ISIM 2006 April 25 - 26, 2006, Czech Republic

An Operating System Model with the Process Control
at the Level of Programming Statements

. ¥
Juraj Stefanovi¢
stefanovic@fiit.stuba.sk

Abstract: Our goal is to create easy modeling framework of operating system, which bears
the possibility to simulate various control of parallel running processes and various system
architectures, without taking in mind the bottom system hardware and the management of
main and secondary (filesystem) memory. The modeling philosophy here is to have one
type of building block, the virtual machine which interprets higher programming language
statements instead of the simulator/emulator of hardware processor. The control of
processes is shifted from the level of discrete atomic machine instructions to the level of
higher programming language statements.

Key Words: Operating system modeling, process control, virtual machine

1 Introduction

Several years we use Nachos [1,2], the model of operating system for student’s practices and
case studies. This model in C++ bears an easy environment to build, modify and understand
the control and work of concurrent processes, memory management and file system. This kind
of model is able to exist as an user process, because the real kernel of operating system is not
user-accessible (on public domains) and some accessible real kernels (Linux) are for more
experienced people only to cope with.

Besides the Nachos, there exist various more or less favorable models/kits of operating
systems with different levels of theoretical or practical use. The Flux OS Toolkit [3,4] was
created with a goal to get a set of reusable components with well defined function and
interface (boot loader, kernel code, drivers...). This should help to the skilled experimentators
they don’t need to write everything from scratch or copy and paste from many other
implementations. The 2K system [5,6] was created with serious goal to bear an open—source
distributed adaptible operating system, which replaces the idea of classical “machine—centric”
management with the “network—centric” model. The possibility of distribution is an important
feature in the contemporary world of networks and mobile computing. The Plan9 system [7,8]
was created with similar purposes having building blocks, pervasive computing possibility
and unified access to the files and resources.

The MOSES?2 [9,10] environment is a simple model of shared hardware and user processes,
where the kernel emulator programs can be easy created in C-language by students. The
MTOPS [11] is another different model, which simulates an easy CPU with small instruction
set and connected memory. Here the user programs are written in those assembly instructions

" Faculty of Informatics and Information Technology, Slovak University of Technology,
Ilkovicova 3, SK-842 16 Bratislava, http: /www.fiit.stuba.sk/~stefanovic

39




and the kernel of operating system is to be extended by student homeworks. The article [12]
describes another hardware simulator with the model of operating system; it is prepared in 8
various levels of complexity for teaching purposes. The article [13] describes another model
of “System/161” — hardware simulator with debugging support and “OS/161” instructional
operating systems running in it.

This short introduction shows that besides the “habitual” operating systems (allthough they
evolve too) there exist an amount of various implementation projects of special purposed
operating systems in range from pure experimental toy—models to the perspective prototypes.
The mentioned examples show that modeling and prototyping of the operating systems is
focused (not only) to these features:

® an easy environment to build and understand the model of operating system, running
as an user process in real computer, independent on any fixed hardware structure

e virtual processor - an emulator of Central Processing Unit hardware, to model the
control of the machine instructions flow

e clear interfaces of system components, to be easy understood

Our attempt is to create a new model, which will try to satisfy these features above and it will
be useful for study and experimental purposes. Main idea is to use the virtual processor
working not at the level of machine instructions, but on the higher level of instruction set,
interpreting the scripts they are written in higher language — the C-language here.

2 Placing the Context Switch to the Higher Level

The classical notion of operating system is a software extension of some hardware (processor,
memory and interfaces), hence the operating systems were built around the underlying
hardware principles, having the legs in wired architecture and the head in user interface. One
of the basic low-level functionalities in the operating system kernel is the management of
concurrent processes, based on the context switch between them, Fig.1.

user program USCI program

concurrent processes:

compilation compilation

instructions instructions

N X

context switch by real kernel

CPU & memory
hardware

Fig.1. The core of process management in operating system.

