ISIM 2006 April 25 - 26, 2006, Czech Republic

Dealing with Unstable Domains in Product-Line Architecture
Development

Valentino Vranié *
vranic@fiit.stuba.sk

Vladimir Marko*
marko@fiit.stuba.sk

Abstract: Application of domain engineering approaches, which represents the basis for estab-
lishing product lines, normally subsumes a stable and well understood domain. This may prevent
many projects from gaining a benefit of the organized development for reuse enabled by domain
engineering techniques. This article explores how to develop the architecture of a domain under a
change. The approach is based on a thorough exploration of well-understood part of the domain
by the means of feature and use case modeling. This is followed by a generalization of the use
case view and interactive development of the subsystem and component view. The approach is
illustrated by examples from the project on knowledge management whose development part is
performed concurrently with the ongoing research activities.

Keywords: Archetype, Component, Feature Modeling, Product Line, Subsystem, UML, Unstable
Domain, Use Case

1 Introduction

Reusability is one of the most desirable properties software can have. To achieve this, software
must be developed with reuse in mind from the start. Even then, real reuse is possible only for a
group of related software products. Such groups are being denoted as software product families.

Domain in the sense of domain engineering represents an area of knowledge scoped to the
needs of its stakeholders; it includes a set of concepts and terminology of the respective area
and the knowledge how to build software systems in that area [5]. This means that a domain is
expected to be stable and well-understood, which is not always achievable.

This article addresses the issue of dealing with unstable domains in product-line architecture
development. One may encounter such domains in research projects which embrace a develop-
ment component (mostly for evaluation purposes). In such projects, in order to meet the sched-
ule, development has to start early, which is often before the research has been completed. Here
we speak of product lines rather than product families because products are grouped mainly
by the need of the specific project, which is an analogue of the market demand in industrial
projects.

The rest of the article is structured as follows. Section 2 gives an overview of the approach.
Section 3 describes how to approach the unstable domain by first exploring a limited portion
of it by the means of feature and use case modeling. Section 4 describes the subsequent gen-
eralization of the feature and use case model. Section 5 is devoted to evolving the structure of
the systems in the domain based on the feature and use case model. Section 6 discusses the
proposed approach in the context of related approaches. Section 7 concludes the article.

* Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technology, Slovak
University of Technology, Ilkovicova 3, 84216 Bratislava 4, Slovakia

57

2 Approach Overview

Figure 1 gives an overview of our approach to developing product-line architecture in an un-
stable domain. It shows the main artifacts and their dependencies. The whole process starts by
exploring a limited portion of the domain in order to obtain a partial domain model. Typically,
this part of a domain should represent one possible product in the domain. First, commonality
and variability in the domain has to be explored at least at a coarse level. A useful technique to
do this is feature modeling. Functionality of this domain part is captured by use cases. Each use
case should be linked to related features in order to document functionality variants.

General Domain Model
NN e Archetypal Entities T]
i Partial Domain Model i Structure H

| Coarse Feature Model } ={ Refined Feature Model |
| Partial Use Case Model }-—I-I Generalized Use Case Model] '

| Subsystems |
—* |

Fig. 1: Overview of the approach.

The next step is generalization. The feature model should be further refined as its purpose is
to control the configuration of individual products. However, the use case model will undergo
more significant changes as we have to switch from the specialized viewpoint to a general one
based on archetypal entities (explained in Sect. 4.1) and their interactions.

Finally, the structure of the products in the domain based on the feature and use case model
is evolved in the form of subsystem and component views. In this step, an opportunity to apply
architecture styles or patterns should be sought.

3 Exploring the Domain

Configurability is crucial to product lines. In our approach, we start by a coarse examination
of commonality and variability using feature modeling. Subsequently, focusing on one special
product, we try to express the expected functionality in greater detail in a use case model.

3.1 Feature Model

Feature modeling is a conceptual domain modeling technique in which concepts in a domain,
understood broadly as an area of interest [4], are being expressed by their features taking into
account feature interdependencies and variability in order to capture concept configurability. In-
troduced by FODA [6], feature modeling was later improved by Czarnecki and Eisenecker [5],
as well as by subsequent work (see [10] for an overview).

In feature modeling, a concept represents an understanding of a class or category of elements
in a domain. A feature is an important property of a concept [5]. Any feature may be isolated
and modeled further as a concept, therefore being a feature is actually a relationship between
two concepts, but the concepts identified only in the context of other concepts, i.e. as their
features, are usually referred to as features [10]. In general, a feature may be common, which
means it is present in all concept instances, or variable, which means it is present only in some
concept instances.

