region is defined in
exactly one model item. Since the Regions are independent from each other, they can be
edited separately, and the model representation can be composed from the Regions when
displaying the model item. For example, editor parts in an Eclipse-based plugin would contain
typically only one Region, becausc the editor parts visualize the atomic information.

The presented solution is not system-specific, thus, Region-based visualization information
can be used in any other modeling environment.
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In VMTS, the solution is specialized as follows: Nodes have only one Region, because they
do not have independent visualization parts. Contrarily, the visualization of Edges uses five
different Regions: two for the line ends, and three icons near the ends, or at the center of the
line. This decision needs more explanation: (i) Edge does not require a Region for displaying
the line, because only the line style, and the line width can be set in VPF. (ii) VPF supports
setting the display style of the line ends, and the subtitles of the Edges independently (e.g.
they can be enabled/disabled independently). The concept of Region-based visualization
means that Edges require a Region for each independent part. (iii) Since the line ends, and the
subtitles can rotate according to the orientation of the line points the associated Regions
should also rotate. This rotation is handled in VMTS Presentation Framework, not in the code
generated from a VMTS Presentation DSL model. To summarize, VMTS Presentation DSL
handles the visualization information of the concrete syntax, using Regions that consist of
graphical primitives. This solution ensures the required flexibility and uniformity between the
different concrete syntax definitions.

4 Processing the concrete syntax definitions

The VMTS Presentation DSL is able to describe the concrete syntax of the model objects.
Since the primary goal of this paper is to give an efficient solution to create concrete syntax
definitions visually, a method is required to create and edit the Concrete Syntax Models. The
main advantage of VPD is that it is a DSL, therefore Concrete Syntax Models can be created
by instantiating the VPD, and using the common DSL editing environment. To make editing
easier, a plugin, the VPD plugin was developed. This plugin provides a user-friendly
environment to define Concrete Syntax Models, and to specify the concrete syntax using the
facilities of VPF.

According to the VMTS Presentation DSL definition, VPD Plugin supports two fundamental
types: VPDNode and VPDEdge. The key feature of VPD Plugin is the ability to define VMTS
Custom Property Editors [2]. VPD Plugin defines a custom attribute editor - Appearance
Editor - for editing the appearance of the shapes. To minimize the differences between the
visualization of Appearance Editor and the final representation, VPD Plugin shows the model
items in the modeler according to the defined concrete syntax.

Fig 4. Appearance Editor

Appearance Editor (Fig. 4) is an image editing form with support for modeling the
primitives. Primitives can be created using drag-and-drop actions, they can be resized and
moved, or changed (for example points can be added to or removed from splines). Properties
of the primitives can also be edited simply, since they appear in the property grid residing on
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the right hand side of the form. Appearance Editor has additional facilities such as zooming,
support for undo/redo operations, or layer management.

5 Conclusions

This work has described a technique to specify the concrete syntax of domain-specific
modeling languages visually, accompanying to the abstract syntax rules provided by the DSL.
The presentation information is specified as a mapping between the metamodel elements and
their visual representation, and behavior data. This mapping is described by a domain-specific
modeling language, namely, by the VMTS Presentation DSML. VMTS offers a tool support
for VPD using metamodeling techniques. From the VPD models, a visual model processor
creates a VMTS plugin. The plugin is launched by VMTS, offering the designed visual
modeling environment for DSLs or UML. The resultis a flexible method to specify the
presentation of DSLs separately from the abstract syntax definition in an easy-to-use
graphical way.

Future work includes the dynamic presentation of the attribute values. Currently, rectangular
areas can be selected. Having an arbitrary shape, the user is offered a rectangular bounding
box only. Thus, shape-specific bounding areas need to be developed.
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