The creation of Nachos and other similar modeling frameworks of operating systems had to
cope first with the problem how to make this low-level functionality being accessible to the
study and experiments. The realisation of Nachos is using MIPS simulator of RISC processor,

40




which is performing the specially prepared program instructions (compiled from C-language).
In this case, the experimentator can model and perform an explicit context switch of the
processes in his own user environment only, Fig.2.

The processes are composed from low-level machine instructions, but at the higher level they
are composed from programming-language instructions/statements. Instead of the processor
simulator/emulator, the interpreter of higher-level statements (scripts) can be used and the
concurrent management of the processes can be performed and studied at this level. Hence our
idea is to model the control and switching of the concurrent processes (simple user programs)
to this higher abstraction level, Fig.3.

user program

user program

Nachos model of concurrency:

compilation compilation

instructions instructions

context switch by Nachos

v

MIPS simulator
Virtual Machine

user process controlled by the real kernel
on real machine

Fig.2. The process management simulated by Nachos.

user program

user program
new model of concurrency:

language level
context switch

v

the script interpreter
Virtual Machine

user process controlled by the real kernel
on real machine

Fig.3. The proposed higher level to place context switch.

The advantages of this mentioned modeling paradigm:
e the model/the system is independent on the hardware bottom (no CPU emulation)

e the compiling stage of user programs (scripts) does not exist anymore, the shell-level
programming and user process-level programming can be more closer than usual

41




* the relationship of this model to the hardware is lost: a possibility to create distributed
system modules on various communicating platforms

The disadvantages:

¢ the granularity of process control is not very fine (atomic instructions are here the
whole program statements or the parts of scripts and not the machine instructions)

¢ the relationship of this model to the hardware is lost

¢ the compilation is hidden in the interpreter engine, the step-by-step interpretation of
single statements (of C-language indeed) can be complicated and constrained

¢ slower run of processes

* by using not the compiler but the interpreter of statements, the code of controlled
processes must be rewritten to get run-able structure

Instead of the hardware central processing unit (CPU) simulator in Nachos, we are going to
create a virtual machine, which will interpret the higher programming language statements so
the processes can be controlled at the statement-timestep granularity.

3 The Virtual Machine Framework

The basic framework of our proposed model is the virtual machine, which is able to interpret
some set of programming statements, Fig.4. The one question is what should be this set of
statements and the other question is the relationship to the system memory. An interface of the
virtual machine can be easy:

iostream *run_VM_oneStep (char *statement, int thread);

The user lets to run the machine for one step to read and to interpret the program statement
and to make some behavior at the input and output data streams. The thread integer number
is a possibility, that the statements can belong to several different threads or processes they
run on the one virtual machine. This easy model lets the control of processes to the user
(fork,yield,..), or this model can be more complicated and it can incorporate some control
inside. The set of statements/instructions is an reduced subset of C-language to fulfill our
modeling goals:

e statements to create/delete data objects (variables, arrays, files)

e control structure statements (if/then/else)

¢ loop statements — their interpretation needs some control behavior outside

® data manipulation statements (a=b-+c)

* input/output statements (create a stream, read/write to it)
The relationship to the system memory can be solved as an memory encapsulation into the
virtual machine entity. There is no work with the notion “address”, the machine is working

with named and typed variables. The one type of variable can be a file, hence the difference
between main memory and filesystem is removed:

run_VM_oneStep (“openfile(“myfile”,“rw”)"”, 1);
run_VM_oneStep (“openvariable (“x"”,“int")", 1);

42



control input/output stream
well defined interface

Virtual Machine

interpreter of instructions
- in many working contexts
buffer of data objects of various type

user process
anywhere

hardware
anywhere

Fig.4. The concept of virtual machine at the level
of programming language statements/instructions.