58

The most important part of the information in feature models is presented graphically by
feature diagrams. Figure 2 shows the Knowledge Acquisition concept feature diagram. This
concept is a part of the domain of knowledge management which encompasses application for
acquisition, organization, and maintenance of knowledge in the web. This domain has been
analyzed in our project on tools for acquisition, organization, and maintenance of knowledge
in an environment of heterogeneous information resources. The project is spanned over four
organizations and it encompasses a significant development component whose objective is to
create a knowledge portal based on the sophisticated methods being explored in this project.

Knowledge Acquisition

Information Source

Clustering

Relational Databases
XML Documents

Indexing HTML Documents

Semantic Annotation

Fig. 2: Knowledge acquisition concept.

The Knowledge Acquisition concept represents approaches to knowledge acquisition. We
identified several such approaches ranging from the direct user input to semantic annotation.
Multiple approaches can be employed in the final product, but at least one has to be present.
This is expressed by grouping features that represent approaches to knowledge acquisition into
an or-feature group (indicated by a filled arc).

Information Source is another important feature of the Knowledge Acquisition concept.
This feature is mandatory, i.e. it has to be present in all products (indicated by a filled circle).
Several types of information sources are possible and they also constitute a group of or-features.

Other concepts identified in the domain include, for example, information domain and pre-
sentation options. These two concepts along with Knowledge Acquisition actually represent
mandatory features of the Knowledge Portal, which represents the main concept in the domain.
User adaptability is another concept that appears as an optional feature of the Knowledge Portal.

3.2 Use Case Model

Use case modeling has been used to capture stakeholders and functional requirements imposed
onto system under development. The objective is to achieve a grasp of core functions while
abstracting from realization details to avoid premature breakage into functional blocks misre-
garded for functional development units before all of the functionality has been understood.
More specifically, variations in functionality, such as support of various input methods and
output formats, are not reflected as use cases of their own. Internal working and methods em-
ployed to achieve required functionality hidden from the standpoint of an stakeholder is also
omitted from the description of use cases. Stakeholders are modeled as actors of the use case
model. Some internal mechanisms are modeled as worker actors as well, as is the case of Job
tracker internal process which represents proactive behavior on behalf of the system (see Fig. 3).
Each use case has to be provided with description, possibly specified by a set of scenarios,
and a list of related concepts and features. The mapping of use cases to features allows to
capture the variations in functional requirements. As the mapping to the features captures the

59

f ?:
Job sesker

Acquire job afier
~a o .
\ %
T T =T
Jab tracker
Submil job offer

Fig. 3: A domain exploration level use case diagram.

Publish job affer in
awn information
spaca

Emplayer

possible variations in the functionality modeled by a use case, there is no need to describe such
variations further at this level, be it in the form of specialized use cases or variants of a scenario.
The general rule is not to expose the realization of a functionality as Optional Use Case or Use
Case Sequence pattern [7].

The use case diagram in Fig. 3 represents only a part of the functionality required for ac-
quisition and presentation of job offers. Make offer abstract use case is specialized into two
concrete ways of publishing job offers for use in our system. However these two use cases do
not differ only in their realization, but in their mode of operation in the first place. They are
activated by different stakeholders: by an employer who is not aware of our system and by an
employer who actively uses the system. Acquire a job offer, Check validity, and Find a job offer
use cases do not form a use case sequence as they can exist independently apart from a possible
interdependency ensuing from their mutual dependence on Offer job use case.

Find job offer use case represents a query of a Job seeker on the accumulated job offer store.
A variety of realizations were to be considered for this function, which has been modeled by
mapping the use case to the Knowledge acquisition concept (recall Fig. 2).

4 Domain Generalization

Domain generalization is based on the partial domain model: the objective is to identify the
archetypal entities of the domain and relations between them, refine the feature model, and
generalize use cases.

4.1 Archetypal Entities

Identification of archetypal entities and their interactions is a major transition the domain model
must undergo. The level of abstraction we are looking for lies in between the abstract feature
model and concrete use cases that constitute our domain model presented so far. Though it
cannot be expected for archetypal entities just to drop out of these two views, a good starting
point is to analyze the important concepts from the feature model and corresponding use cases.

In our example, knowledge acquisition is such a concept. Use cases that correspond to this
concept are about job offer acquisition in a special case of knowledge acquisition or, more
precisely, a special case of offer acquisition. Thus, we actually may narrow our domain to offer
acquisition as such.