As an example, here are two running threads on the virtual machine, they are synchronised
with semaphores. They were written in C-language:

Thread]l () Thread2 ()
{ {
for(int i=0;i<2;i++) { for(int i=0;i<2;i++){
X = 1i; down (a);
up(a); // semaphore a: signal y = x + 1;
down (b);// semaphore b: wait up (b) ;
} printf ("%d",y);
} }
}

Using these two threads as the concurrently running processes by our modeling framework
they are rewritten, still in C-language, to the form of statements they can be interpreted line by
line by the mentioned virtual machine—processor:

i=0; // Threadl §=0; // Thread2
while (1) { // label-statement while (1) {
X = 1i; down (a) ;
up(a); y = x + 1;
down (b) ; up (b) ;
T print (y) ;
if (i==2)break; // ignore until '}' Jj++;
} // goto label if (j==2) break;
}

43



Some user can write his own process scheduler, which will read the process statements and
put them to the virtual machine model (run_vM_onestep). The work of this scheduling
algorithm is shown in following example:

initialisation:
stream = run_VM_oneStep ("stream(st)",2); // return pointer
signal = run VM oneStep ("control",1); // return pointer

signal

introductory statements:

run_VM _oneStep ("control",2);

run_VM_oneStep ("int i;",1); // create this variable, threadl
run_VM_oneStep ("int j;",2); // create this variable, thread2
run_VM_oneStep ("int x;",2);

semaphore (a) initialise it

semaphore (b) initialise it

// my control mechanism outside

concurrent (switched) running of two threads 1,2:

HFRNERERSRODNDNDE -

(RN

run_VM_oneStep ("i=0;",1);
run_VM oneStep ("while(l)({(",1);
run_VM_oneStep ("j=0;",2);
run_VM oneStep ("while(l){",2);
down (a) stop the second thread
run_VM_oneStep ("x=i;",1);
up(a) run the second thread
run_VM_oneStep ("y=x+1;",2);
down (b) stop the first thread
run_VM_oneStep ("i++;",1);

run_VM_oneStep ("print(st,y);,2");

// save label, threadl

// save label, thread2

run_VM_oneStep ("if (i==2)break;,1");// ignore next statements

run VM oneStep ("}",1);

// goto label from stack, threadl
// ignore off, threadl

Using the run_vM_onestep model of C-statement interpreter is shown in schematic in Fig.5.
The underlined statements belong to the implementation of the user, which creates his own
model of system control. The italic statements are producing easy signals for the control flow

outside.

stream

(i/o0 data)

"statement”

run_VM_pneStep(

signal

(flow control)

thread number

Fig.5. Using the model of Virtual Machine.

44



4 Teaching and Experimental Purposes

An easy virtual machine entity, as shown in previous text, can be used as a building block to
make various models of synchronisation and architecture composition, Fig.6. Besides the
Nachos and some partial C-language based models, we prepare a set of assignments for our
students to work practices with this presented system philosophy. The practices in labs with
many individual students will help to determine an optimal reduced set of statements the
virtual machine entity will perform. The building blocks of system (Fig.6) can be generic
entities (virtual machines as shown above), or they can bear specialised functionalities
(performing database statements, or VRML visualisation/rendering statements, or otherwise).
By the experiments, distributable virtual machine entities can be implemented within network
servers or can be incorporated to the www browsers.

My own Kernel Code

Jorking and the process context switch
synchronisation, task management, input/output

switching
read read
instructions instructions
of process 1 of process 2

Virtual Virtual Virtual
Machinel Machine2 Machine3

Junction: Junction: Junction:

datastore datastore processing unit
in one context in one confext in two contexis

Fig.6. An example of joining the building blocks.

Using the Nachos model in our teaching of the operating systems programming has the one
disadvantage: the course is 12 weeks long only and the students have various level of
programming abilities. Beginning to study the whole system together (process control,
memory management and filesystem) is difficult, allthough the study can be well prepared in
partial tasks. The Nachos can be well installed to run and the student gets full information
where to and what, but a bulk of C-code and files around him is very noisy at the beginning of
the work. The encapsulation of this noise into the one kind of entity (the virtual machine) with
clear defined interfaces is user friendly. Moreover, this philosophy is perspective at all,
because the paradigm of operating system is not only the extension of bottom hardware, but
the encapsulation of the whole system into a box with easy and clear user interface.

45




5 Conclusions

The virtual machine entity is presented here as an easy one type of building block to create
simple models of process control and parallelism. The main idea is to control the process flow
at the higher level of its programming statements, which causes raw granularity of process
control and losen relationship of our model to the hardware, but the model has well defined
interface at the abstract behavioral level. An application of this modeling philosophy will be
in our teaching work, with the experiments to create portable and distributable building blocks
and incorporate the building blocks with specialised behavior.

This work has been supported by the Grant Agency of Slovak Republic, grant No.
VG1/3103/06.

References

L.

10.

11.

12.

13,

Wayne A. Christopher, Steven J. Procter, and Thomas E. Anderson: The Nachos Instructional
Operating System. Technical Report UCB//CSD-93-739, University of California, Berkeley.
April 1993

. This is the planet where Nachos rule: http://www.cs.washington.edu/homes/tom/nachos/

(accessible in February 2006)

. Bryan Ford, Kevin Van Maren, Jay Lepreau, Stephen Clawson, Bart Robinson, and Jeff Turner:

The Flux OS Toolkit: Reusable Components for OS Implementation. In Proc. of Sixth
Workshop on Hot Topics in Operating Systems. May 1997, pp. 14-19

. Utah: The OS Kit Project: http:/www.cs.utah.edu/flux/oskit/ (accessible in February 2006)
. Fabio Kon, Roy H. Campbell, M. Dennis Mickunas, Klara Nahrstedt, and Francisco J.

Ballesteros: 2K: A Distributed Operating System for Dynamic Heterogeneous Environments.
Department of Computer Science, University of Illinois at Urbana-Champaign, 1999

. 2K: A Component-Based Network-Centric Operating System for the Next Millenium

http://srg.cs.uiuc.edu/2K/ (accessible in February 2006)

. Francisco J. Ballesteros, Gorka Guardiola, Enrique Soriano, and Katia Leal: Traditional

Systems can Work Well for Pervasive Applications. A Case Study: Plan9 from Bell Labs
Becomes Ubiquitous. Third IEEE International Conference on Pervasive Computing and
Communications PerCom'05, 2005, pp. 295-299

. Plan9 from Bell Labs: http://www.cs.bell-labs.com/plan9/ (accessible in February 2006)
. Robert E. England: The virtual machine and user process model used in MOSES2: a

microcomputer operating system environment simulator. Journal of Computing Sciences in
Colleges, Volume 17, Issue 2, December 2001, pp. 301 - 309

Robert E. England: Teaching concepts of virtual memory with the MOSES2 microcomputer
operating system environment simulator. Journal of Computing Sciences in Colleges, Volume
20, Issue 6, June 2005, pp. 84-91

Suban Krishnamoorthy: An experience teaching operating systems course with a programming
project. Journal of Computing Sciences in Colleges. Volume 17 Issue 6, May 2002, pp. 25 - 38

John Dickinson: Operating systems projects built on a simple hardware simulator. ACM
SIGCSE Bulletin, Proceedings of the thirty-first SIGCSE technical symposium on Computer
science education SIGCSE '00, Volume 32, Issue 1, ISSN:0097-8418, year 2000, pp. 320-324

David A. Holland, Ada T. Lim, Margo L. Seltzer: A new instructional operating system. ACM
SIGCSE Bulletin, Proceedings of the 33rd SIGCSE technical symposium on Computer science
education SIGCSE '02, Volume 34, Issue 1, ISSN:0097-8418 , year 2002, pp. 111-115

46