In a domain of offer acquisition, we speak of an abstract offer which will, with the devel-
opment of concrete components, become a job offer, travel offer, apartment renting offer, etc.

60

Each offer has two faces: the one is of the offer source—a producer—and the other of the offer
target—a consumer. Thus, our archetypal entities include an offer, producer, and consumer.

It is important to note the relativity of these archetypal entities. A job offer can be perceived
as an offer of a job to potential employees. In this case employers are producers, while employ-
ees are consumers of the offer. However, it is also possible that an employee will seek the job
by exposing his offer which will turn him into a producer, and employers into consumers.

4.2 Feature Model Refinement

Identification of archetype entities represents a major shift in domain understanding. This re-
quires the feature model refinement. One of the consequences for the Knowledge Acquisi-
tion concept in our feature model is the separation of the information content independent
acquisition (denoted as Data Acquisition) from the dependent one based on the identified
archetypal entities (denoted as Offer Acquisition). Figure 4 shows the refined feature diagram
of the Knowledge Acquisition concept.

Knowledge Acquisition
Otter Acquisition
Data Search Offer Source Annotation
Document Identification
— "
Offer Search
@ =1 Offer Downloading
Emails [Fulltext Index Search } | Multifeature querying |
Document Cluster Providing Offer Identification
XML Dotoments Offer Separation
Relational Databases User Preference Search

Fig. 4: Knowledge acquisition concept refinement.

4.3 Generalized Use Cases

Subsequently, generalized use cases based on archetypal entities can be developed. In addition
to introduction of archetypal roles, the use case model has to be evolved further using the re-
fined feature model. The identified features should be used to split the functionality into more
manageable units. The objective of this process is to obtain a use case model which can be
mapped to structural view of the software. Therefore, each use case has to be considered as a
collaboration of several actors, some of which represent users of the system, while others are
internal system components. The use case itself then represents a concrete usage of a subsystem
by another actor.

Figure 5 shows a view derived from the specialized use case presented in Sect. 3.2. The
Active producer user role collaborates with the Offer database subsystem actor to facilitate the
Enter offer use case. The directionality of the usage relation is not established at this stage as
it needs to be addressed only after overall requirements are analyzed in order to select suitable
architectural style (discussed in Sect. 5).

Again, it is advisable to avoid unnecessary functional decomposition at this stage that can
be carried out later within subsystem and/or component view of the system. Now it would

61

Otfer acquisition

=loplavels
Publish offer within
own infarmation
space

“toplavels
Enter offer

Offer database

Passive producer Active praducer

Fig. 5: Generalizing use cases.

lead to proliferation of actors and single-actor collaborations which are not bearing significant
information on the subject of identification of components of the system.

Representing variations of requirements as separate use cases should also be avoided where
possible. The only exception from this rule is the case when variations in functionality require
different collaboration or different collaborating actors constitutes (see in Fig. 6). Specializa-
tions of the Acquire offer use case are performed as collaborations of different subsystem actors.

m""‘%v
ira offer lram
USENET group

Offer acquisition Ofter database

Source administratar

Fig. 6: Generalizing use cases.

5 Structure View

Finally, the system structure can be derived from the functionality captured in the use case
model. Letting the behavior form the structure enables to avoid the unpleasant consequence of
the Conway’s law [3] by which the structure of the developing organization ultimately shapes
the system being developed.

In our approach, two distinct levels of structural decomposition are employed. The first level
comprises decomposition to subsystem according to logical cohesion among offered function-
ality. This view corresponds to the module viewtype style [2] and is derived directly from the
refined use case model of the system. The internal actors from the refined use case model rep-

62

resent subsystems. As an example, consider the subsystem diagram in Fig. 7. Offer acquisition,
Offer database, and Offer maintenance subsystems correspond to subsystem actors in Fig. 6.

T «subsystems el N
Application layer «sUbsystam» 9
PP Y Offar entry portal Ofter presentation portal
et T P 8
I

N =1) g
Domain-specific «subsystem» [(----- asubsystem» |----- «subsystems &
services layer Offer database Ofter acquisition Offer maintenance i

: : ;

5 S R R o S e 0 b e S e

Domain-independent _— subsystam
" =5ubsystame o =
services layer Data acquisition Data maintenance

Fig. 7: A fragment of the subsystem diagram.

Some subsystems do not collaborate in any functionality specified by use cases, but merely
pose interfaces to the external environment and most notably user interaction. In our example,
this is facilitated by the top layer subsystems which were derived from the system boundaries
introduced in the use case model.

Subsystems can be understood as a foundation for building components. The component
view prefers functional cohesion resulting into packages that offer the functionality adhering
to prescribed interfaces. Often, multiple components implement a common interface, and this
usually ensues from variations in functionality identified as variable features in a feature model.

The two levels allow for distribution of development among teams by splitting system into
reasonably sized functional components while preserving clear insight of the system as a whole
through subsystem dependencies. Subsystem structure can be utilized for source package struc-
turing and dependency management whereas component view reflects into runtime modules.

6 Related Work

The risks of developing product lines in immature domains have been analyzed by Voget and
Becker [9]. More specifically, they deal with the risks of uncertain technological evolutions,
which actually correspond to the domain instability in projects with ongoing research addressed
in our approach, and propose to resolve them by employing light-weight domain engineering,
stable subdomains start-up, commonality-oriented assets, and sound variability treatment sup-
port. While Voget and Becker’s stable subdomains start-up strategy is merely about isolating
unstable subdomains and excluding them from the product line, we focus on stabilizing such
subdomains in order to preserve them as a part of the product line.

The notion of an archetypal entity in the context of the approach proposed in this arti-
cle is related to Bosch’s archetypes, the core abstractions on which the system will be struc-
tured [1]. These are further described as highly abstract and stable, which are the properties of
our archetypal entities, too. However, while Bosch warns of deriving archetypes from the con-
crete instances in the domain and proposes to rely on the good understanding of the domain and
developer’s insight, our experience is that in an unstable domain one has to take the concrete
(and specific) instances into account along with the abstract domain view.

Furthermore, Bosch’s archetypes are more structural in their nature; concrete systems are
populated by instantiation of archetypes. Our archetypal entities do not necessarily represent
abstract structure of systems and may include external entities such as users.

63

7 Conclusions

In this article, we proposed an approach to dealing with the architecture design in unstable do-
mains in order to enable exploiting the benefits of product lines in such domains. The approach
is presented on examples from a project on knowledge management whose development part is
performed concurrently with the ongoing research activities causing the instability in a respec-
tive domain of knowledge acquisition.

The approach shows that improved understanding of a specific—but important—part of a
domain in terms of its functionality and configurability can be translated to the whole domain.
This process is intrinsically functionality driven; structural decomposition is postponed until the
behavior of the systems in the domain is sufficiently explored.

The most critical step of the approach—identification of archetypes and their interactions—
is principally highly dependent on the insight of developers. However, it is our experience that
the very existence of a partial domain model significantly improves the communication with
domain stakeholders, which is inevitable for the process of generalization.

This work was supported by Science and Technology Assistance Agency of Slovak Republic

under the contract No. APVT-20-007104, the State programme of research and development
"Establishing of Information Society” under the contract No. 1025/04, and Slovak Science
Grant Agency VEGA, project No. 1/3102/06.

Bibliography

1. J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-Line Ap-
proach. Addison-Wesley, 2000.

2. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford. Docu-
menting Software Architectures: Views and Beyond. Addison Wesley, 2002.

3. J. Coplien. A development process generative pattern language. AT&T, 1995. Available at http:
//users.rcn.com/jcoplien/Patterns/Process/ (accessed in Aug. 2005).

4. J. O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.

5. K. Czarnecki and U. W. Eisenecker. Generative Programing: Methods, Tools, and Applications.
Addison-Wesley, 2000.

6. K. C. Kang, S. G. Cohen, J. A, Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain
analysis (FODA): A feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, USA, Nov. 1990. Available at [8] (accessed in
Mar. 2002).

7. G. Overgaard and K. Palmkvist. Use Cases Patterns and Blueprints. Addison Wesley, 2004.

8. Software Engineering Institute, Carnegie Mellon University. Home page. http://www.sei.
cmu.edu. Accessed in Mar. 2004,

9. S. Voget and M. Becker. Establishing a software product line in an immature domain. In G. J.
Chastek, editor, Proceedings of 2nd International Software Product Line Conference (SPLC2),
LNCS 2379, pages 62-77, San Diego, USA, Aug. 2002. Springer.

10. V. Vrani¢. Reconciling feature modeling: A feature modeling metamodel. In M. Weske and
P. Liggsmeyer, editors, Proceedings of 5Sth Annual International Conference on Object-Oriented and
Internet-Based Technologies, Concepts, and Applications for a Networked World (Net.ObjectDays
2004), LNCS 3263, pages 122-137, Erfurt, Germany, Sept. 2004. Springer.

64

